1
|
An Y, Zheng L, Zhang S, Zhang H, Zhang Y, Shao H, Tong W, Chen Z, Yao H, Wen Z, Xu S, Li Y, Tian Q, Cheng L, Sun W, Qin L, Xu J. Hydrogen activates ACOD1-itaconate pathway to ameliorate steroid-associated osteonecrosis. Biomaterials 2025; 323:123428. [PMID: 40411985 DOI: 10.1016/j.biomaterials.2025.123428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 05/06/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Steroid-associated osteonecrosis (SAON) remains a challenging clinical condition as there are few effective preventive measures. This study investigates the effects of hydrogen (H2) administrated via saturated hydrogen-rich water (HRW) in mice received high dose of glucocorticoids (for inducing SAON model). Here we find that HRW treatment significantly reduces osteocyte apoptosis, improves deteriorated trabecular architecture, increases osteoblast numbers and the bone formation, while decreases osteoclast numbers and the bone resorption. Additionally, HRW-treated mice exhibit improved serum lipid profiles, including decreased levels of low-density lipoprotein (LDL), triglycerides (TG), and total cholesterol (T-CHO), as well as reduced lipid accumulation. HRW treatment also enhances blood perfusion and increases formation of type H vessels in SAON mice. We further demonstrate that HRW shifts the polarization of macrophages from M1 to M2 phenotype and suppresses inflammatory marker TNF-α. RNA sequencing data and subsequent validation reveal that HRW upregulates ACOD1 mRNA and protein levels in bone tissues. The protective effects of HRW are mimicked by supplementation with the itaconate derivative dimethyl itaconate in a dose-dependent manner, highlighting the importance of the ACOD1-itaconate pathway in the prevention of SAON by HRW. These findings indicate that HRW ameliorates SAON by modulating the ACOD1-itaconate pathway, presenting a novel avenue for the cost-effective prevention of osteonecrosis.
Collapse
Affiliation(s)
- Yuanming An
- Musculoskeletal Research Laboratory, Centre for Musculoskeletal Degeneration & Regeneration, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chines University of Hong Kong, Hong Kong Special Administrative Region of China; The Sir Yue-Kong Pao Cancer Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory, Centre for Musculoskeletal Degeneration & Regeneration, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chines University of Hong Kong, Hong Kong Special Administrative Region of China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation (InnoHK), Chinese Academy of Sciences, Hong Kong Special Administrative Region of China
| | - Shi'an Zhang
- Musculoskeletal Research Laboratory, Centre for Musculoskeletal Degeneration & Regeneration, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chines University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Haozhi Zhang
- Musculoskeletal Research Laboratory, Centre for Musculoskeletal Degeneration & Regeneration, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chines University of Hong Kong, Hong Kong Special Administrative Region of China; The Sir Yue-Kong Pao Cancer Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Disruptive Innovation Centre for Spatiotemporal Imaging, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Yuantao Zhang
- Musculoskeletal Research Laboratory, Centre for Musculoskeletal Degeneration & Regeneration, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chines University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Hongwei Shao
- Musculoskeletal Research Laboratory, Centre for Musculoskeletal Degeneration & Regeneration, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chines University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Centre for Musculoskeletal Degeneration & Regeneration, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chines University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Ziyi Chen
- Musculoskeletal Research Laboratory, Centre for Musculoskeletal Degeneration & Regeneration, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chines University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Hao Yao
- Musculoskeletal Research Laboratory, Centre for Musculoskeletal Degeneration & Regeneration, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chines University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Zhenkang Wen
- Musculoskeletal Research Laboratory, Centre for Musculoskeletal Degeneration & Regeneration, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chines University of Hong Kong, Hong Kong Special Administrative Region of China; Disruptive Innovation Centre for Spatiotemporal Imaging, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Shunxiang Xu
- Musculoskeletal Research Laboratory, Centre for Musculoskeletal Degeneration & Regeneration, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chines University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Ye Li
- Musculoskeletal Research Laboratory, Centre for Musculoskeletal Degeneration & Regeneration, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chines University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Qinyu Tian
- Musculoskeletal Research Laboratory, Centre for Musculoskeletal Degeneration & Regeneration, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chines University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Liming Cheng
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, PR China
| | - Wei Sun
- Chengdu Hip and Femoral Head Hospital, Sichuan, PR China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Centre for Musculoskeletal Degeneration & Regeneration, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chines University of Hong Kong, Hong Kong Special Administrative Region of China.
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Centre for Musculoskeletal Degeneration & Regeneration, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chines University of Hong Kong, Hong Kong Special Administrative Region of China; Disruptive Innovation Centre for Spatiotemporal Imaging, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
2
|
Fu Z, Xu Y, Xu F, Zhou H, Lin N, Zhang N, Lin F. Injectable hydrogel regulates immune infiltration through physical and chemical synergy in the treatment of steroid-induced osteonecrosis of the femoral head. Mater Today Bio 2025; 31:101511. [PMID: 39925717 PMCID: PMC11803313 DOI: 10.1016/j.mtbio.2025.101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/13/2025] [Accepted: 01/19/2025] [Indexed: 02/11/2025] Open
Abstract
The incidence of steroid-induced osteonecrosis of the femoral head (SONFH) is increasing annually; however, the underlying pathological mechanism remains unclear, which is an obstacle to its effective treatment. The negative effect of immune infiltration on the physiological activity of focal stem cells is one potential mechanism that has attracted attention. It is difficult to simulate the complex regulation of the interaction system between immune cells and stem cells using a single regulation method. In this study, we demonstrated that the immune infiltration of T helper 17 (Th17) cells plays an important role in the progression of SONFH. Based on this finding, we developed an injectable hydrogel system with both physical and chemical synergistic regulatory properties to enhance the activity of stem cells using electrical stimulation. This treatment was designed to prevent the infiltration of Th17 cells by regulating the physiological function of stem cells and blocking the negative effect of Th17 cells on stem cells pharmacologically. Thus, the dual synergistic regulation of immune infiltration at the lesion site of SONFH enhanced the physiological activity and function of the stem cells, thereby improving the therapeutic effect of SONFH. This hydrogel system provides insight for the future development of multifactorial regulatory systems and provides a strategy for the treatment of SONFH.
Collapse
Affiliation(s)
- Zherui Fu
- Department of Emergency, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, 310000, PR China
| | - Yiwen Xu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310000, PR China
| | - Fangqi Xu
- Department of Emergency, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, 310000, PR China
| | - Haoyu Zhou
- Department of Emergency, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, 310000, PR China
| | - Na Lin
- Department of Orthopaedic Surgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, PR China
| | - Ning Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310000, PR China
| | - Feng Lin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310000, PR China
| |
Collapse
|
3
|
Zheng X, Dong Z, Ding X, Huang Q, Tang S, Zhang Y, Li B, Liao S. Progress in understanding Legg-Calvé-Perthes disease etiology from a molecular and cellular biology perspective. Front Physiol 2025; 16:1514302. [PMID: 40041162 PMCID: PMC11876877 DOI: 10.3389/fphys.2025.1514302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/27/2025] [Indexed: 03/06/2025] Open
Abstract
Legg-Calvé-Perthes disease (LCPD) is a hip disease caused by ischemia of the femoral epiphysis in children, which occurs in children aged 4-8 years (mean 6.5 years), with a male-to-female ratio of about 4:1. The disease has been reported for more than 100 years, but its etiology has not been elucidated. In recent years, a considerable amount of research has been carried out on the etiology of the disease, and the development of the disease is believed to involve a variety of molecular biological alterations, such as the COL2A1 mutation, which may be one of the causes of necrotic collapses of the epiphyseal cartilage matrix in LCPD. Tissue factor V Leiden mutation and insulin-like growth factor (IGF-1) abnormalities have also been reported in LCPD, but most theories need further confirmation. The in-depth study of LCPD cell biology has facilitated the suggestion regarding structural and/or functional abnormalities of microvascular endothelial cells in LCPD. This conjecture is supported by epidemiological and clinical evidence. Abnormal activation of osteoclasts, ischemic damage to epiphyseal cartilage, and activation of the bone marrow immune system all play important roles in the onset and progression of the disease. In this paper, we review the previous basic studies on LCPD and give an overview from the molecular biology and cell biology perspectives.
Collapse
Affiliation(s)
- Xinda Zheng
- Department of Trauma Orthopedic and Hand Surgery, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhuqing Dong
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaofei Ding
- Department of Trauma Orthopedic and Hand Surgery, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qian Huang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shengping Tang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuchen Zhang
- Department of Trauma Orthopedic and Hand Surgery, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Boxiang Li
- Department of Orthopedics, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Shijie Liao
- Department of Trauma Orthopedic and Hand Surgery, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Mo L, Wang Z, Jiang M, Zhou C, Ma C, Fan Y, He W, Chen Z, Liu Y. The pathomechanism of bone marrow edema in the femoral head necrosis with pericollapse stage. Sci Rep 2025; 15:1166. [PMID: 39774126 PMCID: PMC11707338 DOI: 10.1038/s41598-024-83376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Bone marrow edema (BME), a notable manifestation during the progression of osteonecrosis of the femoral head (ONFH), exhibits significant associations with femoral head collapse, pain, and prognosis, howeverits' pathogenesis remains underexplored. In this study, specimens from patients undergoing total hip arthroplasty (THA) were analyzed. The results revealed significantly higher Visual Analog Scale (VAS) scores and CT low-density area ratio in the BME group compared to the control group. Furthermore, Sirius Red staining exhibited fibrotic tissue in both necrotic and sclerotic areas, with more pronounced effects in the BME group. Meanwhile, data-independent Acquisition (DIA) proteomics technology was utilized to identify differentially expressed proteins (DEPs) within bone tissue. 141, 299 and 852 DEPs were identified in femoral neck, necrotic and sclerotic regions, respectively. Immune responses, inflammatory reactions and oxidative stress were markedly altered in ONFH cases with BME. In bone tissue, the levels of malondialdehyde (MDA) and proteins associated with osteoclast activity were found to be elevated in the BME group. In conclusion, BME in ONFH at pericollapse stage is associated with inflammation, fibrosis, heightened oxidative stress and increased osteoclast activity. These factors collectively elevated the risk of collapse or re-collapse. Targeted interventions aimed at neutralizing these risk factors show potential in slowing down the progression of the disease.
Collapse
Affiliation(s)
- Liang Mo
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine / Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhangzheng Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine / Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengyu Jiang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine / Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chi Zhou
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine / Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chao Ma
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yinuo Fan
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei He
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine / Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China.
- Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhenqiu Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine / Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China.
- Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yuhao Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine / Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China.
- Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
5
|
Lan X, Yu R, Xu J. Identification of circRNA CDR1as/miR-214-3p regulatory axis in Legg-Calvé-Perthes disease. Orphanet J Rare Dis 2024; 19:380. [PMID: 39407304 PMCID: PMC11481470 DOI: 10.1186/s13023-024-03394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Legg-Calvé-Perthes disease (LCPD) commonly occurs among adolescents, threatening their health. However, the potential mechanism underlying LCPD remains unclear. miR-214-3p is shown as a critical role in LCPD development with unspecified upstream regulators. METHODS Levels of miR-214-3p and circCDR1as in healthy controls and LCPD patients were determined by qRT-PCR. The role of circCDR1as/miR-214-3p axis in LCPD was determined by testing the cell viability and apoptosis in TC28 cells and primary chondrocytes. Regulation between circCDR1as and miR-214-3p was examined by RIP and ChIP assays. The inflammatory response and angiogenesis were evaluated by M2 macrophage polarization and HUVECs tumor formation. RESULTS circCDR1as was overexpressed in LCPD patients with a negative correlation with miR-214-3p. Inhibition of circCDR1as alleviated the cell viability and apoptosis of DEX-treated chondrocytes, stimulated M2 macrophage polarization and angiogenesis. miR-214-3p was proved as a downstream effector to participate in circCDR1as mediated actions. circCDR1as recruited PRC2 complex to epigenetically suppress miR-214-3p. CONCLUSION Our study illustrated the role and mechanism of circCDR1as in LCPD development by targeting miR-214-3p, highlighting its potential in the therapy for LCPD.
Collapse
Affiliation(s)
- Xia Lan
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1519, Dongyue Avenue, Nanchang, Jiangxi Province, 330006, P.R. China.
| | - Ronghui Yu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1519, Dongyue Avenue, Nanchang, Jiangxi Province, 330006, P.R. China
| | - Jianyun Xu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1519, Dongyue Avenue, Nanchang, Jiangxi Province, 330006, P.R. China
| |
Collapse
|
6
|
Yang H, Nie S, Zhou C, Li M, Yu Q, Mo Y, Wei Y, Wang X. Palliative effect of rotating magnetic field on glucocorticoid-induced osteonecrosis of the femoral head in rats by regulating osteoblast differentiation. Biochem Biophys Res Commun 2024; 725:150265. [PMID: 38901225 DOI: 10.1016/j.bbrc.2024.150265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
With the substantial increase in the overuse of glucocorticoids (GCs) in clinical medicine, the prevalence of glucocorticoid-induced osteonecrosis of the femoral head (GC-ONFH) continues to rise in recent years. However, the optimal treatment for GC-ONFH remains elusive. Rotating magnetic field (RMF), considered as a non-invasive, safe and effective approach, has been proved to have multiple beneficial biological effects including improving bone diseases. To verify the effects of RMF on GC-ONFH, a lipopolysaccharide (LPS) and methylprednisolone (MPS)-induced invivo rat model, and an MPS-induced invitro cell model have been employed. The results demonstrate that RMF alleviated bone mineral loss and femoral head collapse in GC-ONFH rats. Meanwhile, RMF reduced serum lipid levels, attenuated cystic lesions, raised the expression of anti-apoptotic proteins and osteoprotegerin (OPG), while suppressed the expression of pro-apoptotic proteins and nuclear factor receptor activator-κB (RANK) in GC-ONFH rats. Besides, RMF also facilitated the generation of ALP, attenuated apoptosis and inhibits the expression of pro-apoptotic proteins, facilitated the expression of OPG, and inhibited the expression of RANK in MPS-stimulated MC3T3-E1 cells. Thus, this study indicates that RMF can improve GC-ONFH in rat and cell models, suggesting that RMF have the potential in the treatment of clinical GC-ONFH.
Collapse
Affiliation(s)
- Hua Yang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China; International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Shenglan Nie
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Cai Zhou
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Mengqing Li
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Qinyao Yu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Yaxian Mo
- Songgang People's Hospital, Shenzhen, Guangdong, 518105, China
| | - Yunpeng Wei
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| | - Xiaomei Wang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China; International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
7
|
Palmier M, Maître M, Doat H, Lesté-Lasserre T, Maurel DB, Boiziau C. Osteocyte gene expression analysis in mouse bone: optimization of a laser-assisted microdissection protocol. JBMR Plus 2024; 8:ziae078. [PMID: 39045129 PMCID: PMC11264292 DOI: 10.1093/jbmrpl/ziae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024] Open
Abstract
Among bone cells, osteocytes are the most abundant, but also the most challenging to study because they are located inside a dense mineralized matrix. Due to their involvement in bone homeostasis, diverse tools are needed to understand their roles in bone physiology and pathology. This work was aimed at establishing a laser-assisted microdissection protocol to isolate osteocytes and analyze their gene expressions. The goal was to overcome the limitations of the technique currently most used: RNA extraction from the whole bone. To perform laser microdissection and subsequent gene expression analysis, the five main steps of the protocol have been adapted for the bone tissue. After testing many parameters, we found that the best options were (1) take unfixed snap-frozen tissue, (2) cryosection with a supported tape system to improve the tissue morphology if necessary, (3) microdissect regions of interest, and (4) recover the bone pieces by catapulting, if feasible, or by gravity. Finally, RNA extraction (5) was the most efficient with a precipitation method and allowed quantifying the expression of well described osteocyte genes (Gja1/Cx43, Phex, Pdpn, Dmp1, Sost). This work describes two protocols optimized for femur and calvaria and gives an overview of the many optimization options that one could try when facing difficulties with laser microdissection.
Collapse
Affiliation(s)
- Mathilde Palmier
- Inserm, University of Bordeaux, BioTis Laboratory UMR 1026, Bordeaux, France
| | - Marlène Maître
- Inserm, University of Bordeaux, Neurocentre Magendie UMR 1215, Bordeaux, France
| | - Hélène Doat
- Inserm, University of Bordeaux, Neurocentre Magendie UMR 1215, Bordeaux, France
| | | | - Delphine B Maurel
- Inserm, University of Bordeaux, BioTis Laboratory UMR 1026, Bordeaux, France
| | - Claudine Boiziau
- Inserm, University of Bordeaux, BioTis Laboratory UMR 1026, Bordeaux, France
| |
Collapse
|
8
|
Yue C, Cui G, Cheng Y, Zhang X, Sheng H, Yang Y, Guo J, Liu Y, Xu B. Aucubin suppresses TLR4/NF-κB signalling to shift macrophages toward M2 phenotype in glucocorticoid-associated osteonecrosis of the femoral head. J Cell Mol Med 2024; 28:e18583. [PMID: 39123292 PMCID: PMC11315675 DOI: 10.1111/jcmm.18583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
In this study, we investigated whether the ability of aucubin to mitigate the pathology of GONFH involves suppression of TLR4/NF-κB signalling and promotion of macrophage polarization to an M2 phenotype. In necrotic bone tissues from GONFH patients, we compared levels of pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages as well as levels of TLR4/NF-κB signalling. In a rat model of GONFH, we examined the effects of aucubin on these parameters. We further explored its mechanism of action in a cell culture model of M1 macrophages. Necrotic bone tissues from GONFH patients contained a significantly increased macrophage M1/M2 ratio, and higher levels of TLR4, MYD88 and NF-κB p65 than bone tissues from patients with hip osteoarthritis. Treating GONFH rats with aucubin mitigated bone necrosis and demineralization as well as destruction of trabecular bone and marrow in a dose-dependent manner, based on micro-computed tomography. These therapeutic effects were associated with a decrease in the overall number of macrophages, decrease in the proportion of M1 macrophages, increase in the proportion of M2 macrophages, and downregulation of TLR4, MYD88 and NF-κB p65. These effects in vivo were confirmed by treating cultures of M1 macrophage-like cells with aucubin. Aucubin mitigates bone pathology in GONFH by suppressing TLR4/NF-κB signalling to shift macrophages from a pro- to anti-inflammatory phenotype.
Collapse
Affiliation(s)
- Chen Yue
- Department of OrthopedicsLuoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan ProvinceLuoyangHenanChina
| | - Guofeng Cui
- Department of OrthopedicsLuoyang Central Hospital Affiliated to Zhengzhou UniversityLuoyangHenanChina
| | - Yan Cheng
- Department of OrthopedicsLuoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan ProvinceLuoyangHenanChina
| | - Xue Zhang
- Department of OrthopedicsLuoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan ProvinceLuoyangHenanChina
| | - Hong‐feng Sheng
- Department of OrthopedicsTongde Hospital of Zhejiang ProvinceHangzhouZhejiangChina
| | - Yidan Yang
- Department of OrthopedicsLuoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan ProvinceLuoyangHenanChina
| | - Jiayi Guo
- Department of OrthopedicsLuoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan ProvinceLuoyangHenanChina
| | - Youwen Liu
- Department of OrthopedicsLuoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan ProvinceLuoyangHenanChina
| | - Bin Xu
- Department of OrthopedicsTongde Hospital of Zhejiang ProvinceHangzhouZhejiangChina
| |
Collapse
|
9
|
Boschetto F, Ma C, Kang MS, Madero S, Kim HKW. Protocol for extracting and isolating porcine bone-marrow-derived macrophages from ribs. STAR Protoc 2024; 5:103085. [PMID: 38795355 PMCID: PMC11144798 DOI: 10.1016/j.xpro.2024.103085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 05/02/2024] [Indexed: 05/27/2024] Open
Abstract
Due to anatomical and biological similarities with humans, pigs are increasingly used for inflammation- and immune-related studies in biomedical research, including the field of osteonecrosis and osteoimmunology. Here, we present a protocol for rib extraction, isolation of the bone marrow by centrifugation, and processing to obtain bone-marrow-derived macrophages (BMDMs). Then, we describe the procedures of in vitro experiments to evaluate the cell phenotype. For complete details on the use and execution of this protocol, please refer to Andre et al.1.
Collapse
Affiliation(s)
- Francesco Boschetto
- Center of Excellence in Hip, Scottish Rite for Children, Dallas, TX 75219, USA; Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Chi Ma
- Center of Excellence in Hip, Scottish Rite for Children, Dallas, TX 75219, USA; Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Sarah Madero
- Center of Excellence in Hip, Scottish Rite for Children, Dallas, TX 75219, USA; Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Harry K W Kim
- Center of Excellence in Hip, Scottish Rite for Children, Dallas, TX 75219, USA; Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
10
|
Hernigou P, Homma Y, Hernigou J, Flouzat Lachaniette CH, Rouard H, Verrier S. Mesenchymal Stem Cell Therapy for Bone Repair of Human Hip Osteonecrosis with Bilateral Match-Control Evaluation: Impact of Tissue Source, Cell Count, Disease Stage, and Volume Size on 908 Hips. Cells 2024; 13:776. [PMID: 38727312 PMCID: PMC11083454 DOI: 10.3390/cells13090776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
We investigated the impact of mesenchymal stem cell (MSC) therapy on treating bilateral human hip osteonecrosis, analyzing 908 cases. This study assesses factors such as tissue source and cell count, comparing core decompression with various cell therapies. This research emphasizes bone repair according to pre-treatment conditions and the specificities of cell therapy in osteonecrosis repair, indicating a potential for improved bone repair strategies in hips without femoral head collapse. This study utilized a single-center retrospective analysis to investigate the efficacy of cellular approaches in the bone repair of osteonecrosis. It examined the impact on bone repair of tissue source (autologous bone marrow concentrate, allogeneic expanded, autologous expanded), cell quantity (from none in core decompression alone to millions in cell therapy), and osteonecrosis stage and volume. Excluding hips with femoral head collapse, it focused on patients who had bilateral hip osteonecrosis, both pre-operative and post-operative MRIs, and a follow-up of over five years. The analysis divided these patients into seven groups based on match control treatment variations in bilateral hip osteonecrosis, primarily investigating the outcomes between core decompression, washing effect, and different tissue sources of MSCs. Younger patients (<30 years) demonstrated significantly better repair volumes, particularly in stage II lesions, than older counterparts. Additionally, bone repair volume increased with the number of implanted MSCs up to 1,000,000, beyond which no additional benefits were observed. No significant difference was observed in repair outcomes between different sources of MSCs (BMAC, allogenic, or expanded cells). The study also highlighted that a 'washing effect' was beneficial, particularly for larger-volume osteonecrosis when combined with core decompression. Partial bone repair was the more frequent event observed, while total bone repair of osteonecrosis was rare. The volume and stage of osteonecrosis, alongside the number of injected cells, significantly affected treatment outcomes. In summary, this study provides comprehensive insights into the effectiveness and variables influencing the use of mesenchymal stem cells in treating human hip osteonecrosis. It emphasizes the potential of cell therapy while acknowledging the complexity and variability of results based on factors such as age, cell count, and disease stage.
