1
|
Alkhathami AG, Pallathadka H, Shah S, Ganesan S, Sharma A, Devi S, Mustafa YF, Alasheqi MQ, Kadhim AJ, Zwamel AH. Mechanisms behind the LncRNAs-mediated regulation of paclitaxel (PTX) resistance in human malignancies. Exp Cell Res 2025; 445:114434. [PMID: 39921031 DOI: 10.1016/j.yexcr.2025.114434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Paclitaxel (PTX) is extensively used to treat various cancers, including those of the breast, ovary, lung, esophagus, stomach, pancreas, and neck. However, despite its effectiveness in clinical settings, patients often experience cancer recurrence due to the emergence of resistance to PTX. The mechanisms underlying this resistance in cancer cells exposed to PTX involve modifications in β-tubulin, the primary target molecule associated with mitosis, the activation of pathways that facilitate drug efflux, and the dysregulation of apoptosis-related proteins. Long non-coding RNAs (lncRNAs), which are RNA molecules exceeding 200 nucleotides in length and lacking protein-coding capabilities, play various regulatory roles in cellular functions. A growing body of evidence underscores the role of lncRNAs in cancer progression and their involvement in PTX resistance across different cancer types. As a result, lncRNAs have been identified as promising therapeutic targets for overcoming drug resistance in cancer therapies. This review aims to provide an overview of the current knowledge regarding lncRNAs and their contributions to resistance mechanisms to promote further research in this field. A summary of key lncRNAs and their related pathways associated with PTX resistance will be presented.
Collapse
Affiliation(s)
- Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | | | - Sejal Shah
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, 360003, Gujarat, India.
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | - Seema Devi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | | | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq.
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq.
| |
Collapse
|
2
|
Rezaee A, Ahmadpour S, Jafari A, Aghili S, Zadeh SST, Rajabi A, Raisi A, Hamblin MR, Mahjoubin-Tehran M, Derakhshan M. MicroRNAs, long non-coding RNAs, and circular RNAs and gynecological cancers: focus on metastasis. Front Oncol 2023; 13:1215194. [PMID: 37854681 PMCID: PMC10580988 DOI: 10.3389/fonc.2023.1215194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
Gynecologic cancer is a significant cause of death in women worldwide, with cervical cancer, ovarian cancer, and endometrial cancer being among the most well-known types. The initiation and progression of gynecologic cancers involve a variety of biological functions, including angiogenesis and metastasis-given that death mostly occurs from metastatic tumors that have invaded the surrounding tissues. Therefore, understanding the molecular pathways underlying gynecologic cancer metastasis is critical for enhancing patient survival and outcomes. Recent research has revealed the contribution of numerous non-coding RNAs (ncRNAs) to metastasis and invasion of gynecologic cancer by affecting specific cellular pathways. This review focuses on three types of gynecologic cancer (ovarian, endometrial, and cervical) and three kinds of ncRNAs (long non-coding RNAs, microRNAs, and circular RNAs). We summarize the detailed role of non-coding RNAs in the different pathways and molecular interactions involved in the invasion and metastasis of these cancers.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Ahmadpour
- Biotechnology Department, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarehnaz Aghili
- Department of Gynecology and Obstetrics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Maryam Mahjoubin-Tehran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Derakhshan
- Shahid Beheshti Fertility Clinic, Department of Gynecology and Obsteterics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Salamini-Montemurri M, Lamas-Maceiras M, Lorenzo-Catoira L, Vizoso-Vázquez Á, Barreiro-Alonso A, Rodríguez-Belmonte E, Quindós-Varela M, Cerdán ME. Identification of lncRNAs Deregulated in Epithelial Ovarian Cancer Based on a Gene Expression Profiling Meta-Analysis. Int J Mol Sci 2023; 24:10798. [PMID: 37445988 PMCID: PMC10341812 DOI: 10.3390/ijms241310798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the deadliest gynecological cancers worldwide, mainly because of its initially asymptomatic nature and consequently late diagnosis. Long non-coding RNAs (lncRNA) are non-coding transcripts of more than 200 nucleotides, whose deregulation is involved in pathologies such as EOC, and are therefore envisaged as future biomarkers. We present a meta-analysis of available gene expression profiling (microarray and RNA sequencing) studies from EOC patients to identify lncRNA genes with diagnostic and prognostic value. In this meta-analysis, we include 46 independent cohorts, along with available expression profiling data from EOC cell lines. Differential expression analyses were conducted to identify those lncRNAs that are deregulated in (i) EOC versus healthy ovary tissue, (ii) unfavorable versus more favorable prognosis, (iii) metastatic versus primary tumors, (iv) chemoresistant versus chemosensitive EOC, and (v) correlation to specific histological subtypes of EOC. From the results of this meta-analysis, we established a panel of lncRNAs that are highly correlated with EOC. The panel includes several lncRNAs that are already known and even functionally characterized in EOC, but also lncRNAs that have not been previously correlated with this cancer, and which are discussed in relation to their putative role in EOC and their potential use as clinically relevant tools.
