1
|
Tang K, Ceteznik S, Kim M, Bornfeldt KE, Kanter JE, Zhang H, Arola DD. Changes in the composition and mechanical properties of dentin in mouse models of diabetes. Dent Mater 2024; 40:2017-2024. [PMID: 39343702 DOI: 10.1016/j.dental.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVES This study employed mouse models of type 1 (T1D) and type 2 (T2D) diabetes to characterize the changes in tooth dentin composition and its mechanical properties. METHODS Thirty-two mice were used in this study and divided into T1D, T2D and corresponding control groups. Mandibles were extracted 12 weeks after the onset of diabetes, and dentin from the first molars was evaluated in varying regions of the root. The composition was assessed using Raman Spectroscopy. Nanoindentation and Vickers indentation were employed to study the mechanical properties of the tissue. Statistical significance was evaluated by two-way analysis of variance with respect to the diabetic group and region of the tooth (p ≤ 0.05). RESULTS In the T2D model, the mineral-to-collagen ratio, hardness, and storage modulus of the intertubular dentin were significantly reduced compared to tissue from the controls, especially in the cervical regions of the tooth. The reduction in the mineral-to-collagen ratio was also observed in the T1D model, but changes in nanomechanical properties were not evident. However, the bulk hardness of the teeth in the T1D model was lower than in the littermate controls. Optical microscopy revealed significant wear of the tooth crowns in both models of diabetes, which appear to result from parafunctional activities. CONCLUSION This study suggests that both type 1 and type 2 models of diabetes are associated with detrimental changes in dentin. CLINICAL SIGNIFICANCE Better understanding of how diabetes affects dentin and the contributing mechanisms will be key to improving treatments for people with diabetes.
Collapse
Affiliation(s)
- K Tang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - S Ceteznik
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - M Kim
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - K E Bornfeldt
- Department of Medicine, UW Medicine Diabetes Institute, Seattle, WA, USA
| | - J E Kanter
- Department of Medicine, UW Medicine Diabetes Institute, Seattle, WA, USA
| | - H Zhang
- Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
| | - D D Arola
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA; Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, WA, USA; Department of Oral Health Sciences, University of Washington, Seattle, WA, USA; Department of Mechanical, Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Cervantes J, Koska J, Kramer F, Akilesh S, Alpers CE, Mullick AE, Reaven P, Kanter JE. Elevated apolipoprotein C3 augments diabetic kidney disease and associated atherosclerosis in type 2 diabetes. JCI Insight 2024; 9:e177268. [PMID: 38743496 PMCID: PMC11383354 DOI: 10.1172/jci.insight.177268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Diabetes increases the risk of both cardiovascular disease and kidney disease. Notably, most of the excess cardiovascular risk in people with diabetes is in those with kidney disease. Apolipoprotein C3 (APOC3) is a key regulator of plasma triglycerides, and it has recently been suggested to play a role in both type 1 diabetes-accelerated atherosclerosis and kidney disease progression. To investigate if APOC3 plays a role in kidney disease in people with type 2 diabetes, we analyzed plasma levels of APOC3 from the Veterans Affairs Diabetes Trial. Elevated baseline APOC3 levels predicted a greater loss of renal function. To mechanistically test if APOC3 plays a role in diabetic kidney disease and associated atherosclerosis, we treated black and tan, brachyury, WT and leptin-deficient (OB; diabetic) mice, a model of type 2 diabetes, with an antisense oligonucleotide (ASO) to APOC3 or a control ASO, all in the setting of human-like dyslipidemia. Silencing APOC3 prevented diabetes-augmented albuminuria, renal glomerular hypertrophy, monocyte recruitment, and macrophage accumulation, partly driven by reduced ICAM1 expression. Furthermore, reduced levels of APOC3 suppressed atherosclerosis associated with diabetes. This suggests that targeting APOC3 might benefit both diabetes-accelerated atherosclerosis and kidney disease.