Collapse
Affiliation(s)
- Philippe Hernigou
- Orthopedic Department, University Paris East, Hopital Henri Mondor, 94000 Creteil, France;
| | - Yasuhiro Homma
- Department of Orthopaedics, Faculty of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Jacques Hernigou
- Department of Orthopaedic Surgery and Traumatology, EpiCURA Baudour Hornu Ath Hospital, 7331 Hainaut, Belgium;
| | | | - Helène Rouard
- Établissement Français du Sang, University Paris East, 94000 Creteil, France;
| | - Sophie Verrier
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland;
| |
Collapse
|
11
|
Wang C, Zhu Y, Pan D. Identifying the causal relationship between immune factors and osteonecrosis: a two-sample Mendelian randomization study. Sci Rep 2024; 14:9371. [PMID: 38654114 DOI: 10.1038/s41598-024-59810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
A wealth of evidence intimates a profound connection between the immune system and osteonecrosis, albeit the specific immune factors underlying this connection remain largely veiled. A bidirectional Mendelian randomization (MR) study was conducted based on genome-wide association study summary data to identify causal links between 731 immune factors and osteonecrosis including drug-induced osteonecrosis. Preliminary MR analysis was accomplished utilizing the inverse-variance weighted method under a multiplicative random effects model, and heterogeneity and potential horizontal pleiotropy were evaluated through Cochrane's Q-test, MR-Egger intercept test, MR-PRESSO global test, and leave-one-out analysis. Upon false discovery rate correction, the gene-predicted level of one immune factor (CD62L - monocyte %monocyte) exhibited a significant positive correlation with osteonecrosis, while eight immune traits associated with monocytes, dendritic cells, and NK cells demonstrated significant causal effects with drug-induced osteonecrosis. Reverse MR revealed no significant correlations. This MR research provides genetic evidence for the causal associations between a broad spectrum of immune factors and osteonecrosis. Such a study aids in unraveling the intricate interaction patterns between the immune and skeletal systems, elucidating the pathogenesis of osteonecrosis, and identifying potential novel therapeutic approaches.
Collapse
Affiliation(s)
- Chao Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yong Zhu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ding Pan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
12
|
Luo Y, Yang Z, Zhao X, Li D, Li Q, Wei Y, Wan L, Tian M, Kang P. Immune regulation enhances osteogenesis and angiogenesis using an injectable thiolated hyaluronic acid hydrogel with lithium-doped nano-hydroxyapatite (Li-nHA) delivery for osteonecrosis. Mater Today Bio 2024; 25:100976. [PMID: 38322659 PMCID: PMC10846409 DOI: 10.1016/j.mtbio.2024.100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/11/2023] [Accepted: 01/24/2024] [Indexed: 02/08/2024] Open
Abstract
Osteonecrosis is a devastating orthopedic disease in clinic that generally occurs in the femoral head associating with corticosteroid use up to 49 % in patients. In particular, glucocorticoids induced osteonecrosis of the femoral head is closely related to the local immune response that characterized by abnormal macrophage activation and inflammatory cell infiltration at the necrotic site, forming a pro-inflammatory microenvironment dominated by M1 macrophages, and thus leads to failure of bone repair and regeneration. Here, we report a bone regeneration strategy that constructs an immune regulatory biomaterial platform using an injectable thiolated hyaluronic acid hydrogel with lithium-doped nano-hydroxyapatite (Li-nHA@Gel) delivery for osteonecrosis treatment. Li-nHA@Gel achieved a sustain and longterm release of Li ions, which might enhance M2 macrophage polarization through the activation of the JAK1/STAT6/STAT3 signaling pathway, and the following induced pro-repair immune microenvironment mediated the enhancement of the osteogenic and angiogenic differentiation. Moreover, both in vitro and in vivo studies indicated that Li-nHA@Gel enhanced M2 macrophage polarization, osteogenesis, and angiogenesis, and thus promoted the bone and blood vessel formation. Taken together, this novel bone immunomodulatory biomaterial platform that promotes bone regeneration by enhancing M2 macrophage polarization, osteogenesis, and angiogenesis could be a promising strategy for osteonecrosis treatment.
Collapse
Affiliation(s)
- Yue Luo
- Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No. 1 the South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Zhouyuan Yang
- Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xin Zhao
- Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Donghai Li
- Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qianhao Li
- Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yang Wei
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Luyao Wan
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Meng Tian
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Pengde Kang
- Department of Orthopedic, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| |
Collapse
|
13
|
Fang W, Peng P, Lin K, Xiao F, He W, He M, Wei Q. m6A methylation modification and immune infiltration analysis in osteonecrosis of the femoral head. J Orthop Surg Res 2024; 19:183. [PMID: 38491545 PMCID: PMC10943872 DOI: 10.1186/s13018-024-04590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/28/2024] [Indexed: 03/18/2024] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a elaborate hip disease characterized by collapse of femoral head and osteoarthritis. RNA N6-methyladenosine (m6A) plays a crucial role in a lot of biological processes within eukaryotic cells. However, the role of m6A in the regulation of ONFH remains unclear. In this study, we identified the m6A regulators in ONFH and performed subtype classification. We identified 7 significantly differentially expressed m6A regulators through the analysis of differences between ONFH and normal samples in the Gene Expression Omnibus (GEO) database. A random forest algorithm was employed to monitor these regulators to assess the risk of developing ONFH. We constructed a nomogram based on these 7 regulators. The decision curve analysis suggested that patients can benefit from the nomogram model. We classified the ONFH samples into two m6A models according to these 7 regulators through consensus clustering algorithm. After that, we evaluated those two m6A patterns using principal component analysis. We assessed the scores of those two m6A patterns and their relationship with immune infiltration. We observed a higher m6A score of type A than that of type B. Finally, we performed a cross-validation of crucial m6A regulatory factors in ONFH using external datasets and femoral head bone samples. In conclusion, we believed that the m6A pattern could provide a novel diagnostic strategy and offer new insights for molecularly targeted therapy of ONFH.
Collapse
Affiliation(s)
- Weihua Fang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Peng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kun Lin
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fangjun Xiao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei He
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, Guangzhou, China
- Department of Orthopaedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mincong He
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, Guangzhou, China.
- Department of Orthopaedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Qiushi Wei
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, Guangzhou, China.
- Department of Orthopaedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
14
|
Ng T, Liu R, Kulkarni VA. Legg-Calvé-Perthes Disease: Diagnosis, Decision Making, and Outcome. Curr Sports Med Rep 2024; 23:45-52. [PMID: 38315432 DOI: 10.1249/jsr.0000000000001139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
ABSTRACT Legg-Calvé-Perthes disease (LCPD), or idiopathic avascular necrosis of the proximal capital femoral epiphysis in children, has a variable presentation and can result in significant femoral head deformity that can lead to long-term functional deficits. Plain radiographic imaging is crucial in diagnosing LCPD and guiding treatment. Although the etiology of LCPD remains unknown, the evolution of the disease has been well characterized to include the phases of ischemia, revascularization, and reossification. The mechanical weakening during these phases of healing place the femoral head at high risk of deformity. Treatment of LCPD, therefore, focuses on minimizing deformity through operative and nonoperative strategies to reduce the risk of premature osteoarthritis. Advanced imaging using perfusion MRI may refine surgical decision making in the future, and biological treatments to improve femoral head healing are on the horizon.
Collapse
Affiliation(s)
- Tammy Ng
- Department of Pediatrics, UC Davis Health, Sacramento, CA
| | - Ruikang Liu
- Division of Sports Medicine, LSU Health Shreveport, Shreveport, LA
| | - Vedant A Kulkarni
- Department of Orthopedics, Shriners Children's Northern California, Sacramento, CA
| |
Collapse
|
15
|
Kuroyanagi G, Kamiya N, Yamaguchi R, Kim HK. Interleukin-6 receptor blockade improves bone healing following ischemic osteonecrosis in adolescent mice. OSTEOARTHRITIS AND CARTILAGE OPEN 2023; 5:100386. [PMID: 37600923 PMCID: PMC10432805 DOI: 10.1016/j.ocarto.2023.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Objective Juvenile ischemic osteonecrosis (JIO) of the femoral head is one of the most serious hip disorders causing a permanent deformity of the femoral head in childhood. We recently reported that interleukin 6 (IL-6) is significantly increased in the hip synovial fluid of patients with JIO and that articular chondrocytes are primary source of IL-6. Adolescent JIO is particularly challenging to treat and has poor outcome. This study determined if IL-6 receptor blockade prevents bone loss and improves the bone healing in adolescent JIO. Method Adolescent mice (12-week-old) surgically induced with JIO were treated with either saline or MR16-1, an IL-6 receptor blocker. Results Micro-CT assessment showed significantly increased bone volume (p < 0.001, Cohen's d = 2.0) and trabecular bone thickness (p < 0.001, d = 2.3) after the MR16-1 treatment. Histomorphometric assessment showed significantly increased osteoblast number (p < 0.01, d = 2.3), bone formation rate (p < 0.01, d = 4.3), and mineral apposition rate (p < 0.01, d = 4.1) after the MR16-1 treatment. The number of osteoclasts was unchanged. Histologic assessment showed significantly increased revascularization (p < 0.01) and restoration of the necrotic marrow with new hematopoietic bone marrow (p < 0.01). Vascular endothelial growth factor (VEGF) expression was increased in the revascularized area and the articular cartilage, and in the cultured chondrocytes treated with IL-6 receptor inhibitor. Conclusion IL-6 blockade in adolescent mice with JIO enhanced bone formation and revascularization. The findings suggest IL-6 receptor blocker as a potential medical therapy for adolescent JIO.