Collapse
Affiliation(s)
- Martín Salamini-Montemurri
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Mónica Lamas-Maceiras
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Lidia Lorenzo-Catoira
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Ángel Vizoso-Vázquez
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Aida Barreiro-Alonso
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Esther Rodríguez-Belmonte
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - María Quindós-Varela
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - M Esperanza Cerdán
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| |
Collapse
|
4
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Mokhtari M. A review on the role of LINC01133 in cancers. Cancer Cell Int 2022; 22:270. [PMID: 36042493 PMCID: PMC9429693 DOI: 10.1186/s12935-022-02690-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
Long Intergenic Non-Protein Coding RNA 1133 (LINC01133) is a long non-coding RNA (lncRNA) which interacts with miR-106a-3p, miR-576-5p, miR-495-3p, miR-205, miR-199a-5p, miR-4784, miR-30a-5p, miR-199a, miR-30b-5p, miR-216a -5p and miR-422a, thus increasing expression of mRNA targets of these miRNAs. LINC01133 can affect cancer metastasis through regulation of epithelial-mesenchymal transition program. Dysregulation of this lncRNA has been repeatedly detected in the process of tumorigenesis. In this review, we summarize the results of various studies that reported dysregulation of LINC01133 in different samples and described the role of this lncRNA as a marker for these disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Mokhtari
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Jiang S, Zhang Q, Li J, Raziq K, Kang X, Liang S, Sun C, Liang X, Zhao D, Fu S, Cai M. New Sights Into Long Non-Coding RNA LINC01133 in Cancer. Front Oncol 2022; 12:908162. [PMID: 35747817 PMCID: PMC9209730 DOI: 10.3389/fonc.2022.908162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
LINC01133 is a long intergenic non-coding RNA that regulates malignancy in several cancers, including those of the digestive, female reproductive, respiratory, and urinary system. LINC01133 is an extensively studied lncRNA that is highly conserved, and its relatively stable expression is essential for its robust biological function. Its expression is highly tissue-specific with a distinct subcellular localization. It functions as an oncogene or a tumor suppressor gene in different cancers via multiple mechanisms, such as those that involve competing with endogenous RNA and binding to RNA-binding proteins or DNA. Moreover, the secretion and transportation of LINC01133 by extracellular vesicles in the tumor micro-environment is regulated by other cells in the tumor micro-environment. To date, two mechanisms, an increase in copy number and regulation of transcription elements, have been found to regulate LINC01133 expression. Clinically, LINC01133 is an ideal marker for cancer prognosis and a potential therapeutic target in cancer treatment regimes. In this review, we aimed to summarize the aforementioned information as well as posit future directions for LINC01133 research.
Collapse
Affiliation(s)
- Shengnan Jiang
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Qian Zhang
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jiaqi Li
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Khadija Raziq
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Xinyu Kang
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Shiyin Liang
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Chaoyue Sun
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Xiao Liang
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Di Zhao
- Department of Genecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Songbin Fu
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Mengdi Cai
- Key Laboratory of Preservation of Human Genetic Resources and DiseaseControl, Ministry of Education, Harbin Medical University, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- *Correspondence: Mengdi Cai,
| |
Collapse
|
6
|
Sharma U, Barwal TS, Murmu M, Acharya V, Pant N, Dey D, Vivek, Gautam A, Bazala S, Singh I, Azzouz F, Bishayee A, Jain A. Clinical potential of long non-coding RNA LINC01133 as a promising biomarker and therapeutic target in cancers. Biomark Med 2022; 16:349-369. [PMID: 35195032 DOI: 10.2217/bmm-2021-0682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recently, long intergenic non-protein coding RNA 01133 (LINC01133) was identified as a novel transcript in cancers. It modulates various hallmarks of cancers and acts as oncogenic in some cancers while tumor-suppressive in others. Furthermore, the expression of LINC01133 correlates with tumor size, advanced tumor node metastasis stage and lymphatic node metastasis, Ki-67 levels and overall survival of patients. Herein, the authors provide an in-depth analysis describing how LINC01133 modulates the multiple cancer-associated signaling pathways and the pathogenesis of various malignancies and treatment regimens. Based on the role played by LINC01133, the authors propose LINC01133 as both a potential biomarker and a therapeutic target in cancer.
