1
|
Qiu YJ, Zhan F, Cheng HP, Shao M, Li XH, Bao XW, Liang XY, Zeng Q, Liu W, Tang SY, Han Y, Feng DD, Yue SJ, Zhou Y, Luo ZQ. Targeting Glutamate transport: A breakthrough in mitigating sepsis lung injury. Free Radic Biol Med 2025; 235:190-199. [PMID: 40294854 DOI: 10.1016/j.freeradbiomed.2025.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/16/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) can result from various factors, including sepsis, one of the high-risk causes of ALI/ARDS. Recent research emphasizes the role of Glutamate metabolism in ALI/ARDS. Our study found a strong correlation between the difference in serological Glutamate levels of arterial vs venous blood and the progression of lung injury. High arterial - venous (A-V) Glutamate discrepancies were significantly associated with severity in ALI/ARDS patients. Additionally, the subunit of Glutamate transporter system XC- was notably elevated in mouse lungs affected by sepsis and LPS-induced macrophages. Pharmacological inhibition of system XC- or knocking down xCT worsened sepsis-related lung injury in mice. We also showed that xCT in macrophages is essential for activating system XC- for Glutamate transport, offering protection against sepsis-related ALI. Our findings highlight the therapeutic potential of Glutamate transport in mitigating lung injury and provide a promising approach for predicting ALI/ARDS prognosis.
Collapse
Affiliation(s)
- Yu-Jia Qiu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Fan Zhan
- The First Affiliated Hospital, University of South China, Hengyang, Hunan, 410000, China
| | - Hai-Peng Cheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China
| | - Min Shao
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Xiao-Hong Li
- The First Affiliated Hospital, University of South China, Hengyang, Hunan, 410000, China
| | - Xing-Wen Bao
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Xin-Yue Liang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Qian Zeng
- Xiangya Nursing School, Central South University, Changsha, Hunan, 410000, China
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha, Hunan, 410000, China
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, Changsha, Hunan, 410000, China
| | - Yang Han
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Dan-Dan Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Shao-Jie Yue
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yan Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
| | - Zi-Qiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
2
|
Liu W, Wang X, Xu D, Gong F, Pei L, Yang S, Zhao S, Zheng X, Li R, Yang Z, Fei J, Mao E, Chen E, Chen Y. SIRT5 mediated succinylation of SUCLA2 regulates TCA cycle dysfunction and mitochondrial damage in pancreatic acinar cells in acute pancreatitis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167613. [PMID: 39643219 DOI: 10.1016/j.bbadis.2024.167613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/04/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Acute pancreatitis (AP) is a severe inflammatory disorder associated with metabolic reprogramming and mitochondrial dysfunction. This study investigated central carbon metabolism alterations in pancreatic acinar cells during AP, elucidated the molecular mechanisms of tricarboxylic acid (TCA) cycle disorders, and explored the role of protein hypersuccinylation in AP pathogenesis. Using in vitro and in vivo AP models, targeted metabolomics and bioinformatics analyses revealed TCA cycle dysregulation characterized by elevated succinyl-CoA and decreased succinate levels. Colorimetric assays, mass spectrometry, and site-directed mutagenesis demonstrated that SIRT5 downregulation led to SUCLA2 hypersuccinylation at K118, inhibiting succinyl-CoA synthetase activity and triggering a vicious cycle of succinyl-CoA accumulation and SUCLA2 succinylation. Adenovirus-mediated SIRT5 overexpression and SUCLA2 knockdown clarified the SIRT5-SUCLA2 pathway's role in regulating TCA cycle disorders. Protein succinylation levels positively correlated with pancreatic tissue damage and mitochondrial injury severity. Succinylome analysis identified cytochrome c1 (CYC1) as a key hypersuccinylated protein, and the SIRT5-SUCLA2 pathway regulated its succinylation level and electron transport chain complex III activity. Hypersuccinylation induced mitochondrial DNA release, activating the cGAS-STING pathway, contributing to multiple organ dysfunction syndrome. Modulating the SIRT5-SUCLA2 axis attenuated TCA cycle dysregulation, protein hypersuccinylation, mitochondrial damage, and inflammatory responses in AP. These findings reveal novel mechanisms linking the SIRT5-SUCLA2 axis, TCA cycle dysfunction, and protein hypersuccinylation in AP pathogenesis, providing potential therapeutic targets for AP treatment.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Xu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangchen Gong
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Pei
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Song Yang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanzhi Zhao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangtao Zheng
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ranran Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhitao Yang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Fei
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Enqiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Erzhen Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai Institute of Aviation Medicine.