Collapse
Affiliation(s)
- Jocelyn Cervantes
- Division of Metabolism, Endocrinology, and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Juraj Koska
- VA Phoenix Health Care System, Phoenix, Arizona, USA
| | - Farah Kramer
- Division of Metabolism, Endocrinology, and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Charles E. Alpers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | | | - Peter Reaven
- VA Phoenix Health Care System, Phoenix, Arizona, USA
| | - Jenny E. Kanter
- Division of Metabolism, Endocrinology, and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Chen K, Ernst P, Kim S, Si Y, Varadkar T, Ringel MD, Liu X“M, Zhou L. An Innovative Mitochondrial-targeted Gene Therapy for Cancer Treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.24.584499. [PMID: 38585739 PMCID: PMC10996521 DOI: 10.1101/2024.03.24.584499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Targeting cancer cell mitochondria holds great therapeutic promise, yet current strategies to specifically and effectively destroy cancer mitochondria in vivo are limited. Here, we introduce mLumiOpto, an innovative mitochondrial-targeted luminoptogenetics gene therapy designed to directly disrupt the inner mitochondrial membrane (IMM) potential and induce cancer cell death. We synthesize a blue light-gated channelrhodopsin (CoChR) in the IMM and co-express a blue bioluminescence-emitting Nanoluciferase (NLuc) in the cytosol of the same cells. The mLumiOpto genes are selectively delivered to cancer cells in vivo by using adeno-associated virus (AAV) carrying a cancer-specific promoter or cancer-targeted monoclonal antibody-tagged exosome-associated AAV. Induction with NLuc luciferin elicits robust endogenous bioluminescence, which activates mitochondrial CoChR, triggering cancer cell IMM permeability disruption, mitochondrial damage, and subsequent cell death. Importantly, mLumiOpto demonstrates remarkable efficacy in reducing tumor burden and killing tumor cells in glioblastoma or triple-negative breast cancer xenografted mouse models. These findings establish mLumiOpto as a novel and promising therapeutic strategy by targeting cancer cell mitochondria in vivo.
Collapse
Affiliation(s)
- Kai Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Patrick Ernst
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Seulhee Kim
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Yingnan Si
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Tanvi Varadkar
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Matthew D. Ringel
- Department of Molecular Medicine and Therapeutics, The Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Xiaoguang “Margaret” Liu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Lufang Zhou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Liu P, Zhang Z, Cai Y, Li Z, Zhou Q, Chen Q. Ferroptosis: Mechanisms and role in diabetes mellitus and its complications. Ageing Res Rev 2024; 94:102201. [PMID: 38242213 DOI: 10.1016/j.arr.2024.102201] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 01/06/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Diabetes mellitus (DM) and its complications are major diseases that affect human health and pose a serious threat to global public health. Although the prevention and treatment of DM and its complications are constantly being revised, optimal treatment strategies remain unavailable. Further exploration of new anti-diabetic strategies is an arduous task. Revealing the pathological changes and molecular mechanisms of DM and its complications is the cornerstone for exploring new therapeutic strategies. Ferroptosis is a type of newly discovered iron-dependent regulated cell death. Notably, the role of ferroptosis in the occurrence, development, and pathogenesis of DM and its complications has gradually been revealed. Numerous studies have shown that ferroptosis plays an important role in the pathophysiology and pathogenesis of DM and its associated complications. The aim of this review is to discuss the known underlying mechanisms of ferroptosis, the relationship between ferroptosis and DM, and the relationship between ferroptosis as a mode of cell death and diabetic kidney disease, diabetic retinopathy, diabetic cardiomyopathy, diabetic osteoporosis, diabetes-associated cognitive dysfunction, DM-induced erectile dysfunction, and diabetic atherosclerosis.
Collapse
Affiliation(s)
- Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, PR China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, Sichuan, PR China; Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, PR China
| | - Yichen Cai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, PR China
| | - Zhaoying Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, PR China
| | - Qian Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, PR China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, PR China.