Collapse
Affiliation(s)
- Uttam Sharma
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Masang Murmu
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Varnali Acharya
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Neha Pant
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Damayanti Dey
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Vivek
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Ashima Gautam
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Sonali Bazala
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Ipsa Singh
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| | - Farah Azzouz
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Punjab, India
| |
Collapse
|
7
|
Gao Y, Liu J, Cai B, Chen Q, Wang G, Lu Z, Jiang K, Miao Y. Development of epithelial-mesenchymal transition-related lncRNA signature for predicting survival and immune microenvironment in pancreatic cancerwithexperiment validation. Bioengineered 2021; 12:10553-10567. [PMID: 34854360 PMCID: PMC8809919 DOI: 10.1080/21655979.2021.2000197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) have crucial function in epithelial–mesenchymal transition (EMT) in pancreatic cancer. It is necessary to comprehensively analyze the potential role of EMT-related lncRNA in pancreatic cancer. In the present study, genomic data of pancreatic cancer from the TCGA database were downloaded and we found 368 EMT-related lncRNAs. According to the expression characteristics of prognostic-related lncRNAs, all samples could be divided into two clusters with different clinical outcomes and different tumor microenvironments. Moreover, an eleven EMT-related lncRNAs signature was established and verified. Patients with pancreatic cancer in the high-risk group had a shorter overall survival than those in the low-risk group and the signature could act as an independent prognostic factor. Further analysis suggested that the EMT-related lncRNAs might affect the prognosis of patients through immune mechanisms. All findings indicated that the signature and eleven lncRNAs might serve as potential prognostic biomarkers and therapeutic targets in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yong Gao
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Baobao Cai
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Qun Chen
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Guangfu Wang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zipeng Lu
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Kuirong Jiang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yi Miao
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Pancreas Center, the Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Mirahmadi Y, Nabavi R, Taheri F, Samadian MM, Ghale-Noie ZN, Farjami M, Samadi-khouzani A, Yousefi M, Azhdari S, Salmaninejad A, Sahebkar A. MicroRNAs as Biomarkers for Early Diagnosis, Prognosis, and Therapeutic Targeting of Ovarian Cancer. JOURNAL OF ONCOLOGY 2021; 2021:3408937. [PMID: 34721577 PMCID: PMC8553480 DOI: 10.1155/2021/3408937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
Ovarian cancer is the major cause of gynecologic cancer-related mortality. Regardless of outstanding advances, which have been made for improving the prognosis, diagnosis, and treatment of ovarian cancer, the majority of the patients will die of the disease. Late-stage diagnosis and the occurrence of recurrent cancer after treatment are the most important causes of the high mortality rate observed in ovarian cancer patients. Unraveling the molecular mechanisms involved in the pathogenesis of ovarian cancer may help find new biomarkers and therapeutic targets for ovarian cancer. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression, mostly at the posttranscriptional stage, through binding to mRNA targets and inducing translational repression or degradation of target via the RNA-induced silencing complex. Over the last two decades, the role of miRNAs in the pathogenesis of various human cancers, including ovarian cancer, has been documented in multiple studies. Consequently, these small RNAs could be considered as reliable markers for prognosis and early diagnosis. Furthermore, given the function of miRNAs in various cellular pathways, including cell survival and differentiation, targeting miRNAs could be an interesting approach for the treatment of human cancers. Here, we review our current understanding of the most updated role of the important dysregulation of miRNAs and their roles in the progression and metastasis of ovarian cancer. Furthermore, we meticulously discuss the significance of miRNAs as prognostic and diagnostic markers. Lastly, we mention the opportunities and the efforts made for targeting ovarian cancer through inhibition and/or stimulation of the miRNAs.