| | - Ying Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Hosseindoust A, Choi Y, Ha S, Tajudeen H, Mun J, Kinara E, Kim Y, Kim J. Anti-Bordetella bronchiseptica effects of targeted bacteriophages via microbiome and metabolic mediated mechanisms. Sci Rep 2023; 13:21755. [PMID: 38066337 PMCID: PMC10709636 DOI: 10.1038/s41598-023-49248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Bordetella bronchiseptica poses a significant challenge in the context of respiratory infections, particularly in weanling pigs. In this study, we investigated the impact of a novel targeted bacteriophage in controlling B. bronchiseptica challenge (BBC) in an experimental design involving five distinct treatment groups: NC (no challenge), PC (BBC challenge), BF (108 pfu bacteriophage/kg diet + BBC), BN (2 × 107 pfu/day bacteriophage by nasal spray + BBC), and AT (antibiotic + BBC). The experiment was conducted for 2 weeks. The highest turbinate score was observed in the PC. The BF treatment showed higher plasma IL (interleukine)-1β and IL-6 compared with the BN and AT treatments. Plasma concentrations of IL-1β were increased in the BF pigs compared with the BN, AT, and NC. Among the BBC groups, the PC treatment exhibited a higher abundance of Staphylococcus. aureus and B. bronchiseptica in the lung. A lower S. aureus, Streptococcus. suis, and B. bronchiseptica colonization was detected in the AT compared with the BF and BN treatments. The BF showed lower plasma zonulin compared with the BN and AT. A higher plasma concentration of superoxide dismutase was observed in the BF and AT compared with PC and BN. The BN influenced the glycine, serine-threonine metabolism; glycerolipid metabolism; glyoxylate-dicarboxylate metabolism; and arachidonic acid metabolism compared with the NC. In conclusion, nasal-sprayed bacteriophage effectively controlled B. bronchiseptica infection, however, their efficiency was lower than the antibiotic.
Collapse
Affiliation(s)
- Abdolreza Hosseindoust
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - YoHan Choi
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - SangHun Ha
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Habeeb Tajudeen
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - JunYoung Mun
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Elick Kinara
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - YoungIn Kim
- CTC Bio, Inc., Seoul, 138-858, Republic of Korea
| | - JinSoo Kim
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
4
|
Shi Y, Li J, Wolf CA, Liu S, Sharma SS, Wolber G, Bureik M, Clark BR. Expected and Unexpected Products from the Biochemical Oxidation of Bacterial Alkylquinolones with CYP4F11. JOURNAL OF NATURAL PRODUCTS 2023; 86:2502-2513. [PMID: 37939299 DOI: 10.1021/acs.jnatprod.3c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
2-Alkylquinolones are a class of microbial natural products primarily produced in the Pseudomonas and Burkholderia genera that play a key role in modulating quorum sensing. Bacterial alkylquinolones were synthesized and then subjected to oxidative biotransformation using human cytochrome P450 enzyme CYP4F11, heterologously expressed in the fission yeast Schizosaccharomyces pombe. This yielded a range of hydroxylated and carboxylic acid derivatives which had undergone ω-oxidation of the 2-alkyl chain, the structures of which were determined by analysis of NMR and MS data. Oxidation efficiency depended on chain length, with a chain length of eight or nine carbon atoms proving optimal for high yields. Homology modeling suggested that Glu233 was relevant for binding, due to the formation of a hydrogen bond from the quinolone nitrogen to Glu233, and in this position only the longer alkyl chains could come close enough to the heme moiety for effective oxidation. In addition to the direct oxidation products, a number of esters were also isolated, which was attributed to the action of endogenous yeast enzymes on the newly formed ω-hydroxy-alkylquinolones. ω-Oxidation of the alkyl chain significantly reduced the antimicrobial and antibiofilm activity of the quinolones.
