1
|
Marciniak M, Stachowicz-Suhs M, Wagner M. The role of innate immune cells in modulating vascular dynamics in skin malignancies. Biochim Biophys Acta Rev Cancer 2025; 1880:189331. [PMID: 40280501 DOI: 10.1016/j.bbcan.2025.189331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
A developing tumor relies heavily on blood vessels to supply oxygen and nutrients. As a result, angiogenesis, the formation of new blood vessels, supports tumor growth and progression. Similarly, lymphangiogenesis, the formation of new lymphatic vessels, plays a critical role in metastatic dissemination by providing pathways for malignant cells to spread. The tumor microenvironment is crucial for establishing and maintaining these vascular networks, with innate immune cells playing a key regulatory role. Notably, immune cells are specifically enriched in barrier tissues, such as the skin, emphasizing their importance in skin malignancies. Therefore, understanding their role in regulating angiogenesis and lymphangiogenesis is essential for developing novel therapeutic strategies. This review article explores how innate immune cells influence tumor vasculature and highlights the therapeutic potential that may arise from this knowledge.
Collapse
Affiliation(s)
- Mateusz Marciniak
- Innate Immunity Research Group, Life Sciences and Biotechnology Center, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland; Department of Biochemistry and Immunochemistry, Wrocław Medical University, Wrocław, Poland
| | - Martyna Stachowicz-Suhs
- Innate Immunity Research Group, Life Sciences and Biotechnology Center, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland
| | - Marek Wagner
- Innate Immunity Research Group, Life Sciences and Biotechnology Center, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland.
| |
Collapse
|
2
|
Liu H, Shi H, Sun Y. Identification of a novel lymphangiogenesis signature associated with immune cell infiltration in colorectal cancer based on bioinformatics analysis. BMC Med Genomics 2024; 17:2. [PMID: 38167072 PMCID: PMC10763205 DOI: 10.1186/s12920-023-01781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Lymphangiogenesis plays an important role in tumor progression and is significantly associated with tumor immune infiltration. However, the role and mechanisms of lymphangiogenesis in colorectal cancer (CRC) are still unknown. Thus, the objective is to identify the lymphangiogenesis-related genes associated with immune infiltration and investigation of their prognosis value. METHODS mRNA expression profiles and corresponding clinical information of CRC samples were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The lymphangiogenesis-related genes (LymRGs) were collected from the Molecular Signatures database (MSigDB). Lymphangiogenesis score (LymScore) and immune cell infiltrating levels were quantified using ssGSEA. LymScore) and immune cell infiltrating levels-related hub genes were identified using weighted gene co-expression network analysis (WGCNA). Univariate Cox and LASSO regression analyses were performed to identify the prognostic gene signature and construct a risk model. Furthermore, a predictive nomogram was constructed based on the independent risk factor generated from a multivariate Cox model. RESULTS A total of 1076 LymScore and immune cell infiltrating levels-related hub genes from three key modules were identified by WGCNA. Lymscore is positively associated with natural killer cells as well as regulator T cells infiltrating. These modular genes were enriched in extracellular matrix and structure, collagen fibril organization, cell-substrate adhesion, etc. NUMBL, TSPAN11, PHF21A, PDGFRA, ZNF385A, and RIMKLB were eventually identified as the prognostic gene signature in CRC. And patients were divided into high-risk and low-risk groups based on the median risk score, the patients in the high-risk group indicated poor survival and were predisposed to metastasis and advanced stages. NUMBL and PHF21A were upregulated but PDGFRA was downregulated in tumor samples compared with normal samples in the Human Protein Atlas (HPA) database. CONCLUSION Our finding highlights the critical role of lymphangiogenesis in CRC progression and metastasis and provides a novel gene signature for CRC and novel therapeutic strategies for anti-lymphangiogenic therapies in CRC.