| |
Collapse
|
5
|
Keller MP, Hudkins KL, Shalev A, Bhatnagar S, Kebede MA, Merrins MJ, Davis DB, Alpers CE, Kimple ME, Attie AD. What the BTBR/J mouse has taught us about diabetes and diabetic complications. iScience 2023; 26:107036. [PMID: 37360692 PMCID: PMC10285641 DOI: 10.1016/j.isci.2023.107036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Human and mouse genetics have delivered numerous diabetogenic loci, but it is mainly through the use of animal models that the pathophysiological basis for their contribution to diabetes has been investigated. More than 20 years ago, we serendipidously identified a mouse strain that could serve as a model of obesity-prone type 2 diabetes, the BTBR (Black and Tan Brachyury) mouse (BTBR T+ Itpr3tf/J, 2018) carrying the Lepob mutation. We went on to discover that the BTBR-Lepob mouse is an excellent model of diabetic nephropathy and is now widely used by nephrologists in academia and the pharmaceutical industry. In this review, we describe the motivation for developing this animal model, the many genes identified and the insights about diabetes and diabetes complications derived from >100 studies conducted in this remarkable animal model.
Collapse
Affiliation(s)
- Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kelly L. Hudkins
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Anath Shalev
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, UK
| | - Sushant Bhatnagar
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, UK
| | - Melkam A. Kebede
- School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, Sydney, NSW 2006, Australia
| | - Matthew J. Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Dawn Belt Davis
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Charles E. Alpers
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Michelle E. Kimple
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
6
|
Luo W, Tang S, Xiao X, Luo S, Yang Z, Huang W, Tang S. Translation Animal Models of Diabetic Kidney Disease: Biochemical and Histological Phenotypes, Advantages and Limitations. Diabetes Metab Syndr Obes 2023; 16:1297-1321. [PMID: 37179788 PMCID: PMC10168199 DOI: 10.2147/dmso.s408170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Animal models play a crucial role in studying the pathogenesis of diseases, developing new drugs, identifying disease risk markers, and improving means of prevention and treatment. However, modeling diabetic kidney disease (DKD) has posed a challenge for scientists. Although numerous models have been successfully developed, none of them can encompass all the key characteristics of human DKD. It is essential to choose the appropriate model according to the research needs, as different models develop different phenotypes and have their limitations. This paper provides a comprehensive overview of biochemical and histological phenotypes, modeling mechanisms, advantages and limitations of DKD animal models, in order to update relevant model information and provide insights and references for generating or selecting the appropriate animal models to fit different experimental needs.
Collapse
Affiliation(s)
- Wenting Luo
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan Province, People’s Republic of China
| | - Shiyun Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Xiang Xiao
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan Province, People’s Republic of China
| | - Simin Luo
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan Province, People’s Republic of China
| | - Zixuan Yang
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan Province, People’s Republic of China
| | - Wei Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Songqi Tang
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan Province, People’s Republic of China
| |
Collapse
|
7
|
Bjørklund MM, Bernal JA, Bentzon JF. Atherosclerosis Induced by Adeno-Associated Virus Encoding Gain-of-Function PCSK9. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:461-473. [PMID: 35237981 DOI: 10.1007/978-1-0716-1924-7_27] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Induction of atherosclerosis in mice with one or more genetic alterations (e.g., conditional deletion of a gene of interest) has traditionally required crossbreeding with Apoe or Ldlr deficient mice to achieve sufficient hypercholesterolemia. However, this procedure is time consuming and generates a surplus of mice with genotypes that are irrelevant for experiments. Several alternative methods exist that obviate the need to work in mice with germline-encoded hypercholesterolemia. In this chapter, we detail an efficient and increasingly used method to induce hypercholesterolemia in mice through adeno-associated virus-mediated transfer of the proprotein convertase subtilisin/kexin type 9 (PCSK9) gene.
Collapse
Affiliation(s)
- Martin Mæng Bjørklund
- Department of Clinical Medicine, Heart Diseases, Aarhus University, Aarhus, Denmark
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Juan A Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jacob F Bentzon
- Department of Clinical Medicine, Heart Diseases, Aarhus University, Aarhus, Denmark.
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
8
|
Wang X, Gong P, Liu M, wang M, wang S, guo Y, chang X, yang W, Chen X, Chen F. Hypoglycemic effect of a novel polysaccharide from Lentinus edodes on STZ-induced diabetic mice via metabolomics study and Nrf2/HO-1 pathways. Food Funct 2022; 13:3036-3049. [DOI: 10.1039/d1fo03487a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the increased worldwide prevalence of diabetes, more and more attentions are focused on the natural drug candidate who could treat diabetes with high efficacy but without undesired side effect....