Collapse
Affiliation(s)
- Gen Kuroyanagi
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, TX 75219, USA
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Nobuhiro Kamiya
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, TX 75219, USA
- Faculty of Budo and Sport Studies, Tenri University, Nara 6320071, Japan
| | - Ryosuke Yamaguchi
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, TX 75219, USA
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Harry K.W. Kim
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, TX 75219, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390-8883, USA
| |
Collapse
|
16
|
Cheng Y, Chen H, Duan P, Zhang H, Yu Y, Yu J, Yu Z, Zheng L, Ye X, Pan Z. Early depletion of M1 macrophages retards the progression of glucocorticoid-associated osteonecrosis of the femoral head. Int Immunopharmacol 2023; 122:110639. [PMID: 37481850 DOI: 10.1016/j.intimp.2023.110639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Inflammation stands as a pivotal factor in the pathogenesis of glucocorticoid-associated osteonecrosis of the femoral head (GA-ONFH). However, the vital role played by M1 macrophages, the principal constituents of the inflammatory process, remains largely underexplored. In this study, we employed reverse transcription-quantitative polymerase chain Reaction (RT-PCR), western blot, and flow cytometry to assess the impact of M1-conditioned medium on cultures of mouse bone marrow-derived mesenchymal stem cells (BMSCs) and Murine Long bone Osteocyte-Y4 (MLO-Y4) in vitro. Moreover, we quantified the levels of inflammatory cytokines in the M1-conditioned medium through the employment of an enzyme-linked immunosorbent assay (ELISA). For in vivo analysis, we examined M1 macrophages and investigated the NF-kB signaling pathway in specimens obtained from the femoral heads of animals and humans. We found that the number of M1 macrophages in the femoral head of GA-ONFH patients grew significantly, and in the mice remarkably increase, maintaining high levels in the intramedullary. In vitro, the M1 macrophage-conditioned medium elicited apoptosis in BMSCs and MLO-Y4 cells, shedding light on the intricate interplay between macrophages and these cell types. The presence of TNF-α within the M1-conditioned medium activated the NF-κB pathway, providing mechanistic insight into the apoptotic induction. Moreover, employing a robust rat macrophage clearance model and GA-ONFH model, we demonstrated a remarkable attenuation in TNF-α expression and NF-kB signaling subsequent to macrophage clearance. This pronounced reduction engenders diminished cellular apoptosis and engenders a decelerated trajectory of GA-ONFH progression. In conclusion, our study reveals the crucial involvement of M1 macrophages in the pathogenesis of GA-ONFH, highlighting their indispensable role in disease progression. Furthermore, early clearance emerges as a promising strategy for impeding the development of GA-ONFH.
Collapse
Affiliation(s)
- Yannan Cheng
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Hui Chen
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Ping Duan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Hao Zhang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Yongle Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Jiadong Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Zirui Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Lin Zheng
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Xin Ye
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Zhenyu Pan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China.
| |
Collapse
|
17
|
Hu K, Shang Z, Yang X, Zhang Y, Cao L. Macrophage Polarization and the Regulation of Bone Immunity in Bone Homeostasis. J Inflamm Res 2023; 16:3563-3580. [PMID: 37636272 PMCID: PMC10460180 DOI: 10.2147/jir.s423819] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023] Open
Abstract
Bone homeostasis is a dynamic equilibrium state of bone formation and absorption, ensuring skeletal development and repair. Bone immunity encompasses all aspects of the intersection between the skeletal and immune systems, including various signaling pathways, cytokines, and the crosstalk between immune cells and bone cells under both homeostatic and pathological conditions. Therefore, as key cell types in bone immunity, macrophages can polarize into classical pro-inflammatory M1 macrophages and alternative anti-inflammatory M2 macrophages under the influence of the body environment, participating in the regulation of bone metabolism and playing various roles in bone homeostasis. M1 macrophages can not only act as precursors of osteoclasts (OCs), differentiate into mature OCs, but also secrete pro-inflammatory cytokines to promote bone resorption; while M2 macrophages secrete osteogenic factors, stimulating the differentiation and mineralization of osteoblast precursors and mesenchymal stem cells (MSCs), and subsequently increase bone formation. Once the polarization of macrophages is imbalanced, the resulting immune dysregulation will cause inflammatory stimulation, and release a large amount of inflammatory factors affecting bone metabolism, leading to pathological conditions such as osteoporosis (OP), rheumatoid arthritis (RA), and steroid-induced femoral head necrosis (SANFH). In this review, we introduce the signaling pathways and related factors of macrophage polarization, as well as their relationships with immune factors, OB, OC, and MSC. We also discuss the roles of macrophage polarization and bone immunity in various diseases of bone homeostasis imbalance, as well as the factors regulating them, which may help to develop new methods for treating bone metabolic disorders.
Collapse
Affiliation(s)
- Kangyi Hu
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Zhengya Shang
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Xiaorui Yang
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Yongjie Zhang
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Linzhong Cao
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| |
Collapse
|
18
|
Andre G, Boschetto F, Gokani V, Singhal M, Jing Y, Kim HKW, Ma C. Ex vivo study of detergent-assisted intraosseous bone wash treatment of osteonecrosis. J Orthop Res 2023; 41:1482-1493. [PMID: 36453529 PMCID: PMC10232679 DOI: 10.1002/jor.25496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
Avascular necrosis (AVN) involves ischemic cell death of the bone. AVN leaves an abundance of necrotic lipids and debris in the bone marrow, which instigates inflammatory bone repair. Consequently, the necrotic bone microenvironment stimulates excessive bone resorption, leading to joint deformities and osteoarthritis. Here, we performed a detergent-assisted bone wash using poloxamer 407 (P407) to clean the necrotic bone environment by removing lipids and necrotic debris. The new concept was tested using an established ex vivo AVN model of porcine cadaver humeral heads. The P407 wash was performed using P407 solution and followed with saline via two intraosseous needles. Visual inspection and image analyses of average pixel light intensity showed that the P407 wash produced a better-cleaned bone than the saline wash. Analyses of the collected bone wash solution showed a two-fold increase in triglycerides (101 vs. 53 mmol/head, p = 0.006) and a 10-fold increase in the dry weight of the removed debris (1.34 vs. 0.13 g/head, p = 0.02) with the P407 wash compared to saline. The histological evaluation showed significantly decreased Oil-Red-O (fats) staining in the P407-washed bone compared with the saline-washed bone. The in vitro assays of Alizarin red and qPCR showed the P407 wash neither altered the osteogenic behaviors of porcine bone marrow-derived mesenchymal cells (pBMMCs) nor raised inflammatory responses of porcine bone marrow-derived macrophages (pBMMs). In conclusion, detergent-assisted bone wash using P407 produced a better removal of nonsoluble debris from the bone marrow space than the saline wash without causing changes to osteogenesis or inflammatory reactions.
Collapse
Affiliation(s)
- Graham Andre
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, Texas, USA
| | - Francesco Boschetto
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, Texas, USA
| | - Vishal Gokani
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, Texas, USA
| | - Mo Singhal
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, Texas, USA
| | - Yan Jing
- Department of Orthodontics, Texas A&M School of Dentistry, Dallas, Texas, USA
| | - Harry K W Kim
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, Texas, USA
- Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chi Ma
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, Texas, USA
- Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
19
|
Yu R, Ma C, Li G, Xu J, Feng D, Lan X. Inhibition of Toll-Like Receptor 4 Signaling Pathway Accelerates the Repair of Avascular Necrosis of Femoral Epiphysis through Regulating Macrophage Polarization in Perthes Disease. Tissue Eng Regen Med 2023; 20:489-501. [PMID: 37041432 PMCID: PMC10219917 DOI: 10.1007/s13770-023-00529-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/18/2023] [Accepted: 02/13/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Legg-Calvé-Perthes disease (LCPD) is still a refractory disease in children's orthopedics. With the introduction of the concept of "osteoimmunology", the immune-inflammatory mechanisms between bone and immune system have become a research focus of LCPD. However, few studies have reported on the pathological role of inflammation-related receptors such as toll-like receptors (TLRs) as well as immune cells such as macrophages in LCPD. This study was for investigating the mechanism of TLR4 signaling pathway on the direction of macrophage polarization and the repair of avascular necrosis of femoral epiphysis in LCPD. METHODS With GSE57614 and GSE74089, differentially expressed genes were screened. Through enrichment analysis and protein-protein interaction network, the functions of TLR4 were explored. Furthermore, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), hematoxylin & eosin (H&E) staining, micro-CT, tartrate-resistant acid phosphatase (TRAP) dyeing and western blotting were performed for determining the influences of TAK-242 (a TLR4 inhibitor) on the repair of avascular necrosis of femoral epiphysis in rat models. RESULTS Totally 40 co-expression genes were screened as well as enriched in TLR4 signaling pathway. Immunohistochemistry and ELISA analyses certified that TLR4 facilitated macrophage polarization toward the M1 phenotype and prevented macrophage polarization toward the M2 phenotype. Besides, the results of H&E and TRAP staining, micro-CT, and western blotting showed that TAK-242 can inhibit osteoclastogenesis and promote osteogenesis. CONCLUSION Inhibition of TLR4 signaling pathway accelerated the repair of avascular necrosis of femoral epiphysis by regulating macrophage polarization in LCPD.
Collapse
Affiliation(s)
- Ronghui Yu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Cong Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Guoyong Li
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jianyun Xu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Dan Feng
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, 330046, Jiangxi, China
| | - Xia Lan
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
20
|
Wang T, Luo X, Li B, Huang Q, Liu J, Tang S, Liu Y, Lu R, Liao S, Ding X. Platelet to lymphocyte ratio was a risk factor in Perthes disease. Sci Rep 2023; 13:5052. [PMID: 36977732 PMCID: PMC10050405 DOI: 10.1038/s41598-023-32000-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The study was aimed to determine the relationship between PLR (platelet to lymphocyte ratio) and the lateral pillar classification of Perthes disease, and to provide an alternative index for clinical diagnosis. In addition, the association of the PLR with the necrosis stage of Perthes disease was also explored. This was a retrospective study. 74 children with Perthes disease and 60 children in the healthy control group without femoral head necrosis in our hospital from 2012 to 2021 were collected. The general data and clinical parameters were collected from the hospital information system. The modified herring lateral pillar classification was collected for the fragmentation stage case group and the PLR, NLR (neutrophil to lymphocyte ratio), LMR (lymphocyte to monocyte ratio) and PNR (platelet to neutrophil ratio) were calculated. The cases were divided into four groups, herring A and B were group I, herring B/C and C were group II, the healthy control group was group III, and the necrosis stage was group IV. The hematological indexes (NLR, PLR, LMR, PNR) of children at different stages were statistically analyzed. Group I consisted of 36 patients, with an average age of 7.4 ± 2.0 years (3-11 years). Group II consisted of 23 patients, with an average age of 7.4 ± 1.9 years (4-12 years). Group III consisted of 60 patients, with a mean age of 7.4 ± 2.7 years (4-13 years). Group IV consisted of 15 patients, with an average age of 6.4 ± 1.7 years (3-10 years). The average values of PLR in groups I, II, III and IV were 131.98 ± 47.44, 122.19 ± 37.88, 102.46 ± 30.68 and 128.90 ± 28.11, respectively. It's worth noting that there was statistically significant difference among groups I, II and III (P = 0.003). The optimal threshold of PLR was 130.25, the sensitivity was 45.8% and the specificity was 85%. PLR was also significantly different between groups III and group IV. PLR was higher in Herring A and B classifications than in Herring B/C and C classifications. PLR had certain diagnostic value in both the necrosis stage and fragmentation stage as a risk factor.