Collapse
Affiliation(s)
- Yue Shi
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
| | - Jianye Li
- Hebei Key Laboratory of Heterocyclic Compounds, College of Chemical Engineering and Materials, Handan University, Handan 056005, Hebei Province, People's Republic of China
| | - Clemens Alexander Wolf
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Sijie Liu
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Sangeeta S Sharma
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
| | - Gerhard Wolber
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
| | - Benjamin R Clark
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
| |
Collapse
|
5
|
Maulydia M, Rehatta NM, Soedarmo SM. Effects of glutamine and arginine combination on pro- and anti-inflammatory cytokines. Open Vet J 2023; 13:613-619. [PMID: 37304602 PMCID: PMC10257461 DOI: 10.5455/ovj.2023.v13.i5.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/12/2023] [Indexed: 06/13/2023] Open
Abstract
Background Cytokines were beneficial for diagnosis and treatment, which in clinical situations introduced from the perspective of pro and anti-inflammatory effects. An inflammatory response is commonly associated with various severe traumatic insults that consequently recruit the immune cells into the target organs and causing systemic inflammatory response that can lead to sepsis. Immune-modulating nutrients, such as glutamine and arginine, are known as pathophysiological modulate in inflammation. Aim The aim of this study was to evaluate the effect of oral gavage supplementation with a combination of glutamine and arginine on inflammatory cytokines in intestinal mucosa, specifically jejunum. Methods Sixteen Rattus norvegicus rats (average weight 150-200 g) were randomly divided into two groups: groups A and B, both intraperitoneal injected by 2 ml NaCl 0.9%. Group A orally supplemented with 1 ml dextrose 5% daily, meanwhile, group B orally supplemented with 1 ml combination of glutamine and arginine (contains 250 mg/kg glutamine and 250 mg/kg arginine) daily. The experiment lasted for 3 days. We compared the pro and anti-inflammatory cytokines (IL-10, NF-κB, TNF-α, IL-8, and MMP-8) between the two groups by the Mann-Whitney test. Results More IL-10, TNF-α, and IL-8 cytokine-produced cells found in group A. Group B produced significantly lower TNF-α (p = 0.009) and IL-8 (p = 0.003). The number of NF-κB and MMP-8 were slightly higher in group B. Conclusion Giving a combination of glutamine and arginine as nutrition supplementation has beneficial effects in decreasing almost half of the cells that produce TNF-α and IL-8. Further studies must be carried out to support a standard guideline for this recommendation.
Collapse
Affiliation(s)
- Maulydia Maulydia
- Doctoral Program of Medical Science, Universitas Airlangga, Surabaya, Indonesia
| | - Nancy Margarita Rehatta
- Department of Anesthesiology and Reanimation, Universitas Airlangga/Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Subijanto Marto Soedarmo
- Department of Child Health, Universitas Airlangga/Dr. Soetomo General Hospital, Surabaya, Indonesia
| |
Collapse
|
6
|
Characteristic Metabolic Changes in Skeletal Muscle Due to Vibrio vulnificus Infection in a Wound Infection Model. mSystems 2023; 8:e0068222. [PMID: 36939368 PMCID: PMC10153474 DOI: 10.1128/msystems.00682-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Vibrio vulnificus is a bacterium that inhabits warm seawater or brackish water environments and causes foodborne diseases and wound infections. In severe cases, V. vulnificus invades the skeletal muscle tissue, where bacterial proliferation leads to septicemia and necrotizing fasciitis with high mortality. Despite this characteristic, information on metabolic changes in tissue infected with V. vulnificus is not available. Here, we elucidated the metabolic changes in V. vulnificus-infected mouse skeletal muscle using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Metabolome analysis revealed changes in muscle catabolites and energy metabolites