Collapse
Affiliation(s)
- Hong Liu
- Department of General Surgery, Wuxi Fifth People's Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu, China
| | - Huiwen Shi
- Department of General Surgery, No.971 Hospital of PLA Navy, Qingdao, China
| | - Yinggang Sun
- Department of General Surgery, The 960th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Jinan, China.
| |
Collapse
|
3
|
Cross-Platform Omics Prediction procedure: a statistical machine learning framework for wider implementation of precision medicine. NPJ Digit Med 2022; 5:85. [PMID: 35788693 PMCID: PMC9253123 DOI: 10.1038/s41746-022-00618-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
In this modern era of precision medicine, molecular signatures identified from advanced omics technologies hold great promise to better guide clinical decisions. However, current approaches are often location-specific due to the inherent differences between platforms and across multiple centres, thus limiting the transferability of molecular signatures. We present Cross-Platform Omics Prediction (CPOP), a penalised regression model that can use omics data to predict patient outcomes in a platform-independent manner and across time and experiments. CPOP improves on the traditional prediction framework of using gene-based features by selecting ratio-based features with similar estimated effect sizes. These components gave CPOP the ability to have a stable performance across datasets of similar biology, minimising the effect of technical noise often generated by omics platforms. We present a comprehensive evaluation using melanoma transcriptomics data to demonstrate its potential to be used as a critical part of a clinical screening framework for precision medicine. Additional assessment of generalisation was demonstrated with ovarian cancer and inflammatory bowel disease studies.
Collapse
|
4
|
Bonetti G, Paolacci S, Samaja M, Maltese PE, Michelini S, Michelini S, Michelini S, Ricci M, Cestari M, Dautaj A, Medori MC, Bertelli M. Low Efficacy of Genetic Tests for the Diagnosis of Primary Lymphedema Prompts Novel Insights into the Underlying Molecular Pathways. Int J Mol Sci 2022; 23:ijms23137414. [PMID: 35806420 PMCID: PMC9267137 DOI: 10.3390/ijms23137414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/16/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023] Open
Abstract
Lymphedema is a chronic inflammatory disorder caused by ineffective fluid uptake by the lymphatic system, with effects mainly on the lower limbs. Lymphedema is either primary, when caused by genetic mutations, or secondary, when it follows injury, infection, or surgery. In this study, we aim to assess to what extent the current genetic tests detect genetic variants of lymphedema, and to identify the major molecular pathways that underlie this rather unknown disease. We recruited 147 individuals with a clinical diagnosis of primary lymphedema and used established genetic tests on their blood or saliva specimens. Only 11 of these were positive, while other probands were either negative (63) or inconclusive (73). The low efficacy of such tests calls for greater insight into the underlying mechanisms to increase accuracy. For this purpose, we built a molecular pathways diagram based on a literature analysis (OMIM, Kegg, PubMed, Scopus) of candidate and diagnostic genes. The PI3K/AKT and the RAS/MAPK pathways emerged as primary candidates responsible for lymphedema diagnosis, while the Rho/ROCK pathway appeared less critical. The results of this study suggest the most important pathways involved in the pathogenesis of lymphedema, and outline the most promising diagnostic and candidate genes to diagnose this disease.
Collapse
Affiliation(s)
- Gabriele Bonetti
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
- Correspondence: ; Tel.: +39-0365-62-061
| | - Stefano Paolacci
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
| | | | | | - Sandro Michelini
- Vascular Diagnostics and Rehabilitation Service, Marino Hospital, ASL Roma 6, 00047 Marino, Italy;
| | - Serena Michelini
- Unit of Physical Medicine, “Sapienza” University of Rome, 00185 Rome, Italy;
| | | | - Maurizio Ricci
- Division of Rehabilitation Medicine, Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Ancona, 60126 Ancona, Italy;
| | - Marina Cestari
- Study Centre Pianeta Linfedema, 05100 Terni, Italy;
- Lymphology Sector of the Rehabilitation Service, USLUmbria2, 05100 Terni, Italy
| | - Astrit Dautaj
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
| | - Maria Chiara Medori
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
| | - Matteo Bertelli
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
- MAGI Group, 25010 San Felice del Benaco, Italy;
- MAGI Euregio, 39100 Bolzano, Italy
| |
Collapse
|
5
|
Abstract
Adipose tissue, once thought to be an inert receptacle for energy storage, is now recognized as a complex tissue with multiple resident cell populations that actively collaborate in response to diverse local and systemic metabolic, thermal, and inflammatory signals. A key participant in adipose tissue homeostasis that has only recently captured broad scientific attention is the lymphatic vasculature. The lymphatic system's role in lipid trafficking and mediating inflammation makes it a natural partner in regulating adipose tissue, and evidence supporting a bidirectional relationship between lymphatics and adipose tissue has accumulated in recent years. Obesity is now understood to impair lymphatic function, whereas altered lymphatic function results in aberrant adipose tissue deposition, though the molecular mechanisms governing these phenomena have yet to be fully elucidated. We will review our current understanding of the relationship between adipose tissue and the lymphatic system here, focusing on known mechanisms of lymphatic-adipose crosstalk.