Collapse
|
9
|
Association of Lower Extremity Vascular Disease, Coronary Artery, and Carotid Artery Atherosclerosis in Patients with Type 2 Diabetes Mellitus. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6268856. [PMID: 34697555 PMCID: PMC8541854 DOI: 10.1155/2021/6268856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022]
Abstract
The motive of this article is to present the case study of patients to investigate the association between the ultrasonographic findings of lower extremity vascular disease (LEAD) and plaque formation. Secondly, to examine the association between the formation of coronary artery and carotid artery atherosclerosis in patients with type 2 diabetes mellitus. 124 patients with type 2 diabetes (64 males and 60 females with the age group 25-78 years) are considered for the research studies who have registered themselves in the Department of Endocrinology and Metabolism from April 2017 to February 2019. All participants have reported their clinical information regarding diabetes, alcohol consumption, smoking status, and medication. The blood samples from subjects are collected for measurement of HbA1c, total cholesterol, triglycerides, HDL-c, and LDL-c levels. Two-dimensional ultrasound has been used to measure the inner diameter, peak flow velocity, blood flow, and spectral width of the femoral artery, pop artery, anterior iliac artery, posterior tibial artery, and dorsal artery and to calculate the artery stenosis degree. Independent factors of atherosclerosis are determined by multivariate logistic regression analysis. The results are evaluated within the control group and it is found that there is no significant impact of gender, age, and body mass index (P > 0.05) on the lower extremity vascular diseases. Those with smoking, alcohol consumption, hypertension, and dyslipidemia have higher positive rate (P < 0.05). The type 2 diabetes mellitus group has higher diastolic blood pressure and lower triglyceride (P < 0.05). Diastolic blood pressure, HbA1C, total cholesterol, HDL-c, and LDL-C are not remarkably dissimilar between the type 2 diabetes mellitus group and the control group (P > 0.05). Compared with the control group, the type 2 diabetes mellitus group has higher frequency of lower extremity vascular diseases in the dorsal artery than in the pop artery (P < 0.05). The blood flow of type 2 diabetes mellitus group is found to be lower than that of the control group, especially in the dorsal artery (P < 0.05). The blood flow velocity of the dorsal artery is accelerated (P < 0.01). Among 117 patients of type 2 diabetes mellitus (94.35%) with a certain degree of injury, there are 72 cases of type I carotid stenosis (58.06%), 30 cases of type II carotid stenosis (24.19%), and 15 cases of type III carotid stenosis (12.10%). Out of 108 subjects in the control group, there are 84 cases of type 0 carotid stenosis (77.78%), 19 cases of type I carotid stenosis (17.59%), 5 cases of type II carotid stenosis (4.63%), and 0 case of type III carotid stenosis (0.00%). Compared with the control group, carotid stenosis is more common in patients with type 2 diabetes mellitus (P < 0.05). Age, smoking, duration of diseases, systolic blood pressure, and degree of carotid stenosis are found to be associated with atherosclerosis. The findings suggest that the color Doppler ultrasonography can give early warning when applied in patients with carotid and lower extremity vascular diseases to delay the incidence of diabetic macroangiopathy and to control the development of cerebral infarction, thus providing an important basis for clinical diagnosis and treatment.
Collapse
|
10
|
Abstract
Diabetes mellitus is a disease of dysregulated blood glucose homeostasis. The current pandemic of diabetes is a significant driver of patient morbidity and mortality, as well as a major challenge to healthcare systems worldwide. The global increase in the incidence of diabetes has prompted researchers to focus on the different pathogenic processes responsible for type 1 and type 2 diabetes. Similarly, increased morbidity due to diabetic complications has accelerated research to uncover pathological changes causing these secondary complications. Albuminuria, or protein in the urine, is a well-recognised biomarker and risk factor for renal and cardiovascular disease. Albuminuria is a mediator of pathological abnormalities in diabetes-associated conditions such as nephropathy and atherosclerosis. Clinical screening and diagnosis of diabetic nephropathy is chiefly based on the presence of albuminuria. Given the ease in measuring albuminuria, the potential of using albuminuria as a biomarker of cardiovascular diseases is gaining widespread interest. To assess the benefits of albuminuria as a biomarker, it is important to understand the association between albuminuria and cardiovascular disease. This review examines our current understanding of the pathophysiological mechanisms involved in both forms of diabetes, with specific focus on the link between albuminuria and specific vascular complications of diabetes.