Collapse
Affiliation(s)
- TianTian Wang
- Department of Orthopedics, Ordos Central Hospital, 23 Ekin Hollow West Street, Ordos, 017000, China
| | - XiaoLin Luo
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - BoXiang Li
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Qian Huang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - JianHong Liu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - ShengPing Tang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Yun Liu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - RongBin Lu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - ShiJie Liao
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China.
| | - XiaoFei Ding
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China.
| |
Collapse
|
21
|
Zhang Q, Sun W, Li T, Liu F. Polarization Behavior of Bone Macrophage as Well as Associated Osteoimmunity in Glucocorticoid-Induced Osteonecrosis of the Femoral Head. J Inflamm Res 2023; 16:879-894. [PMID: 36891172 PMCID: PMC9986469 DOI: 10.2147/jir.s401968] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a disabling disease with high mortality in China but the detailed molecular and cellular mechanisms remain to be investigated. Macrophages are considered the key cells in osteoimmunology, and the cross-talk between bone macrophages and other cells in the microenvironment is involved in maintaining bone homeostasis. M1 polarized macrophages launch a chronic inflammatory response and secrete a broad spectrum of cytokines (eg, TNF-α, IL-6 and IL-1β) and chemokines to initiate a chronic inflammatory state in GIONFH. M2 macrophage is the alternatively activated anti-inflammatory type distributed mainly in the perivascular area of the necrotic femoral head. In the development of GIONFH, injured bone vascular endothelial cells and necrotic bone activate the TLR4/NF-κB signal pathway, promote dimerization of PKM2 and subsequently enhance the production of HIF-1, inducing metabolic transformation of macrophage to the M1 phenotype. Considering these findings, putative interventions by local chemokine regulation to correct the imbalance between M1/M2 polarized macrophages by switching macrophages to an M2 phenotype, or inhibiting the adoption of an M1 phenotype appear to be plausible regimens for preventing or intervening GIONFH in the early stage. However, these results were mainly obtained by in vitro tissue or experimental animal model. Further studies to completely elucidate the alterations of the M1/M2 macrophage polarization and functions of macrophages in glucocorticoid-induced osteonecrosis of the femoral head are imperative.
Collapse
Affiliation(s)
- Qingyu Zhang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Wei Sun
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Centre for Osteonecrosis and Joint-Preserving & Reconstruction, Orthopaedic Department, China Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Tengqi Li
- Department of Orthopedics, Peking University Shougang Hospital, Beijing, People’s Republic of China
- Department of Orthopedics, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, People’s Republic of China
| | - Fanxiao Liu
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
22
|
Li Z, Shao W, Lv X, Wang B, Han L, Gong S, Wang P, Feng Y. Advances in experimental models of osteonecrosis of the femoral head. J Orthop Translat 2023; 39:88-99. [PMID: 36819298 PMCID: PMC9931935 DOI: 10.1016/j.jot.2023.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/02/2023] [Accepted: 01/08/2023] [Indexed: 02/05/2023] Open
Abstract
Background Osteonecrosis of the femoral head (ONFH) is a devastating disease affecting young adults, resulting in significant pain, articular surface collapse, and disabling dysfunction. ONFH can be divided into two broad categories: traumatic and non-traumatic. It has been established that ONFH results from an inadequate blood supply that causes the death of osteocytes and bone marrow cells. Nonetheless, the precise mechanism of ONFH remains to be elucidated. In this regard, preclinical animal and cell models to study ONFH have been established to assess the efficacy of various modalities for preventing and treating ONFH. Nevertheless, it should be borne in mind that many models do not share the same physiologic and metabolic characteristics as humans. Therefore, it is necessary to establish a reproducible model that better mimics human disease. Methods We systematically reviewed the literatures in regard to ONFH experimental models over the past 30 years. The search was performed in PubMed and Web of Science. Original animal, cell studies with available full-text were included. This review summarizes different methods for developing animal and cell experimental models of ONFH. The advantages, disadvantages and success rates of ONFH models are also discussed. Finally, we provide experimental ONFH model schemes as a reference. Results According to the recent literatures, animal models of ONFH include traumatic, non-traumatic and traumatic combined with non-traumatic models. Most researchers prefer to use small animals to establish non-traumatic ONFH models. Indeed, small animal-based non-traumatic ONFH modeling can more easily meet ethical requirements with large samples. Otherwise, gradient concentration or a particular concentration of steroids to induce MSCs or EPCs, through which researchers can develop cell models to study ONFH. Conclusions Glucocorticoids in combination with LPS to induce ONFH animal models, which can guarantee a success rate of more than 60% in large samples. Traumatic vascular deprivation combines with non-traumatic steroids to induce ONFH, obtaining success rates ranging from 80% to 100%. However, animals that undergo vascular deprivation surgery may not survive the glucocorticoid induction process. As for cell models, 10-6mol/L Dexamethasone (Dex) to treat bone marrow stem cells, which is optimal for establishing cell models to study ONFH. The translational potential of this article This review aims to summarize recent development in experimental models of ONFH and recommended the modeling schemes to verify new models, mechanisms, drugs, surgeries, and biomaterials of ONFH to contribute to the prevention and treatment of ONFH.
Collapse
Affiliation(s)
- Zilin Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenkai Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Wang
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lizhi Han
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Gong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Corresponding author.
| |
Collapse
|
23
|
Molecular Biomarkers in Perthes Disease: A Review. Diagnostics (Basel) 2023; 13:diagnostics13030471. [PMID: 36766577 PMCID: PMC9914190 DOI: 10.3390/diagnostics13030471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Perthes disease is a juvenile form of osteonecrosis of the femoral head that affects children under the age of 15. One hundred years after its discovery, some light has been shed on its etiology and the biological factors relevant to its etiology and disease severity. METHODS The aim of this study was to summarize the literature findings on the biological factors relevant to the pathogenesis of Perthes disease, their diagnostic and clinical significance, and their therapeutic potential. A special focus on candidate genes as susceptibility factors and factors relevant to clinical severity was made, where studies reporting clinical or preclinical results were considered as the inclusion criteria. PubMed databases were searched by two independent researchers. Sixty-eight articles were included in this review. Results on the factors relevant to vascular involvement and inflammatory molecules indicated as factors that contribute to impaired bone remodeling have been summarized. Moreover, several candidate genes relevant to an active phase of the disease have been suggested as possible biological therapeutic targets. CONCLUSIONS Delineation of molecular biomarkers that underlie the pathophysiological process of Perthes disease can allow for the provision of earlier and more accurate diagnoses of the disease and more precise follow-ups and treatment in the early phases of the disease.
Collapse
|
24
|
Zheng J, Yao Z, Xue L, Wang D, Tan Z. The role of immune cells in modulating chronic inflammation and osteonecrosis. Front Immunol 2022; 13:1064245. [PMID: 36582244 PMCID: PMC9792770 DOI: 10.3389/fimmu.2022.1064245] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Osteonecrosis occurs when, under continuous stimulation by adverse factors such as glucocorticoids or alcohol, the death of local bone and marrow cells leads to abnormal osteoimmune function. This creates a chronic inflammatory microenvironment, which interferes with bone regeneration and repair. In a variety of bone tissue diseases, innate immune cells and adaptive immune cells interact with bone cells, and their effects on bone metabolic homeostasis have attracted more and more attention, thus developing into a new discipline - osteoimmunology. Immune cells are the most important regulator of inflammation, and osteoimmune disorder may be an important cause of osteonecrosis. Elucidating the chronic inflammatory microenvironment regulated by abnormal osteoimmune may help develop potential treatments for osteonecrosis. This review summarizes the inflammatory regulation of bone immunity in osteonecrosis, explains the pathophysiological mechanism of osteonecrosis from the perspective of osteoimmunology, and provides new ideas for the treatment of osteonecrosis.
Collapse
Affiliation(s)
- Jianrui Zheng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhi Yao
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China,*Correspondence: Lixiang Xue, ; Deli Wang, ; Zhen Tan,
| | - Deli Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,*Correspondence: Lixiang Xue, ; Deli Wang, ; Zhen Tan,
| | - Zhen Tan
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,*Correspondence: Lixiang Xue, ; Deli Wang, ; Zhen Tan,
| |
Collapse
|
25
|
[Research progress of immune cells regulating the occurrence and development of osteonecrosis of the femoral head]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:1428-1433. [PMID: 36382463 PMCID: PMC9681590 DOI: 10.7507/1002-1892.202204106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To summarize the characteristics of the occurrence and development of osteonecrosis of the femoral head (ONFH), and to review the important regulatory role of immune cells in the progression of ONFH. METHODS The domestic and foreign literature on the immune regulation of ONFH was reviewed, and the relationship between immune cells and the occurrence and development of ONFH was analyzed. RESULTS The ONFH region has a chronic inflammatory reaction and an imbalance between osteoblast and osteoclast, while innate immune cells such as macrophages, neutrophils, dendritic cells, and immune effector cells such as T cells and B cells are closely related to the maintenance of bone homeostasis. CONCLUSION Immunotherapy targeting the immune cells in the ONFH region and the key factors and proteins in their regulatory pathways may be a feasible method to delay the occurrence, development, and even reverse the pathology of ONFH.
Collapse
|
26
|
Identification of Inflammation-Related Genes and Exploration of Regulatory Mechanisms in Patients with Osteonecrosis of the Femoral Head. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4501186. [PMID: 36193326 PMCID: PMC9526608 DOI: 10.1155/2022/4501186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/11/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022]
Abstract
Background Osteonecrosis of the femoral head (ONFH) is a disabling orthopedic disease, which is impacted by infiltration of immune cells. Thus, the aim of the current research was to determine the inflammation-related biomarkers in ONFH. Methods GSE123568 dataset with control and steroid-induced osteonecrosis of the femoral head (SONFH) samples were downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were detected by limma R package and weighted gene co-expression network analysis (WGCNA) was used to explore the co-expression genes and modules. We obtained inflammation-related genes (IRGs) from the Molecular Signatures Database (MSigDB). Then, the IRGs associated with SONFH (IRGs-SONFH) were screened out and analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. A protein-protein interaction (PPI) network was established using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and hub genes were identified by the MCODE algorithm. Based on the hub genes, we constructed a lncRNA-miRNA-mRNA network. Results We identified 535 DEGs between control and SONFH samples. The WGCNA clearly indicated that the brown module was most significantly associated with SONFH. We identified 25 IRGs-SONFH through WGCNA module genes, DEGs and IRGs. A total of 4 hub genes (CD14, CYBB, NOD2, and TLR1) were identified by Cytoscape. Receiver operating characteristic (ROC) curve analysis determined that the expressions of the four genes could distinguish SONFH from controls as evidenced by the area under the curve (AUC) greater than 0.7. Finally, we constructed a competitive endogenous RNA (ceRNA) network which included 67 lncRNAs, 1 miRNA (hsa-miR-320a), and 1 mRNA (NOD2). Conclusions Our study identified 4 hub genes as potential inflammation-related biomarkers of SONFH. Moreover, we proposed a ceRNA network of lncRNAs targeting hsa-miR-320a, hsa-miR-320a, and NOD2 as a potential RNA regulatory pathway that controls disease progression in ONFH.