Collapse
Affiliation(s)
- Gregory P Westcott
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Joslin Diabetes Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
- Broad Institute, Cambridge, MA 02142, USA
- Correspondence: Evan D. Rosen, MD, PhD, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
6
|
Zhou Y, Zhu X, Cui H, Shi J, Yuan G, Shi S, Hu Y. The Role of the VEGF Family in Coronary Heart Disease. Front Cardiovasc Med 2021; 8:738325. [PMID: 34504884 PMCID: PMC8421775 DOI: 10.3389/fcvm.2021.738325] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 01/04/2023] Open
Abstract
The vascular endothelial growth factor (VEGF) family, the regulator of blood and lymphatic vessels, is mostly investigated in the tumor and ophthalmic field. However, the functions it enjoys can also interfere with the development of atherosclerosis (AS) and further diseases like coronary heart disease (CHD). The source, regulating mechanisms including upregulation and downregulation, target cells/tissues, and known functions about VEGF-A, VEGF-B, VEGF-C, and VEGF-D are covered in the review. VEGF-A can regulate angiogenesis, vascular permeability, and inflammation by binding with VEGFR-1 and VEGFR-2. VEGF-B can regulate angiogenesis, redox, and apoptosis by binding with VEGFR-1. VEGF-C can regulate inflammation, lymphangiogenesis, angiogenesis, apoptosis, and fibrogenesis by binding with VEGFR-2 and VEGFR-3. VEGF-D can regulate lymphangiogenesis, angiogenesis, fibrogenesis, and apoptosis by binding with VEGFR-2 and VEGFR-3. These functions present great potential of applying the VEGF family for treating CHD. For instance, angiogenesis can compensate for hypoxia and ischemia by growing novel blood vessels. Lymphangiogenesis can degrade inflammation by providing exits for accumulated inflammatory cytokines. Anti-apoptosis can protect myocardium from impairment after myocardial infarction (MI). Fibrogenesis can promote myocardial fibrosis after MI to benefit cardiac recovery. In addition, all these factors have been confirmed to keep a link with lipid metabolism, the research about which is still in the early stage and exact mechanisms are relatively obscure. Because few reviews have been published about the summarized role of the VEGF family for treating CHD, the aim of this review article is to present an overview of the available evidence supporting it and give hints for further research.
Collapse
Affiliation(s)
- Yan Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Xueping Zhu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hanming Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing Shi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guozhen Yuan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuai Shi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Chen D, Zhang X, Li Z, Zhu B. Metabolic regulatory crosstalk between tumor microenvironment and tumor-associated macrophages. Am J Cancer Res 2021; 11:1016-1030. [PMID: 33391518 PMCID: PMC7738889 DOI: 10.7150/thno.51777] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages phagocytize pathogens to initiate innate immunity and products from the tumor microenvironment (TME) to mediate tumor immunity. The loss of tumor-associated macrophage (TAM)-mediated immune responses results in immune suppression. To reverse this immune disorder, the regulatory mechanism of TAMs in the TME needs to be clarified. Immune molecules (cytokines and chemokines) from TAMs and the TME have been widely accepted as mutual mediators of signal transduction in the past few decades. Recently, researchers have tried to seek the intrinsic mechanism of TAM phenotypic and functional changes through metabolic connections. Numerous metabolites derived from the TME have been identified that induce the cell-cell crosstalk with TAMs. The bulk tumor cells, immune cells, and stromal cells produce metabolites in the TME that are involved in the metabolic regulation of TAMs. Meanwhile, some products from TAMs regulate the biological functions of the tumor as well. Here, we review the recent reports demonstrating the metabolic regulation between TME and TAMs.
Collapse
|