Collapse
Affiliation(s)
- Pappitha Raja
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - Alexander P Maxwell
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Northern Ireland Regional Nephrology Unit, Belfast City Hospital, Belfast, Northern Ireland, UK
| | - Derek P Brazil
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK.
| |
Collapse
|
11
|
Adi D, Abuzhalihan J, Tao J, Wu Y, Wang YH, Liu F, Yang YN, Ma X, Li XM, Xie X, Fu ZY, Ma YT. Genetic polymorphism of IDOL gene was associated with the susceptibility of coronary artery disease in Han population in Xinjiang, China. Hereditas 2021; 158:12. [PMID: 33845890 PMCID: PMC8042894 DOI: 10.1186/s41065-021-00178-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/04/2021] [Indexed: 12/17/2022] Open
Abstract
Background Coronary artery disease (CAD) is the leading cause of death worldwide. In this study, we aimed to explore whether some genetic variants of the human IDOL gene were associated with CAD among Chinese population in Xinjiang. Methods We designed two independent case–control studies. The first one included in the Han population (448 CAD patients and 343 controls), and the second one is the Uygur population (304 CAD patients and 318 controls). We genotyped three SNPs (rs2072783, rs2205796, and rs909562) of the IDOL gene. Results Our results revealed that, in the Han female subjects, for rs2205796, the distribution of alleles, dominant model (TT vs. GG + GT) and the additive model (GG + TT vs. GT) showed significant differences between CAD patients and the control subjects (P = 0.048, P = 0.014, and P = 0.032, respectively). Conclusions The rs2205796 polymorphism of the IDOL gene is associated with CAD in the Chinese Han female population in Xinjiang, China.
Collapse
Affiliation(s)
- Dilare Adi
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Jialin Abuzhalihan
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Jing Tao
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, P.R. China
| | - Yun Wu
- Department of General Practice, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China
| | - Ying-Hong Wang
- Health Checkup Department of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China
| | - Fen Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China
| | - Yi-Ning Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Xiang Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Xiao-Mei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Xiang Xie
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Zhen-Yan Fu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China
| | - Yi-Tong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China. .,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, P.R. China.
| |
Collapse
|
12
|
Kanter JE, Hsu CC, Bornfeldt KE. Monocytes and Macrophages as Protagonists in Vascular Complications of Diabetes. Front Cardiovasc Med 2020; 7:10. [PMID: 32118048 PMCID: PMC7033616 DOI: 10.3389/fcvm.2020.00010] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
With the increasing prevalence of diabetes worldwide, vascular complications of diabetes are also on the rise. Diabetes results in an increased risk of macrovascular complications, with atherosclerotic cardiovascular disease (CVD) being the leading cause of death in adults with diabetes. The exact mechanisms for how diabetes promotes CVD risk are still unclear, although it is evident that monocytes and macrophages are key players in all stages of atherosclerosis both in the absence and presence of diabetes, and that phenotypes of these cells are altered by the diabetic environment. Evidence suggests that at least five pro-atherogenic mechanisms involving monocytes and macrophages contribute to the accelerated atherosclerotic lesion progression and hampered lesion regression associated with diabetes. These changes include (1) increased monocyte recruitment to lesions; (2) increased inflammatory activation; (3) altered macrophage lipid accumulation and metabolism; (4) increased macrophage cell death; and (5) reduced efferocytosis. Monocyte and macrophage phenotypes and mechanisms have been revealed mostly by different animal models of diabetes. The roles of specific changes in monocytes and macrophages in humans with diabetes remain largely unknown. There is an ongoing debate on whether the changes in monocytes and macrophages are caused by altered glucose levels, insulin deficiency or insulin resistance, lipid abnormalities, or combinations of these factors. Current research in humans and mouse models suggests that reduced clearance of triglyceride-rich lipoproteins and their remnants is one important mechanism whereby diabetes adversely affects macrophages and promotes atherosclerosis and CVD risk. Although monocytes and macrophages readily respond to the diabetic environment and can be seen as protagonists in diabetes-accelerated atherosclerosis, they are likely not instigators of the increased CVD risk.