Collapse
|
27
|
Affiliation(s)
- Maoxiao Ma
- Hunan University of Chinese Medicine, Changsha, China.,Orthopedic Department, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China
| | - Zhen Tan
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wuyin Li
- Orthopedic Department, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China
| | - Hong Zhang
- Orthopedic Department, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China
| | - Youwen Liu
- Orthopedic Department, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China
| | - Chen Yue
- Orthopedic Department, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China.,Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
28
|
Deng Z, Ren Y, Park MS, Kim HKW. Damage associated molecular patterns in necrotic femoral head inhibit osteogenesis and promote fibrogenesis of mesenchymal stem cells. Bone 2022; 154:116215. [PMID: 34571205 PMCID: PMC8671337 DOI: 10.1016/j.bone.2021.116215] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/03/2023]
Abstract
In Legg-Calvé-Perthes disease (LCPD), a loss of blood supply to the juvenile femoral head leads to extensive cell death and release of damage-associated molecular patterns (DAMPs). Over time chronic inflammatory repair process is observed with impaired bone regeneration. Increased fibrous tissue and adipose tissue are seen in the marrow space with decreased osteogenesis in a piglet model of LCPD, suggesting inhibition of osteoblastic differentiation and stimulation of fibroblastic and adipogenic differentiation of mesenchymal stem cell (MSC) during the healing process. Little is known about the DAMPs present in the necrotic femoral head and their effects on MSC differentiation. The purpose of this study was to characterize the DAMPs present in the femoral head following ischemic osteonecrosis and to determine their effects on MSC differentiation. Necrotic femoral heads were flushed with saline at 48 h, 2 weeks and 4 weeks following the induction of ischemic osteonecrosis in piglets to obtain necrotic bone fluid (NBF). Western blot analysis of the NBF revealed the presence of prototypic DAMP, high mobility group box 1 (HMGB1), and other previously described DAMPs: biglycan, 4-hydroxynonenal (4-HNE), and receptor activator of NF-κB ligand (RANKL). ELISA of the NBF revealed increasing levels of inflammatory cytokines IL1β, IL6 and TNFα with the temporal progression of osteonecrosis. To determine the effects of NBF on MSC differentiation, we cultured primary porcine MSCs with NBF obtained by in vivo necrotic bone flushing method. NBF inhibited osteoblastic differentiation of MSCs with significantly decreased OSX expression (p = 0.008) and Von Kossa/Alizarin Red staining for mineralization. NBF also significantly increased the expression of proliferation markers Ki67 (p = 0.03) and PCNA (p < 0.0001), and fibrogenic markers Vimentin (p = 0.02) and Fibronectin (p = 0.04). Additionally, NBF treated MSC cells showed significantly elevated RANKL/OPG secretion ratio (p = 0.003) and increased expression of inflammatory cytokines IL1β (p = 0.006) and IL6 (p < 0.0001). To specifically assess the role of DAMPs in promoting the fibrogenesis, we treated porcine fibroblasts with artificial NBF produced by bone freeze-thaw method. We found increased fibroblastic cell proliferation in an NBF dose-dependent manner. Lastly, we studied the effect of HMGB1, a prototypic DAMP, and found that HMGB1 partially contributes to MSC proliferation and fibrogenesis. In summary, our findings show that DAMPs and the inflammatory cytokines present in the necrotic femoral head inhibit osteogenesis and promote fibrogenesis of MSCs, potentially contributing to impaired bone regeneration following ischemic osteonecrosis as observed in LCPD.
Collapse
Affiliation(s)
- Zhuo Deng
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, TX, USA
| | - Yinshi Ren
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, TX, USA; Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Min Sung Park
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, TX, USA
| | - Harry K W Kim
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, TX, USA; Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
29
|
Huang Q, Li B, Lin C, Chen X, Wang T, Liu J, Liu Y, Lu R, Liao S, Ding X. MicroRNA sequence analysis of plasma exosomes in early Legg-Calvé-Perthes disease. Cell Signal 2021; 91:110184. [PMID: 34740784 DOI: 10.1016/j.cellsig.2021.110184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/24/2021] [Accepted: 10/31/2021] [Indexed: 02/08/2023]
Abstract
The pathogenesis of Legg-Calvé-Perthes disease (LCPD) has not been fully elucidated, and studies on epigenetic changes that may contribute to the pathogenesis of LCPD are rare. MicroRNAs (miRNAs) are epigenetic modifications that play a critical role in gene regulation. This study aimed to determine the expression profiles of circulating exosomal miRNAs and examine the role of exosomal miRNAs in LCPD. Exosomes were extracted from the plasma of three patients with LCPD and three matched healthy volunteers. Total exosomal miRNAs were isolated, and next-generation sequencing and bioinformatic approaches were performed. The top 10 most differentially upregulated miRNAs were identified, and qRT-PCR validation was performed using additional 10 matches. In Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, plasma exosomes were used in verifying osteoclastogenesis and the endothelial dysfunction phenotypes involved. The elevated miRNAs in LCPD plasma exosomes were tested for osteoclastogenesis and endothelial dysfunction in vitro. Sequencing results revealed the expression profiles of plasma exosomal miRNAs with differential expression from the DESeq-identified miRNA profiles in LCPD versus controls in a pairwise comparison. Gene Ontology and KEGG pathway analyses indicated that the predicted target genes of different miRNAs were mainly enriched in the endothelial and osteoclast cells related to signaling pathways. Functional phenotype experiments showed that the plasma exosomes in the LCPD group promoted osteoclastogenesis and endothelial cell dysfunction. qRT-PCR experiments showed that nine miRNAs in circulating exosomes in LCPD patients were higher than those in the healthy controls. miR-3133, miR-4644, miR-4693-3p, and miR-4693-5p promoted endothelial dysfunction, and miR-3133, miR-4693-3p, miR-4693-5p, miR-141-3p and miR-30a promoted osteoclastogenesis in vitro. This study demonstrated that plasma exosomes from LCPD promote endothelial cell dysfunction and osteoclastogenesis likely through their miRNAs, which might contribute to the development of LCPD.
Collapse
Affiliation(s)
- Qian Huang
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Boxiang Li
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chengsen Lin
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xianxiang Chen
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tiantian Wang
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jianhong Liu
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yun Liu
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rongbin Lu
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shijie Liao
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.
| | - Xiaofei Ding
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
30
|
Wang B, Gong S, Shao W, Han L, Li Z, Zhang Z, Zheng Y, Ouyang F, Ma Y, Xu W, Feng Y. Comprehensive analysis of pivotal biomarkers, immune cell infiltration and therapeutic drugs for steroid-induced osteonecrosis of the femoral head. Bioengineered 2021; 12:5971-5984. [PMID: 34488536 PMCID: PMC8815624 DOI: 10.1080/21655979.2021.1972081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Steroid-induced osteonecrosis of the femoral head (SONFH) is a progressive disease that leads to an increased disability rate. This study aimed to ascertain biomarkers, infiltrating immune cells, and therapeutic drugs for SONFH. The gene expression profile of the GSE123568 dataset was downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified using the NetworkAnalyst platform. Functional enrichment, protein-protein interaction network (PPI), and module analyses were performed using Metascape tools. An immune cell abundance identifier was used to explore immune cell infiltration. Furthermore, hub genes were identified based on maximal clique centrality (MCC) evaluation using cytoHubba application and confirmed by qRT-PCR using clinical samples. Finally, the L1000 platform was used to determine potential drugs for SONFH treatment. The SONFH mouse model was used to determine the therapeutic effects of aspirin. In total, 429 DEGs were identified in SONFH samples. Functional enrichment analysis showed that these DEGs were enriched in myeloid leukocyte activation and osteoclast differentiation processes. A set of nine immune cell types was confirmed to be markedly different between the SONFH and control samples. All 10 hub genes were significantly highly expressed in the serum of SONFH patients, as shown by qRT-PCR. Finally, the therapeutic effect of aspirin on SONFH was examined in animal experiments. Taken together, our data revealed the hub genes and infiltrating immune cells in SONFH, and we also screened potential drugs for use in SONFH treatment.
Collapse
Affiliation(s)
- Bo Wang
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Song Gong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Wenkai Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Lizhi Han
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Zilin Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Zhichao Zhang
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Yang Zheng
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Fang Ouyang
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Yan Ma
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Weihua Xu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Yong Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| |
Collapse
|
31
|
Kim HKW, Park MS, Alves do Monte F, Gokani V, Aruwajoye OO, Ren Y. Minimally Invasive Necrotic Bone Washing Improves Bone Healing After Femoral Head Ischemic Osteonecrosis: An Experimental Investigation in Immature Pigs. J Bone Joint Surg Am 2021; 103:1193-1202. [PMID: 33877059 DOI: 10.2106/jbjs.20.00578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Ischemic osteonecrosis of the femoral head produces necrotic cell debris and inflammatory molecules in the marrow space, which elicit a chronic inflammatory repair response. The purpose of this study was to determine the effects of flushing out the necrotic cell debris and inflammatory proteins on bone repair in a piglet model of ischemic osteonecrosis. METHODS Osteonecrosis of the femoral head of the right hindlimb was induced in 12 piglets by tying a ligature tightly around the femoral neck. One week after the surgery, 6 animals were treated with a percutaneous 3-needle bone washing procedure and non-weight-bearing (NWB) of the right hindlimb (wash group). The total saline solution wash volume was 450 mL per femoral head. Serial wash solutions were collected and analyzed. The remaining 6 animals were treated with NWB only (NWB group). At 8 weeks after the surgery, the femoral heads were assessed using radiography, micro-computed tomography (micro-CT), and histological analysis. In addition, we compared the results for these piglets with our published results for 6 piglets treated with multiple epiphyseal drilling (MED) plus NWB without bone washing (MED group). RESULTS Necrotic cells and inflammatory proteins were present in the bone wash solution collected 1 week after ischemia induction. The protein and triglyceride concentrations decreased significantly with subsequent washing (p < 0.005). At 8 weeks after ischemia induction, the wash group had a significantly higher bone volume than the MED or NWB group (p < 0.0001). Histological bone-formation measures were also significantly increased in the wash group compared with the MED group (p = 0.002) or NWB group (p < 0.0001) while macrophage numbers were significantly decreased in the wash group. CONCLUSIONS The percutaneous 3-needle procedure flushed out cell debris and inflammatory proteins from the necrotic femoral heads, decreased osteoclasts and macrophages, and increased bone formation following induction of ischemic osteonecrosis. CLINICAL RELEVANCE We believe that this is the first study to investigate the concept of washing out the necrotic femoral head to improve bone healing. The minimally invasive procedure may be useful to improve the necrotic bone environment and bone repair following ischemic osteonecrosis.