during V. vulnificus infection. In particular, succinic acid accumulated but fumaric acid decreased in the infected muscle. However, the virulence factor deletion mutant revealed that changes in metabolites and bacterial proliferation were abolished in skeletal muscle infected with a multifunctional-autoprocessing repeats-in-toxin (MARTX) mutant. On the other hand, mice that were immunosuppressed via cyclophosphamide (CPA) treatment exhibited a similar level of bacterial counts and metabolites between the wild type and MARTX mutant. Therefore, our data indicate that V. vulnificus induces metabolic changes in mouse skeletal muscle and proliferates by using the MARTX toxin to evade the host immune system. This study indicates a new correlation between V. vulnificus infections and metabolic changes that lead to severe reactions or damage to host skeletal muscle. IMPORTANCE V. vulnificus causes necrotizing skin and soft tissue infections (NSSTIs) in severe cases, with high mortality and sign of rapid deterioration. Despite the severity of the infection, the dysfunction of the host metabolism in skeletal muscle triggered by V. vulnificus is poorly understood. In this study, by using a mouse wound infection model, we revealed characteristic changes in muscle catabolism and energy metabolism in skeletal muscle associated with bacterial proliferation in the infected tissues. Understanding such metabolic changes in V. vulnificus-infected tissue may provide crucial information to identify the mechanism via which V. vulnificus induces severe infections. Moreover, our metabolite data may be useful for the recognition, identification, or detection of V. vulnificus infections in clinical studies.
Collapse
|
7
|
Pan H, Huo L, Shen W, Dai Z, Bao Y, Ji C, Zhang J. Study on the protective effect of berberine treatment on sepsis based on gut microbiota and metabolomic analysis. Front Nutr 2022; 9:1049106. [PMID: 36601077 PMCID: PMC9806126 DOI: 10.3389/fnut.2022.1049106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Sepsis, an infection with multiorgan dysfunction, is a serious burden on human health. Berberine (BBR), a bioactive component, has a protective effect on sepsis and the effect may be related to gut microbiota. However, studies on the role of BBR with gut microbiota in sepsis are lacking. Therefore, this study investigated the ameliorative effects and the underlying mechanisms of BBR on cecal ligature and puncture (CLP) rats. Methods This study has observed the effect of BBR on pathological injury, Inflammation, intestinal barrier function, gut microbiota, and metabolite change in CLP rats by Hematoxylin-eosin staining, enzyme-linked immunosorbent assays, flow cytometry, 16S rDNA, and metabolomics analyses. Results The inhibition effects of BBR treatment on the histological damage of the lung, kidney, and ileum, the interleukin (IL)-1b, IL-6, IL-17A, and monocyte chemokine-1 levels in serum in CLP rats were proved. Also, the BBR inhibited the diamine-oxidase and fluorescein isothiocyanate-dextran 40 levels, suggesting it can improve intestinal barrier function disorders. The cluster of differentiation (CD) 4+, CD8+, and CD25+ Forkhead box protein P3 (Foxp3) + T lymphocytes in splenocytes were up-regulated by BBR, while the IL-17A+CD4+ cell level was decreased. The abundance of gut microbiota in CLP rats was significantly different from that of the sham and BBR treatment rats. The significantly changed metabolites in the serum mainly included carbohydrates, phenols, benzoic acids, alcohols, vitamins et al. Additionally, this study predicted that the biological mechanism of BBR to ameliorate sepsis involves glycolysis-, nucleotide-, and amino acid-related metabolic pathways. Discussion This study proved the strong correlation between the improvement effect of BBR on sepsis and gut microbiota and analyzed by metabolomics that gut microbiota may improve CLP rats through metabolites, providing a scientific basis for BBR to improve sepsis and a new direction for the study of the biological mechanism.