Collapse
Affiliation(s)
- Jenny E Kanter
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| | - Cheng-Chieh Hsu
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| | - Karin E Bornfeldt
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States.,Department of Pathology, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
13
|
Adi D, Lu XY, Fu ZY, Wei J, Baituola G, Meng YJ, Zhou YX, Hu A, Wang JK, Lu XF, Wang Y, Song BL, Ma YT, Luo J. IDOL G51S Variant Is Associated With High Blood Cholesterol and Increases Low-Density Lipoprotein Receptor Degradation. Arterioscler Thromb Vasc Biol 2019; 39:2468-2479. [DOI: 10.1161/atvbaha.119.312589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective:
A high level of LDL-C (low-density lipoprotein cholesterol) is a major risk factor for cardiovascular disease. The E3 ubiquitin ligase named IDOL (inducible degrader of the LDLR [LDL receptor]; also known as MYLIP [myosin regulatory light chain interacting protein]) mediates degradation of LDLR through ubiquitinating its C-terminal tail. But the expression profile of IDOL differs greatly in the livers of mice and humans. Whether IDOL is able to regulate LDL-C levels in humans remains to be determined.
Approach and Results:
By using whole-exome sequencing, we identified a nonsynonymous variant rs149696224 in the
IDOL
gene that causes a G51S (Gly-to-Ser substitution at the amino acid site 51) from a Chinese Uygur family. Large cohort analysis revealed IDOL G51S carriers (+/G51S) displayed significantly higher LDL-C levels. Mechanistically, the G51S mutation stabilized IDOL protein by inhibiting its dimerization and preventing self-ubiquitination and subsequent proteasomal degradation. IDOL(G51S) exhibited a stronger ability to promote ubiquitination and degradation of LDLR. Adeno-associated virus-mediated expression of IDOL(G51S) in mouse liver decreased hepatic LDLR and increased serum levels of LDL-C, total cholesterol, and triglyceride.
Conclusions:
Our study demonstrates that IDOL(G51S) is a gain-of-function variant responsible for high LDL-C in both humans and mice. These results suggest that IDOL is a key player regulating cholesterol level in humans.
Collapse
Affiliation(s)
- Dilare Adi
- From the Heart Center, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China (D.A., Z.-Y.F., G.B., Y.-T.M.)
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Heart Center, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China (D.A., Z.-Y.F., G.B., Y.-T.M.)
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China (D.A., X.-Y.L., J.W., Y.-X.Z., A.H., J.-K.W., Y.W., B.-L.S., J.L.)
| | - Xiao-Yi Lu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China (D.A., X.-Y.L., J.W., Y.-X.Z., A.H., J.-K.W., Y.W., B.-L.S., J.L.)
| | - Zhen-Yan Fu
- From the Heart Center, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China (D.A., Z.-Y.F., G.B., Y.-T.M.)
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Heart Center, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China (D.A., Z.-Y.F., G.B., Y.-T.M.)
| | - Jian Wei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China (D.A., X.-Y.L., J.W., Y.-X.Z., A.H., J.-K.W., Y.W., B.-L.S., J.L.)
| | - Gulinaer Baituola
- From the Heart Center, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China (D.A., Z.-Y.F., G.B., Y.-T.M.)
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Heart Center, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China (D.A., Z.-Y.F., G.B., Y.-T.M.)
| | - Ya-Jie Meng
- The People’s Hospital Nanchuan, Chongqing, China (Y.-J.M.)
| | - Yu-Xia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China (D.A., X.-Y.L., J.W., Y.-X.Z., A.H., J.-K.W., Y.W., B.-L.S., J.L.)
| | - Ao Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China (D.A., X.-Y.L., J.W., Y.-X.Z., A.H., J.-K.W., Y.W., B.-L.S., J.L.)
| | - Jin-Kai Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China (D.A., X.-Y.L., J.W., Y.-X.Z., A.H., J.-K.W., Y.W., B.-L.S., J.L.)
| | - Xiang-Feng Lu
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College (X.-F.L.)