Collapse
Affiliation(s)
- Yegane Mirahmadi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Fourough Taheri
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Mahdi Samadian
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Farjami
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Samadi-khouzani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Guilan University of Medical Sciences, Guilan, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Su R, Jin C, Zhou L, Cao Y, Kuang M, Li L, Xiang J. Construction of a ceRNA network of hub genes affecting immune infiltration in ovarian cancer identified by WGCNA. BMC Cancer 2021; 21:970. [PMID: 34461858 PMCID: PMC8404317 DOI: 10.1186/s12885-021-08711-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 08/19/2021] [Indexed: 12/22/2022] Open
Abstract
Background Ovarian cancer is the leading cause of death among gynecological malignancies. Immunotherapy has demonstrated potential effects in ovarian cancer. However, few studies on immune-related prognostic signatures in ovarian cancer have been reported. This study aimed to identify hub genes associated with immune infiltrates to provide insight into the immune regulatory mechanisms in ovarian cancer. Methods Raw data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and University of California, Santa Cruz (UCSC) Xena websites. Single-sample gene set enrichment analysis (ssGSEA) and weighted gene co-expression network analysis (WGCNA) were used to identify hub genes. Kaplan-Meier analysis and differential expression analysis were applied to explore the real hub genes. Results Through ssGSEA and WGCNA, 7 hub genes (LY9, CD5, CXCL9, IL2RG, SLAMF1, SLAMF6, and SLAMF7) were identified. Finally, LY9 and SLAMF1 were recognized as the real hub genes in immune infiltrates of ovarian cancer. LY9 and SLAMF1 are classified as SLAM family receptors involved in the activation of hematopoietic cells and the pathogenesis of multiple malignancies. Furthermore, 12 lncRNAs and 43 miRNAs significantly related to the 2 hub genes were applied to construct a lncRNA-miRNA-mRNA ceRNA network. The lncRNA-miRNA-mRNA ceRNA network shows upstream regulatory sites of the 2 hub genes. Conclusions These findings improve our understanding of the regulatory mechanism of and reveal potential immune checkpoints for immunotherapy for ovarian cancer.
Collapse
Affiliation(s)
- Rongjia Su
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 650 Xin Songjiang Road, Shanghai, 201620, China
| | - Chengjuan Jin
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 650 Xin Songjiang Road, Shanghai, 201620, China
| | - Lina Zhou
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 650 Xin Songjiang Road, Shanghai, 201620, China
| | - Yannan Cao
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 650 Xin Songjiang Road, Shanghai, 201620, China
| | - Menghua Kuang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 650 Xin Songjiang Road, Shanghai, 201620, China
| | - Linxia Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 650 Xin Songjiang Road, Shanghai, 201620, China
| | - Jiangdong Xiang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 650 Xin Songjiang Road, Shanghai, 201620, China.
| |
Collapse
|
10
|
Mehrpour Layeghi S, Arabpour M, Shakoori A, Naghizadeh MM, Mansoori Y, Tavakkoly Bazzaz J, Esmaeili R. Expression profiles and functional prediction of long non-coding RNAs LINC01133, ZEB1-AS1 and ABHD11-AS1 in the luminal subtype of breast cancer. J Transl Med 2021; 19:364. [PMID: 34446052 PMCID: PMC8390237 DOI: 10.1186/s12967-021-03026-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
Background Luminal breast cancer (BC) is the most frequent subtype accounting for more than 70% of BC. LncRNAs, a class of non-coding RNAs with more than 200 nucleotides, are involved in a variety of cellular processes and biological functions. Abberant expression is related to the development of various cancers, such as breast cancer. LINC01133, ZEB1-AS1, and ABHD11-AS1 were reported to be dysregulated in different cancers. However, their expression level in luminal BC remains poorly known. The aim of the present study was to evaluate the potential roles of these lncRNAs in BC, especially in luminal subtypes. Methods A comprehensive analysis was performed using the Lnc2Cancer database to identify novel cancer-associated lncRNA candidates. After conducting a literature review, three novel lncRNAs named LINC01133, ZEB1-AS1, and ABHD11-AS1 were chosen as target genes of the present study. Quantitative real‐time polymerase chain reaction (qRT-PCR) was used to evaluate the expression level of the mentioned lncRNAs in both luminal BC tissues and cell lines. Then, the correlation of the three mentioned lncRNAs expression with clinicopathological characteristics of the patients was studied. Moreover, several datasets were used to discover the potential roles and functions of LINC01133, ZEB1-AS1 and ABHD11-AS1 in luminal subtype of BC. Results According to the qRT-PCR assay, the expression levels of LINC01133 and ZEB1-AS1 were decreased in luminal BC tissues and cell lines. On the other hand, ABHD11-AS1 was upregulated in the above-mentioned samples. The expression levels of LINC01133, ZEB1-AS1, and ABHD11-AS1 were not associated with any of the clinical features. Also, the results obtained from the bioinformatics analyses were consistent with qRT-PCR data. Functional annotation of the co-expressed genes with the target lncRNAs, protein–protein interactions and significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways across luminal BC were also obtained using bioinformatics analysis. Conclusions Taken together, our findings disclosed the dysregulation of LINC01133, ZEB1-AS1, and ABHD11-AS1 in luminal BC. It was revealed that LINC01133 and ZEB1-AS1 expression was significantly downregulated in luminal BC tissues and cell lines, while ABHD11-AS1 was upregulated considerably in the mentioned tissues and cell lines. Also, bioinformatics and systems biology analyses have helped to identify the possible role of these lncRNAs in luminal BC. However, further analysis is needed to confirm the current findings. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03026-7.