Collapse
Affiliation(s)
- Huibin Pan
- Emergency Intensive Care Unit, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Lixia Huo
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Weiyun Shen
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Zhuquan Dai
- Emergency Intensive Care Unit, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Ying Bao
- Department of Surgery, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Chaohui Ji
- Emergency Intensive Care Unit, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China,*Correspondence: Jie Zhang
| | - Jie Zhang
- Emergency Intensive Care Unit, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China,Chaohui Ji
| |
Collapse
|
8
|
Han Q, Bai Y, Zhou C, Dong B, Li Y, Luo N, Chen H, Yu Y. Effect of molecular hydrogen treatment on Sepsis-Associated encephalopathy in mice based on gut microbiota. CNS Neurosci Ther 2022; 29:633-645. [PMID: 36468415 PMCID: PMC9873526 DOI: 10.1111/cns.14043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 12/09/2022] Open
Abstract
INTRODUCTION In our experiments, male wild-type mice were randomly divided into four groups: the sham, SAE, SAE + 2% hydrogen gas inhalation (H2 ), and SAE + hydrogen-rich water (HW) groups. The feces of the mice were collected for 16 S rDNA analysis 24 h after the models were established, and the serum and brain tissue of the mice were collected for nontargeted metabolomics analysis. AIM Destruction of the intestinal microbiota is a risk factor for sepsis and subsequent organ dysfunction, and up to 70% of severely ill patients with sepsis exhibit varying degrees of sepsis-associated encephalopathy (SAE). The pathogenesis of SAE remains unclear. We aimed to explore the changes in gut microbiota in SAE and the regulatory mechanism of molecular hydrogen. RESULTS Molecular hydrogen treatment significantly improved the functional outcome of SAE and downregulated inflammatory reactions in both the brain and the gut. In addition, molecular hydrogen treatment improved gut microbiota dysbiosis and partially amended metabolic disorder after SAE. CONCLUSIONS Molecular hydrogen treatment promotes functional outcomes after SAE in mice, which may be attributable to increasing beneficial bacteria, repressing harmful bacteria, and metabolic disorder, and reducing inflammation.
Collapse
Affiliation(s)
- Qingqing Han
- Department of AnaesthesiologyTianjin Medical University General Hospital, Tianjin Research Institute of AnaesthesiologyTianjinChina
| | - Yuanyuan Bai
- Department of AnesthesiologyTianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical UniversityTianjinChina
| | - Chunjing Zhou
- Department of AnaesthesiologyTianjin 4 center hospitalTianjinChina
| | - Beibei Dong
- Department of AnaesthesiologyTianjin Medical University General Hospital, Tianjin Research Institute of AnaesthesiologyTianjinChina
| | - Yingning Li
- Department of AnaesthesiologyTianjin Medical University General Hospital, Tianjin Research Institute of AnaesthesiologyTianjinChina
| | - Ning Luo
- Department of AnaesthesiologyTianjin Medical University General Hospital, Tianjin Research Institute of AnaesthesiologyTianjinChina
| | - Hongguang Chen
- Department of AnaesthesiologyTianjin Medical University General Hospital, Tianjin Research Institute of AnaesthesiologyTianjinChina
| | - Yonghao Yu
- Department of AnaesthesiologyTianjin Medical University General Hospital, Tianjin Research Institute of AnaesthesiologyTianjinChina
| |
Collapse
|
9
|
Ge X, He X, Liu J, Zeng F, Chen L, Xu W, Shao R, Huang Y, Farag MA, Capanoglu E, El-Seedi HR, Zhao C, Liu B. Amelioration of type 2 diabetes by the novel 6, 8-guanidyl luteolin quinone-chromium coordination via biochemical mechanisms and gut microbiota interaction. J Adv Res 2022; 46:173-188. [PMID: 35700921 PMCID: PMC10105086 DOI: 10.1016/j.jare.2022.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/17/2022] [Accepted: 06/08/2022] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Luteolin is a plant-derived flavonoid that exhibits a broad range of pharmacological activities. Studies on luteolin have mainly focused on its use for hyperlipidaemia prevention, whereas the capacity of the flavonoid to hinder hyperglycaemia development remains underexplored. OBJECTIVES To probe the anti-hyperglycemic mechanism of 6,8-guanidyl luteolin quinone-chromium coordination (GLQ.Cr), and to assess its regulatory effect on intestinal microbiota in type 2 diabetes mellitus (T2DM) mice. METHODS High-sucrose/high-fat diet-induced and intraperitoneal injection of streptozotocin was used to develop a T2DM model. Glycometabolism related indicators, histopathology, and gut microbiota composition in caecum samples were evaluated, and RNA sequencing (RNA-seq) of liver samples was conducted. Faecal microbiota transplantation (FMT) was further used to verify the anti-hyperglycemic activity of intestinal microbiota. RESULTS The administration of GLQ.Cr alleviated hyperglycaemia symptoms by improving liver and pancreatic functions and modulating gut microbe communities (Lactobacillus, Alistipes, Parabacteroides, Lachnoclostridium, and Desulfovibrio). RNA-seq analysis showed that GLQ.Cr mainly affected the peroxisome proliferative activated receptor (PPAR) signalling pathway in order to regulate abnormal glucose metabolism. FMT significantly modulated the abundance of Lactobacillus, Alloprevotella, Alistipes, Bacteroides, Ruminiclostridium, Brevundimonas and Pseudomonas in the caecum to balance blood glucose levels and counteract T2DM mice inflammation. CONCLUSION GLQ.Cr improved the abnormal glucose metabolism in T2DM mice by regulating the PPAR signalling pathway and modulating intestinal microbial composition. FMT can improve the intestinal microecology of the recipient and in turn ameliorate the symptoms of T2DM-induced hyperglycaemia.