Collapse
Affiliation(s)
- Harry K W Kim
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, Texas.,Department of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, Texas
| | - Min Sung Park
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, Texas
| | | | - Vishal Gokani
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, Texas
| | | | - Yinshi Ren
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, Texas.,Department of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
32
|
Zhu D, Yu H, Liu P, Yang Q, Chen Y, Luo P, Zhang C, Gao Y. Calycosin modulates inflammation via suppressing TLR4/NF-κB pathway and promotes bone formation to ameliorate glucocorticoid-induced osteonecrosis of the femoral head in rat. Phytother Res 2021; 35:2824-2835. [PMID: 33484002 DOI: 10.1002/ptr.7028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 12/27/2022]
Abstract
Glucocorticoid (GC) administration is one of the main causes of osteonecrosis of the femoral head (ONFH). Inflammation, especially the TLR4/NF-κB pathway, has been demonstrated to play a pivotal role in the pathogenesis of GC-induced ONFH. Calycosin, the main bioactive extract of Astragali Radix, could substantially regulate the TLR4/NF-κB pathway. Therefore, in this study, we hypothesized that calycosin could exert beneficial effects in GC-induced ONFH. In vitro, effects of calycosin on the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs) were determined using Alizarin red staining, alkaline phosphatase activity examination, and osteogenic-related gene assay. Meanwhile, inflammatory cytokines were detected by enzyme-linked immunosorbent assay. In vivo, 60 male Sprague-Dawley rats were randomly separated into three groups: the control group, the methylprednisolone (MPS) group, and the MPS + calycosin group. The results showed that calycosin could significantly promote dynamic bone formation and retard TLR4/NF-κB pathway. in vivo investigations indicated that calycosin could decrease the morbidity of ONFH and alleviate pathological manifestations within the femoral head. Meanwhile, calycosin could protect osseous blood supply and facilitate dynamic bone formation. The findings collectively demonstrated that calycosin could ameliorate GC-induced ONFH in rat and might become a potential candidate for pharmaceutical prevention of this intractable disease.
Collapse
Affiliation(s)
- Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hongping Yu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Pei Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Pengbo Luo
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
33
|
Ren Y, Deng Z, Gokani V, Kutschke M, Mitchell TW, Aruwajoye O, Adapala NS, Kamiya N, Abu-Amer Y, Kim HK. Anti-Interleukin-6 Therapy Decreases Hip Synovitis and Bone Resorption and Increases Bone Formation Following Ischemic Osteonecrosis of the Femoral Head. J Bone Miner Res 2021; 36:357-368. [PMID: 33053220 DOI: 10.1002/jbmr.4191] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/24/2020] [Accepted: 10/08/2020] [Indexed: 12/22/2022]
Abstract
Legg-Calvé-Perthes disease (LCPD) is a juvenile form of ischemic femoral head osteonecrosis, which produces chronic hip synovitis, permanent femoral head deformity, and premature osteoarthritis. Currently, there is no medical therapy for LCPD. Interleukin-6 (IL-6) is significantly elevated in the synovial fluid of patients with LCPD. We hypothesize that IL-6 elevation promotes chronic hip synovitis and impairs bone healing after ischemic osteonecrosis. We set out to test if anti-IL-6 therapy using tocilizumab can decrease hip synovitis and improve bone healing in the piglet model of LCPD. Fourteen piglets were surgically induced with ischemic osteonecrosis and assigned to two groups: the no treatment group (n = 7) and the tocilizumab group (15 to 20 mg/kg, biweekly intravenous injection, n = 7). All animals were euthanized 8 weeks after the induction of osteonecrosis. Hip synovium and femoral heads were assessed for hip synovitis and bone healing using histology, micro-CT, and histomorphometry. The mean hip synovitis score and the number of synovial macrophages and vessels were significantly lower in the tocilizumab group compared with the no treatment group (p < .0001, p = .01, and p < .01, respectively). Micro-CT analysis of the femoral heads showed a significantly higher bone volume in the tocilizumab group compared with the no treatment group (p = .02). The histologic assessment revealed a significantly lower number of osteoclasts per bone surface (p < .001) in the tocilizumab group compared with the no treatment group. Moreover, fluorochrome labeling showed a significantly higher percent of mineralizing bone surface (p < .01), bone formation rate per bone surface (p < .01), and mineral apposition rate (p = .04) in the tocilizumab group. Taken together, tocilizumab therapy decreased hip synovitis and osteoclastic bone resorption and increased new bone formation after ischemic osteonecrosis. This study provides preclinical evidence that tocilizumab decreases synovitis and improves bone healing in a large animal model of LCPD. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Yinshi Ren
- Center for Excellence in Hip Disorders, Scottish Rite for Children, Dallas, TX, USA.,Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhuo Deng
- Center for Excellence in Hip Disorders, Scottish Rite for Children, Dallas, TX, USA
| | - Vishal Gokani
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Kutschke
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas Wesley Mitchell
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Olumide Aruwajoye
- Center for Excellence in Hip Disorders, Scottish Rite for Children, Dallas, TX, USA
| | - Naga Suresh Adapala
- Center for Excellence in Hip Disorders, Scottish Rite for Children, Dallas, TX, USA
| | - Nobuhiro Kamiya
- Center for Excellence in Hip Disorders, Scottish Rite for Children, Dallas, TX, USA
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Harry Kw Kim
- Center for Excellence in Hip Disorders, Scottish Rite for Children, Dallas, TX, USA.,Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
34
|
Li JC, Liang XZ, Luo D, Yan BZ, Liu JB, Li G. Study on the molecular mechanism of BuShenHuoXue capsule in treatment of steroid-induced osteonecrosis of the femoral head. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1680. [PMID: 33490192 PMCID: PMC7812223 DOI: 10.21037/atm-20-7040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Steroid-induced osteonecrosis of the femoral head (SONFH) is the pathological process caused by the death of the active components of the head of the femur due to the high dose of hormones, which has become a common public health problem. BuShenHuoXue capsule (BSHXC) has been clinically proven to be effective against the SONFH, the main pharmacological action of BSHXC is tonifying kidney and promoting blood circulation, but the mechanism remains to be explored. METHODS We established a rat SONFH model by injecting Methylprednisolone (MPS) into the right gluteus muscle 30 mg/kg/d, 3 days of continuous injection every week, 4 weeks in total. According to the clinical dosage of BSHXC (Herba epimedium 3 g, Eucommia ulmoides 15 g, Salvia miltiorrhizae 30 g, Chuanxiong 15 g, Paeonia lactiflora Pall 15 g, Poria cocos 12 g, Achyranthes bidentata 12 g, antler gum 10 g, Cyperus rotundus L. Nine g and Radix Glycyrrhizae 9 g), it was converted into the equivalent dose of rats, and gavage was performed at the weight of 10 mL/kg, once per day. The BSHXC was subjected to experiments in vivo, SONFH pharmacodynamics, bioinformatics, and network of pharmacology to determine the active ingredients, and its protective role against SONFH, Enrichment analysis was performed to explore the possible mechanism of BSHXC, and cell experiments were undertaken to analyze the impact of BSHXC on the hormones associated with bone marrow mesenchymal stem cells (BMSCs) between osteogenesis and apoptosis. RESULTS Experiments confirmed that BSHXC could effectively reduce bone loss in SONFH rat models. From bioinformatics and a network constructed from 10 drugs-208 pharmacology-126 targets, the enrichment analysis showed that the core targets were inflammatory reaction, steroid hormones, estrogen receptors, osteoporosis, and adjustment of osteogenesis and osteoclast differentiation, among others. The cell proliferation and staining supported that the mechanism of BSHXC promoted osteogenesis and intervening in apoptosis. CONCLUSIONS The BSHXC reduced the inflammatory response, changed steroid response, regulated estrogen receptors, delayed osteoporosis, regulated osteoblast and osteoclast differentiation by regulating related targets, and improved the local microenvironment by a multi-component, multi-target, and multi-link process to delay or reverse the progression of SONFH.
Collapse
Affiliation(s)
- Jia-Cheng Li
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue-Zhen Liang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Luo
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bo-Zhao Yan
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jin-Bao Liu
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Gang Li
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
35
|
Li B, Huang Q, Lin C, Lu R, Wang T, Chen X, Liu Z, Liu Y, Wu J, Wu Y, Liao S, Ding X. Increased circulating CD31+/CD42b-EMPs in Perthes disease and inhibit HUVECs angiogenesis via endothelial dysfunction. Life Sci 2020; 265:118749. [PMID: 33220290 DOI: 10.1016/j.lfs.2020.118749] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/29/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022]
Abstract
AIMS Endothelial microparticles (EMPs) are extracellular vesicles secreted by endothelial cells. The purpose of this research is to explore that the clinical significance and roles in angiogenesis and endothelial dysfunction of circulating microparticles in Perthes disease. MAIN METHODS We collected platelet-poor plasma (PPP) from patients and controls, then microparticles (MPs) were extracted. Flow cytometry was performed to calculate the concentrations of CD31+/CD42b-, CD62E+ and CD31+/CD42b+ MPs. ELISA was performed to detect the expression level of biomarkers of endothelial dysfunction and inflammatory factors in plasma. In vitro experiments to evaluate the effect of circulating MPs and EMPs derived from IL-6-stimulated human umbilical vein endothelial cells (HUVECs) on angiogenesis and endothelial dysfunction. KEY FINDINGS Our results revealed that the CD31+/CD42b- EMPs were significantly higher in Perthes disease group than in the control group. The Perthes-MPs being taken up by HUVECs promoted endothelial cell apoptosis, endothelial dysfunction and inhibited angiogenesis in vitro. Moreover, the level of IL-6 in plasma significantly increased in patients with Perthes, which was tightly correlated with the elevated level of circulating CD31+/CD42b- EMPs. IL-6 promoted HUVECs to secrete CD31+/CD42b- MPs, and EMPs derived from high concentration IL-6-stimulated (100 and 1000 pg/mL) HUVECs promoted endothelial cell apoptosis, endothelial dysfunction and inhibited angiogenesis. SIGNIFICANCE In summary, our study suggests that circulating EMPs in the phenotypic spectrum revealed unique phenotypes of endothelial dysfunction, showing close correlation with the secretion of IL-6. These circulating EMPs may give rise to endothelial cell apoptosis, endothelial dysfunction and angiogenesis in Perthes disease.
Collapse
Affiliation(s)
- Boxiang Li
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qian Huang
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chengsen Lin
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rongbin Lu
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tiantian Wang
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xianxiang Chen
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhengtang Liu
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yun Liu
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jianping Wu
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, GuangZhou, China
| | - Yang Wu
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shijie Liao
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Xiaofei Ding
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
36
|
Goodman SB, Maruyama M. Inflammation, Bone Healing and Osteonecrosis: From Bedside to Bench. J Inflamm Res 2020; 13:913-923. [PMID: 33223846 PMCID: PMC7671464 DOI: 10.2147/jir.s281941] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Osteonecrosis of the epiphyseal and metaphyseal regions of major weight-bearing bones of the extremities is a condition that is associated with local death of bone cells and marrow in the afflicted compartment. Chronic inflammation is a prominent feature of osteonecrosis. If the persistent inflammation is not resolved, this process will result in progressive collapse and subsequent degenerative arthritis. In the pre-collapse stage of osteonecrosis, attempt at joint preservation rather than joint replacement in this younger population with osteonecrosis is a major clinical objective. In this regard, core decompression, with/without local injection of bone marrow aspirate concentrate (BMAC), is an accepted and evidence-based method to help arrest the progression and improve the outcome of early-stage osteonecrosis. However, some patients do not respond favorably to this treatment. Thus, it is prudent to consider strategies to mitigate chronic inflammation concurrent with addressing the deficiencies in osteogenesis and vasculogenesis in order to save the affected joint. Interestingly, the processes of inflammation, osteonecrosis, and bone healing are highly inter-related. Therefore, modulating the biological processes and crosstalk among cells of the innate immune system, the mesenchymal stem cell-osteoblast lineage and others are important to providing the local microenvironment for resolution of inflammation and subsequent repair. This review summarizes the clinical and biologic principles associated with osteonecrosis and provides potential cutting-end strategies for modulating chronic inflammation and facilitating osteogenesis and vasculogenesis using local interventions. Although these studies are still in the preclinical stages, it is hoped that safe, efficacious, and cost-effective interventions will be developed to save the host’s natural joint.