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China (D.A., X.-Y.L., J.W., Y.-X.Z., A.H., J.-K.W., Y.W., B.-L.S., J.L.)
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China (D.A., X.-Y.L., J.W., Y.-X.Z., A.H., J.-K.W., Y.W., B.-L.S., J.L.)
| | - Yi-Tong Ma
- From the Heart Center, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China (D.A., Z.-Y.F., G.B., Y.-T.M.)
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Heart Center, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China (D.A., Z.-Y.F., G.B., Y.-T.M.)
| | - Jie Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China (D.A., X.-Y.L., J.W., Y.-X.Z., A.H., J.-K.W., Y.W., B.-L.S., J.L.)
| |
Collapse
|
14
|
Li X, Zhang T, Geng J, Wu Z, Xu L, Liu J, Tian J, Zhou Z, Nie J, Bai X. Advanced Oxidation Protein Products Promote Lipotoxicity and Tubulointerstitial Fibrosis via CD36/β-Catenin Pathway in Diabetic Nephropathy. Antioxid Redox Signal 2019; 31:521-538. [PMID: 31084358 DOI: 10.1089/ars.2018.7634] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Aims: Diabetic nephropathy (DN) is the principal cause of mortality and morbidity in diabetic patients, the progression of which correlates best with tubulointerstitial fibrosis (TIF). Advanced oxidation protein products (AOPPs) have been detected in patients with chronic renal failure, causing injuries to proximal tubular epithelial cells. CD36, a known receptor for AOPP, is an important modulator of lipid homeostasis, predisposing to renal tubular damage. However, whether AOPPs induce lipotoxicity via the CD36 receptor pathway remains unknown. Herein, we tested the hypothesis that AOPPs accumulation in diabetes incurs lipotoxicity, causing renal TIF via the CD36 signaling pathway. Results: In DN patients and diabetic mice in vivo, AOPPs overload induces lipogenesis (upregulation of CD36 and sterol regulatory element-binding protein 1), fibrosis (upregulation of Fibronectin), and renal function decline (increased serum creatinine and N-acetyl-β-d-glucosaminidase, decreased estimated glomerular filtration rate). In HK-2 cells in vitro, high glucose stimulated AOPPs-induced lipotoxicity, apoptosis, and fibrosis via the CD36 receptor pathway. In addition, apocynin abrogated AOPPs-induced lipid accumulation and CD36 inhibition significantly mitigated AOPPs-induced mitochondrial injuries, lipotoxicity, and renal fibrosis. Further, we provide mechanistic evidence that AOPPs overload induces the enrichment of β-catenin binding the CD36 promoter region. Innovation and Conclusion: Our data reveal a major role of AOPPs in triggering lipotoxicity and fibrosis via CD36-dependent Wnt/β-catenin activation, providing new evidence for understanding the role of lipid accumulation in DN.
Collapse
Affiliation(s)
- Xiao Li
- 1Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Ting Zhang
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian Geng
- 3Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhuguo Wu
- 4Department of Internal Medicine, the Second Clinical Medical College, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Liting Xu
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jixing Liu
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jianwei Tian
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhanmei Zhou
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jing Nie
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaoyan Bai
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
15
|
Gao JR, Qin XJ, Fang ZH, Han LP, Guo MF, Jiang NN. To Explore the Pathogenesis of Vascular Lesion of Type 2 Diabetes Mellitus Based on the PI3K/Akt Signaling Pathway. J Diabetes Res 2019; 2019:4650906. [PMID: 31179340 PMCID: PMC6501128 DOI: 10.1155/2019/4650906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/03/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) has become a chronic disease, serious harm to human health. Complications of the blood pipe are the main cause of disability and death in diabetic patients, including vascular lesions that directly affects the prognosis of patients with diabetes and survival. This study was to determine the influence of high glucose and related mechanism of vascular lesion of type 2 diabetes mellitus pathogenesis. METHODS In vivo aorta abdominalis of GK rats was observed with blood pressure, heart rate, hematoxylin and eosin (H&E), Masson, and Verhoeff staining. In vitro cells were cultured with 30 mM glucose for 24 h. RT-QPCR was used to detect the mRNA expression of endothelial markers PTEN, PI3K, Akt, and VEGF. Immunofluorescence staining was used to detect the expression of PTEN, PI3K, Akt, and VEGF. PI3K and Akt phosphorylation levels were detected by Western blot analysis. RESULTS Heart rate, systolic blood pressure, diastolic blood pressure, and mean blood pressure in the GK control group were higher