Collapse
Affiliation(s)
- Xiaodong Ge
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaoyu He
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Junwei Liu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ligen Chen
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Wei Xu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Rong Shao
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Ying Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak 34469 Istanbul, Turkey
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Uppsala, Box 591, SE 751 24 Uppsala, Sweden
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
10
|
Park J, Lee JJ, Hong Y, Seo H, Shin TS, Hong JY. Metagenomic Analysis of Plasma Microbial Extracellular Vesicles in Patients Receiving Mechanical Ventilation: A Pilot Study. J Pers Med 2022; 12:jpm12040564. [PMID: 35455680 PMCID: PMC9031263 DOI: 10.3390/jpm12040564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Previous studies reported a significant association between pneumonia outcome and the respiratory microbiome. There is increasing interest in the roles of bacterial extracellular vesicles (EVs) in various diseases. We studied the composition and function of microbiota-derived EVs in the plasma of patients receiving mechanical ventilation to evaluate whether they can be used as a diagnostic marker and to predict clinical outcomes. Methods: Plasma samples (n = 111) from 59 mechanically ventilated patients (41 in the pneumonia group; 24 in the nursing home and hospital-associated infection [NHAI] group) were prospectively collected on days one and seven. After isolating the bacterial EVs from plasma samples, nucleic acid was extracted for 16S rRNA gene pyrosequencing. The samples were evaluated to determine the α and β diversity, bacterial composition, and predicted functions. Results: Principal coordinates analysis revealed significantly different clustering of microbial EVs between the pneumonia and non-pneumonia groups. The proportions of Lactobacillus, Cutibacterium, and Sphingomonas were significantly different between the pneumonia and non-pneumonia groups. In addition, the abundances of Lactobacillus and Bifidobacterium were significantly higher in the non-NHAI than the NHAI group. In the analysis of β diversity, the structure of microbial EVs differed significantly different between 28-day survivors and non-survivors (Bray-Curtis distance, p = 0.014). Functional profiling revealed significant differences between the pneumonia and non-pneumonia groups. The longitudinal change in predicted functions of microbial EV genes showed a significant difference between 28-day survivors and non-survivors. Conclusions: Bacterial microbiota–derived EVs in the plasma have potential as diagnostic and prognostic markers for patients receiving mechanical ventilation. Further large prospective studies are needed to determine the clinical utility of plasma microbiota-EVs in intubated patients.