Collapse
Affiliation(s)
- Stuart B Goodman
- Departments of Orthopaedic Surgery, Stanford University, Stanford, CA, USA.,Departments of Bioengineering, Stanford University, Stanford, CA, USA
| | - Masahiro Maruyama
- Departments of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
37
|
Development of a novel minimally invasive technique to washout necrotic bone marrow content from epiphyseal bone: A preliminary cadaveric bone study. Orthop Traumatol Surg Res 2020; 106:709-715. [PMID: 32146150 DOI: 10.1016/j.otsr.2020.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Legg-Calvé-Perthes disease is a juvenile ischemic osteonecrosis which produces extensive necrotic cell debris and release of damage associated molecular patterns (DAMPs) in the femoral head. The necrotic bone environment induces a chronic inflammatory repair response with excessive bone resorption leading to deformity and early osteoarthritis. Currently there is no minimally invasive method to clear the necrotic materials from the bone to decrease the inflammatory burden of the necrotic environment and to improve the healing process. HYPOTHESIS We hypothesized that a novel minimally invasive two-needle saline washing technique would be effective to remove cell debris, proteins, and fat from the marrow space of porcine cadaveric humeral heads (HHs). MATERIALS AND METHODS Twenty-two HHs were subjected to three freeze-thaw cycles to simulate osteonecrosis prior to the wash procedure which consisted of placement of two 15-gauge intraosseous needles followed by incremental saline wash. After the washout procedure, the solutions were collected for measurements of turbidity, protein concentration, and cell count. The HHs were analyzed by optical scanning and histology. RESULTS The solution collected after each wash showed a significant decrease in the turbidity, cell count, and protein concentration (p<0.05). Histologic assessment showed significantly decreased cell debris and adipocytes in the washed group compared to the unwashed group (p<0.001). DISCUSSION/CONCLUSION The two-needle intraosseous wash technique effectively removed cell debris and proteins from the marrow space. The technique may be used to reduce the necrotic cell debris and DAMPs present in the necrotic bone. LEVEL OF EVIDENCE III, in vitro comparative study.
Collapse
|
38
|
Teplen'kiy MP, Chepeleva MV, Kuznetsova EI. [Perthes disease: immunological aspects.]. Klin Lab Diagn 2020; 65:239-243. [PMID: 32227730 DOI: 10.18821/0869-2084-2020-65-4-239-243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 11/17/2022]
Abstract
The values of cellular, humoral immunity, cytokine status, those of phagocytic activity of neutrophils (PAN) have been studied in patients with Perthes disease II and III Stages. Considering a stage of the pathological process patients (boys at the age of 8-12 years) were divided into two (2) groups. Group I included 14 patients with the fragmentation stage (Perthes disease Stage II). Group 2 include d 15 children with Perthes disease Stage III (the stage of re-ossification). Perthes disease regardless of the stage of the disease was characterized by the increase in oxygendependent and lysosomal phagocytic activity of neutrophils, the increase in the number of early extracellular traps, as well as by increased concentrations of pro-inflammatory cytokines (IL-1β and TNFa), IgЕ, decreased concentrations of IL-18. The fragmentation stage was characterized by moderate activation of cellular immunity with a prevailing increase in the number of T-lymphocytes with early activation markers (CD25). At the re-ossification stage the predominance of T-lymphocytes was observed with late activation markers (HLADR), being accompanied by moderate activation of humoral immunity (increased concentrations of class A and G serum immunoglobulins). The obtained data can be used as additional criteria for clarifying Perthes disease stage, predicting osteonecrosis development when making decision of the feasibility of performing reconstructive surgeries on the joint.
Collapse
Affiliation(s)
- M P Teplen'kiy
- FSBI Russian Ilizarov Scientific Centre «Restorative Traumatology and Orthopaedics» of the RF Ministry of Health, 640014, Kurgan, Russian Federation
| | - M V Chepeleva
- FSBI Russian Ilizarov Scientific Centre «Restorative Traumatology and Orthopaedics» of the RF Ministry of Health, 640014, Kurgan, Russian Federation
| | - E I Kuznetsova
- FSBI Russian Ilizarov Scientific Centre «Restorative Traumatology and Orthopaedics» of the RF Ministry of Health, 640014, Kurgan, Russian Federation
| |
Collapse
|
39
|
The Use of Platelet-Rich Plasma for the Treatment of Osteonecrosis of the Femoral Head: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2642439. [PMID: 32219128 PMCID: PMC7081027 DOI: 10.1155/2020/2642439] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/20/2020] [Indexed: 12/18/2022]
Abstract
Background As a pathological process, osteonecrosis of the femoral head (ONFH) is characterized by the avascularity of the femoral head, cellular necrosis, microfracture, and the collapse of the articular surface. Currently, critical treatment for early-stage ONFH is limited to core decompression. However, the efficacy of core decompression remains controversial. To improve the core decompression efficacy, regenerative techniques such as the use of platelet-rich plasma (PRP) were proposed for early-stage ONFH. As a type of autologous plasma containing concentrations of platelets greater than the baseline, PRP plays an important role in tissue repair, regeneration, and the differentiation of mesenchymal stem cells (MSCs). In this review, we present a comprehensive overview of the operation modes, mechanism, and efficacy of PRP for early-stage ONFH treatment. Methods We searched for relevant studies in the PubMed, Web of Science, and Embase databases. By searching these electronic databases, the identification of either clinical or experimental studies evaluating PRP, MSC, core decompression, and ONFH was our goal. Results Seventeen studies of PRP and avascular necrosis of the femoral head were evaluated in our review. Ten studies related to the possible mechanism of PRP for treating ONFH were reviewed. Seven studies of the operation modes of PRP in treating ONFH were identified. We reviewed the efficacy of PRP in treating ONFH systematically and made an attempt to compare the PRP operation modes in 7 studies and other operation modes in past studies for early-stage ONFH treatment. Conclusion PRP treats ONFH mainly through three mechanisms: inducing angiogenesis and osteogenesis to accelerate bone healing, inhibiting inflammatory reactions in necrotic lesions, and preventing apoptosis induced by glucocorticoids. In addition, as an adjunctive therapy for core decompression, the use of PRP is recommended to improve the treatment of early-stage ONFH patients, especially when combined with stem cells and bone grafts, by inducing osteogenic activity and stimulating the differentiation of stem cells in necrotic lesions.
Collapse
|
40
|
Li T, Zhang Y, Wang R, Xue Z, Li S, Cao Y, Liu D, Niu Y, Mao X, Wang X, Li W, Guo Q, Guo M, Lin N, Chen W. Discovery and validation an eight-biomarker serum gene signature for the diagnosis of steroid-induced osteonecrosis of the femoral head. Bone 2019; 122:199-208. [PMID: 30853659 DOI: 10.1016/j.bone.2019.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/18/2022]
Abstract
Steroid-induced osteonecrosis of the femoral head (SONFH) is difficult to be diagnosed at the early stages when it can be administrated effectively. Yet, to date no study has been performed to identify diagnostic biomarkers and to develop diagnostic models for SONFH. In the current study, a total of 60 SONFH patients with Association Research Circulation Osseous (ARCO) stages I-IV, and 20 controls were enrolled and divided into the discovery and validation cohorts. The serum samples were collected and the gene expression profiles were detected by microarray analysis based on the discovery cohort. Then, eight genes (BIRC3, CBL, CCR5, LYN, PAK1, PTEN, RAF1 and TLR4) were identified as the candidate serum biomarkers of SONFH due to the significant differential expression patterns and the topological importance in the interaction network of SONFH-related differentially expressed genes. Functionally, these candidate serum biomarkers were significantly involved into several pathological processes during SONFH progression, such as the immune regulation and inflammation, bone metabolism and angiogenesis. After that, a prediction model for the diagnosis of SONFH was constructed using Partial least squares regression based on the serum levels of the candidate biomarkers. Notably, both the 10-fold cross-validation and the independent dataset test demonstrated the good performance of this model. In conclusion, our study discovered eight promising serum biomarkers and developed the multi-biomarker-based prediction model as a new, potential and non-invasive diagnostic tool for the detection of SONFH, as well as benefit the administration of SONFH in a daily clinical setting.
Collapse
Affiliation(s)
- Taixian Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rongtian Wang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Zhipeng Xue
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Shangzhu Li
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300041, China
| | - Yuju Cao
- Zhengzhou Traditional Chinese Medicine Traumatology Hospital, Zhengzhou 450000, China
| | - Daobing Liu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Yanfang Niu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Xia Mao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoyue Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weijie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiuyan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Minqun Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Weiheng Chen
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China.
| |
Collapse
|
41
|
Zhu W, Xu R, Du J, Fu Y, Li S, Zhang P, Liu L, Jiang H. Zoledronic acid promotes TLR-4-mediated M1 macrophage polarization in bisphosphonate-related osteonecrosis of the jaw. FASEB J 2019; 33:5208-5219. [PMID: 30624969 DOI: 10.1096/fj.201801791rr] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a detrimental side effect of the long-term administration of bisphosphonates. Although macrophages were reported to be an important mediator of BRONJ, the detailed potential mechanism of BRONJ remains unclear. Here, we reported an elevated TLR-4 expression in macrophages under action of zoledronic acid (ZA), resulting in enhanced M1 macrophage polarization and decreased M2 macrophage polarization both in vitro and in vivo. After inhibiting the TLR-4 signaling pathway, the activation of the TLR-4/NF-κB signaling pathway and the induction of NF-κB nuclear translocation and production of proinflammatory cytokines by ZA were suppressed in macrophages, thereby inhibiting M1 macrophage polarization. By utilizing the TLR-4-/- mice, development of BRONJ was markedly ameliorated, and M1 macrophages were significantly attenuated in the extraction socket tissues in the TLR-4-/- mice. Importantly, the systemic administration of the TLR-4 inhibitor TAK-242 improved the wound healing of the extraction socket and decreased the incidence rate of BRONJ. Taken together, our findings suggest that TLR-4-mediated macrophage polarization participates in the pathogenesis of BRONJ in mice, and TLR-4 may be a potential target for the prevention and therapeutic treatment of BRONJ.-Zhu, W., Xu, R., Du, J., Fu, Y., Li, S., Zhang, P., Liu, L., Jiang, H. Zoledronic acid promotes TLR-4-mediated M1 macrophage polarization in bisphosphonate-related osteonecrosis of the jaw.
Collapse
Affiliation(s)
- Weiwen Zhu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; and
| | - Rongyao Xu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; and
| | - Jinying Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; and
| | - Yu Fu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Sheng Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Laikui Liu
- Department of Oral Pathology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Hongbing Jiang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; and
| |
Collapse
|