Collapse
Affiliation(s)
- Sepideh Mehrpour Layeghi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maedeh Arabpour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Shakoori
- Medical Genetic Ward, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.,Breast Disease Research Center (BDRC), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.,Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| | - Javad Tavakkoly Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
11
|
Xie W, Sun H, Li X, Lin F, Wang Z, Wang X. Ovarian cancer: epigenetics, drug resistance, and progression. Cancer Cell Int 2021; 21:434. [PMID: 34404407 PMCID: PMC8369623 DOI: 10.1186/s12935-021-02136-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/03/2021] [Indexed: 03/05/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common malignant tumors in women. OC is associated with the activation of oncogenes, the inactivation of tumor suppressor genes, and the activation of abnormal cell signaling pathways. Moreover, epigenetic processes have been found to play an important role in OC tumorigenesis. Epigenetic processes do not change DNA sequences but regulate gene expression through DNA methylation, histone modification, and non-coding RNA. This review comprehensively considers the importance of epigenetics in OC, with a focus on microRNA and long non-coding RNA. These types of RNA are promising molecular markers and therapeutic targets that may support precision medicine in OC. DNA methylation inhibitors and histone deacetylase inhibitors may be useful for such targeting, with a possible novel approach combining these two therapies. Currently, the clinical application of such epigenetic approaches is limited by multiple obstacles, including the heterogeneity of OC, insufficient sample sizes in reported studies, and non-optimized methods for detecting potential tumor markers. Nonetheless, the application of epigenetic approaches to OC patient diagnosis, treatment, and prognosis is a promising area for future clinical investigation.
Collapse
Affiliation(s)
- Weiwei Xie
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University School of Medicine Xinhua Hospital, 1665 Kongjiang Road, Yangpu District, Shanghai, China
| | - Huizhen Sun
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University School of Medicine Xinhua Hospital, 1665 Kongjiang Road, Yangpu District, Shanghai, China
| | - Xiaoduan Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feikai Lin
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University School of Medicine Xinhua Hospital, 1665 Kongjiang Road, Yangpu District, Shanghai, China
| | - Ziliang Wang
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University School of Medicine Xinhua Hospital, 1665 Kongjiang Road, Yangpu District, Shanghai, China.
| | - Xipeng Wang
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University School of Medicine Xinhua Hospital, 1665 Kongjiang Road, Yangpu District, Shanghai, China.
| |
Collapse
|
12
|
Zhang L, Pan K, Zuo Z, Ye F, Cao D, Peng Y, Tang T, Li X, Zhou S, Duan L. LINC01133 hampers the development of gastric cancer through increasing somatostatin via binding to microRNA-576-5p. Epigenomics 2021; 13:1205-1219. [PMID: 34318683 DOI: 10.2217/epi-2020-0377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: Our study aimed at investigating how LINC01133 functions in gastric cancer (GC) progression. Materials & methods: Gain-of-function and loss-of-function approaches were applied to analyze the effects of LINC01133, microRNA-576-5p (miR-576-5p) and somatostatin (SST) on the biological behaviors of GC cells and in tumor-bearing nude mice. Results: GC tissues and cells showed low expression of LINC01133, and LINC01133 overexpression decreased malignant phenotypes of GC cells. Moreover, LINC01133 upregulated SST through binding to miR-576-5p. Overexpressing miR-576-5p or suppressing SST reversed the functions of LINC01133 in biological potentials of GC cells and tumor growth. Conclusion: LINC01133 overexpression may inhibit GC development by downregulation of miR-576-5p and upregulation of SST, which suggests new therapeutic targets for GC.