Collapse
Affiliation(s)
- Jinkyeong Park
- Department of Pulmonary and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul 05278, Korea;
| | - Jae Jun Lee
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24253, Korea;
| | - Yoonki Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Kangwon National University Hospital, Chuncheon 24289, Korea;
| | - Hochan Seo
- MD Healthcare Inc., Seoul 03293, Korea; (H.S.); (T.-S.S.)
| | - Tae-Seop Shin
- MD Healthcare Inc., Seoul 03293, Korea; (H.S.); (T.-S.S.)
| | - Ji Young Hong
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24253, Korea;
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Chuncheon Sacred Heart Hospital, Hallym University Medical Center, Chuncheon 24253, Korea
- Correspondence: ; Tel.: +82-33-240-8101; Fax: +033-255-6244
| |
Collapse
|
11
|
Li L, Huang L, Huang C, Xu J, Huang Y, Luo H, Lu X, He S, Yuan G, Chen L, Han X, Cao X, Jiang A, Liu C, Shi J, Yang H, Jiang Y. The multiomics landscape of serum exosomes during the development of sepsis. J Adv Res 2021; 39:203-223. [PMID: 35777909 PMCID: PMC9263672 DOI: 10.1016/j.jare.2021.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023] Open
Abstract
The study for the first time describes the profile of molecular dynamics in septic serum exosomes. We provide a new direction into proteasome-mediated protein degradation in septic serum exosomes. IL-10 delivery by septic exosomes may play a vital role in alleviation of AKI of CLP mice. Septic serum exosomes participate in the modulation of sepsis by regulating vitamin metabolism. The molecular mechanisms proposed in the study may provide helpful insights for the therapy of sepsis.
Introduction Sepsis is an infection-induced severe inflammatory disorder leading to multiple organ dysfunction. It remains a highly lethal condition for which early diagnosis and therapy achieve unsatisfactory results. Circulating exosomes containing biomarkers and mediators of sepsis have recently received attention, but the progress has been far from optimal. Objectives The present study focuses on the profiles of molecular dynamics in serum exosomes and explores the potential molecular mechanisms on serum exosomes during the process of sepsis. Methods We used high-performance liquid chromatography-tandem mass spectrometry and RNA-seq to detect the dynamic profiles of exosome proteins and RNAs (including mRNAs, lncRNAs and miRNAs) in serum exosomes from 3 healthy individuals and 9 septic patients at the different stages. Then integrative multiomics analyses were performed and the results were validated by qRT-PCR, LiquiChip assay and metabolomics analysis on mice subjected to cecal ligation and puncture (CLP) modeling. Results A total of 354 proteins, 195 mRNAs, 82 lncRNAs and 55 miRNAs were identified as differentially expressed molecules in serum exosomes from septic patients. Integrative multiomics analysis showed that exosome components were associated with cytokine storm, complement and clotting cascades, the endothelial barrier, 20S proteasome-dependent protein degradation and vitamin metabolism. Importantly, pretreatment with serum exosomes derived from mice subjected to CLP significantly restrained proinflammatory cytokine expression and alleviated tissue injury in septic mice. Further metabolomics analysis demonstrated that pretreatment with septic serum exosomes significantly affected the metabolites associated with vitamin digestion and absorption in CLP mice. Conclusion Our study for the first time describes the landscape of the molecular dynamics of serum exosomes during the development of sepsis and proposes some hypothetical molecular mechanisms by integrative multiomics analysis, which may provide helpful diagnostic and therapeutic insights for the ongoing battle against sepsis.
Collapse
|
12
|
Paul D, Komarova NL. Multi-scale network targeting: A holistic systems-biology approach to cancer treatment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:72-79. [PMID: 34428429 DOI: 10.1016/j.pbiomolbio.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 11/15/2022]
Abstract
The vulnerabilities of cancer at the cellular and, recently, with the introduction of immunotherapy, at the tissue level, have been exploited with variable success. Evaluating the cancer system vulnerabilities at the organismic level through analysis of network topology and network dynamics can potentially predict novel anti-cancer drug targets directed at the macroscopic cancer networks. Theoretical work analyzing the properties and the vulnerabilities of the multi-scale network of cancer needs to go hand-in-hand with experimental research that uncovers the biological nature of the relevant networks and reveals new targetable vulnerabilities. It is our hope that attacking cancer on different spatial scales, in a concerted integrated approach, may present opportunities for novel ways to prevent treatment resistance.