compared with the Wistar control group and no difference compared with the GK experimental model group. Fluorescence intensity of VEGF, Akt, and PI3K in the high-sugar stimulus group was stronger than the control group; PTEN in the high-sugar stimulus group was weakening than the control group. VEGF, Akt, and PI3K mRNA in the high-sugar stimulus group were higher than the control group; protein expressions of VEGF, Akt, and PI3K in the high-sugar stimulus group were higher than the control group. PTEN mRNA in the high-sugar stimulus group was lower than the control group. Protein expression of PTEN in the high-sugar stimulus group was lower than the control group. CONCLUSIONS Angiogenesis is an important pathogenesis of T2DM vascular disease, and PTEN plays a negative regulatory role in the development of new blood vessels and can inhibit the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Jia-Rong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, 117 Meishan Road, Hefei, China
| | - Xiu-Juan Qin
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, 117 Meishan Road, Hefei, China
| | - Zhao-Hui Fang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, 117 Meishan Road, Hefei, China
| | - Li-Ping Han
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, 117 Meishan Road, Hefei, China
| | - Ming-Fei Guo
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, 117 Meishan Road, Hefei, China
| | - Nan-Nan Jiang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, 117 Meishan Road, Hefei, China
| |
Collapse
|
16
|
Basu D, Hu Y, Huggins LA, Mullick AE, Graham MJ, Wietecha T, Barnhart S, Mogul A, Pfeiffer K, Zirlik A, Fisher EA, Bornfeldt KE, Willecke F, Goldberg IJ. Novel Reversible Model of Atherosclerosis and Regression Using Oligonucleotide Regulation of the LDL Receptor. Circ Res 2018; 122:560-567. [PMID: 29321129 DOI: 10.1161/circresaha.117.311361] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 11/16/2022]
Abstract
RATIONALE Animal models have been used to explore factors that regulate atherosclerosis. More recently, they have been used to study the factors that promote loss of macrophages and reduction in lesion size after lowering of plasma cholesterol levels. However, current animal models of atherosclerosis regression require challenging surgeries, time-consuming breeding strategies, and methods that block liver lipoprotein secretion. OBJECTIVE We sought to develop a more direct or time-effective method to create and then reverse hypercholesterolemia and atherosclerosis via transient knockdown of the hepatic LDLR (low-density lipoprotein receptor) followed by its rapid restoration. METHODS AND RESULTS We used antisense oligonucleotides directed to LDLR mRNA to create hypercholesterolemia in wild-type C57BL/6 mice fed an atherogenic diet. This led to the development of lesions in the aortic root, aortic arch, and brachiocephalic artery. Use of a sense oligonucleotide replicating the targeted sequence region of the LDLR mRNA rapidly reduced circulating cholesterol levels because of recovery of hepatic LDLR expression. This led to a decrease in macrophages within the aortic root plaques and brachiocephalic artery, that is, regression of inflammatory cell content, after a period of 2 to 3 weeks. CONCLUSIONS We have developed an inducible and reversible hepatic LDLR knockdown mouse model of atherosclerosis regression. Although cholesterol reduction decreased early en face lesions in the aortic arches, macrophage area was reduced in both early and late lesions within the aortic sinus after reversal of hypercholesterolemia. Our model circumvents many of the challenges associated with current mouse models of regression. The use of this technology will potentially expedite studies of atherosclerosis and regression without use of mice with genetic defects in lipid metabolism.
Collapse
Affiliation(s)
- Debapriya Basu
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Yunying Hu
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Lesley-Ann Huggins
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Adam E Mullick
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Mark J Graham
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Tomasz Wietecha
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Shelley Barnhart
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Allison Mogul
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Katharina Pfeiffer
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Andreas Zirlik
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Edward A Fisher
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Karin E Bornfeldt
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Florian Willecke
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Ira J Goldberg
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.).
| |
Collapse
|