Collapse
Affiliation(s)
- Doru Paul
- Medical Oncology, Weill Cornell Medicine, 1305 York Avenue 12th Floor, New York, NY, 10021, USA.
| | - Natalia L Komarova
- Department of Mathematics, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
13
|
Ma H, Liu J, Du Y, Zhang S, Cao W, Jia Z, Gong W, Zhang A. Estrogen-Related Receptor γ Agonist DY131 Ameliorates Lipopolysaccharide-Induced Acute Liver Injury. Front Pharmacol 2021; 12:626166. [PMID: 33967760 PMCID: PMC8104008 DOI: 10.3389/fphar.2021.626166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis-associated liver dysfunction remains a challenge in clinical practice with high mortality and limited specific therapies. DY131 is a pharmacological agonist of the orphan receptor estrogen-related receptor (ERR) γ which plays a crucial role in regulating energy generation, oxidative metabolism, cell apoptosis, inflammatory responses, etc. However, its role in acute liver injury is unknown. In this study, we evaluated the effect of DY131 on lipopolysaccharide (LPS)-induced liver injury. Mice were pretreated with DY131 through intraperitoneal injection at a dose of 5 mg/kg/day for 3 days prior to LPS challenge (10 mg/kg). 24 h later, they were anesthetized and sacrificed. Blood and liver tissues were collected for further studies. In a separate experiment, mice were treated with saline (vehicle) or DY131 for 3 days to evaluate the toxicity of DY131. We found that ERRγ was downregulated in the liver tissues from LPS-treated mice. Pretreatment with DY131 ameliorated LPS-induced liver injury as demonstrated by reduced liver enzyme release (ALT, AST, and LDH), improved liver morphological damage, and attenuated oxidative stress, inflammation and apoptosis. Meanwhile, DY131 had no significant side effects on hepatic and renal functions in mice. Finally, transcriptomics analysis revealed that the dysregulated pathways associated with inflammation and metabolism were significantly reversed by DY131 in LPS-treated mice, providing more evidence in favor of the protective effect of DY131 against LPS-induced liver injury. Altogether, these findings highlighted the protective effect of DY131 on LPS-induced hepatotoxicity possibly via suppressing oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Haoyang Ma
- Department of Pediatrics, School of Medicine, Southeast University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaye Liu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yang Du
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Shengnan Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Weidong Cao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Wei Gong
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Pediatrics, School of Medicine, Southeast University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Mainali R, Zabalawi M, Long D, Buechler N, Quillen E, Key CC, Zhu X, Parks JS, Furdui C, Stacpoole PW, Martinez J, McCall CE, Quinn MA. Dichloroacetate reverses sepsis-induced hepatic metabolic dysfunction. eLife 2021; 10:64611. [PMID: 33616039 PMCID: PMC7901874 DOI: 10.7554/elife.64611] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic reprogramming between resistance and tolerance occurs within the immune system in response to sepsis. While metabolic tissues such as the liver are subjected to damage during sepsis, how their metabolic and energy reprogramming ensures survival is unclear. Employing comprehensive metabolomic, lipidomic, and transcriptional profiling in a mouse model of sepsis, we show that hepatocyte lipid metabolism, mitochondrial tricarboxylic acid (TCA) energetics, and redox balance are significantly reprogrammed after cecal ligation and puncture (CLP). We identify increases in TCA cycle metabolites citrate, cis-aconitate, and itaconate with reduced fumarate and triglyceride accumulation in septic hepatocytes. Transcriptomic analysis of liver tissue supports and extends the hepatocyte findings. Strikingly, the administration of the pyruvate dehydrogenase kinase (PDK) inhibitor dichloroacetate reverses dysregulated hepatocyte metabolism and mitochondrial dysfunction. In summary, our data indicate that sepsis promotes hepatic metabolic dysfunction and that targeting the mitochondrial PDC/PDK energy homeostat rebalances transcriptional and metabolic manifestations of sepsis within the liver.
Collapse
Affiliation(s)
- Rabina Mainali
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Manal Zabalawi
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - David Long
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Nancy Buechler
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Ellen Quillen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Chia-Chi Key
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Xuewei Zhu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - John S Parks
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Cristina Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Peter W Stacpoole
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine and Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, United States
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, Bethesda, United States
| | - Charles E McCall
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Matthew A Quinn
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, United States.,Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| |
Collapse
|