Collapse
Affiliation(s)
- Leiyi Zhang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410000, PR China
| | - Ke Pan
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410000, PR China
| | - Zhongkun Zuo
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410000, PR China
| | - Fei Ye
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410000, PR China
| | - Ding Cao
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410000, PR China
| | - Yu Peng
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410000, PR China
| | - Tenglong Tang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410000, PR China
| | - Xiaojing Li
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410000, PR China
| | - Shiwei Zhou
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410000, PR China
| | - Lunxi Duan
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410000, PR China
| |
Collapse
|
13
|
Chen L, Hou J, Zeng X, Guo Q, Deng M, Kloeber JA, Tu X, Zhao F, Wu Z, Huang J, Luo K, Kim W, Lou Z. LRRK2 inhibition potentiates PARP inhibitor cytotoxicity through inhibiting homologous recombination-mediated DNA double strand break repair. Clin Transl Med 2021; 11:e341. [PMID: 33784003 PMCID: PMC7908045 DOI: 10.1002/ctm2.341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/24/2022] Open
Abstract
PARP inhibitors induce DNA lesions, the repair of which are highly dependent on homologous recombination (HR), and preferentially kill HR- deficient cancers. However, cancer cells have developed several mechanisms to transform HR and confer drug resistance to PARP inhibition. Therefore, there is a great clinical interest in exploring new therapies that induce HR deficiency (HRD), thereby sensitizing cancer cells to PARP inhibitors. Here, we found that GSK2578215A, a high-selective and effective leucine-rich repeat kinase 2 (LRRK2) inhibitor, or LRRK2 depletion suppresses HR preventing the recruitment of RAD51 to DNA damage sites through disruption of the interaction of RAD51 and BRCA2. Moreover, LRRK2 inhibition or depletion increases the susceptibility of ovarian cancer cells to Olaparib in vitro and in vivo. In clinical specimens, LRRK2 high expression is high related with advanced clinical characteristics and poor survival of ovarian cancer patients. All these findings indicate ovarian cancers expressing high levels of LRRK2 are more resistant to treatment potentially through promoting HR. Furthermore, combination treatment with an LRRK2 and PARP inhibitor may be a novel strategy to improve the effectiveness of LRRK2 expression ovarian cancers.
Collapse
Affiliation(s)
- Lifeng Chen
- Department of GynecologyZhejiang Provincial People's HospitalHangzhouZhejiangP. R. China
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesota
- Department of Oncology, Medical Scientist Training ProgramMayo ClinicRochesterMinnesota
| | - Jing Hou
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesota
- Department of Oncology, Medical Scientist Training ProgramMayo ClinicRochesterMinnesota
| | - Xiangyu Zeng
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesota
- Department of Oncology, Medical Scientist Training ProgramMayo ClinicRochesterMinnesota
| | - Qiang Guo
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesota
- Department of Oncology, Medical Scientist Training ProgramMayo ClinicRochesterMinnesota
| | - Min Deng
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesota
- Department of Oncology, Medical Scientist Training ProgramMayo ClinicRochesterMinnesota
| | - Jake A Kloeber
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesota
- Department of Oncology, Medical Scientist Training ProgramMayo ClinicRochesterMinnesota
| | - Xinyi Tu
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesota
- Department of Oncology, Medical Scientist Training ProgramMayo ClinicRochesterMinnesota
| | - Fei Zhao
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesota
- Department of Oncology, Medical Scientist Training ProgramMayo ClinicRochesterMinnesota
| | - Zheming Wu
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesota
- Department of Oncology, Medical Scientist Training ProgramMayo ClinicRochesterMinnesota
| | - Jinzhou Huang
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesota
- Department of Oncology, Medical Scientist Training ProgramMayo ClinicRochesterMinnesota
| | - Kuntian Luo
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesota
- Department of Oncology, Medical Scientist Training ProgramMayo ClinicRochesterMinnesota
| | - Wootae Kim
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesota
- Department of Oncology, Medical Scientist Training ProgramMayo ClinicRochesterMinnesota
| | - Zhenkun Lou
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesota
- Department of Oncology, Medical Scientist Training ProgramMayo ClinicRochesterMinnesota
| |
Collapse
|
14
|
Razavi ZS, Tajiknia V, Majidi S, Ghandali M, Mirzaei HR, Rahimian N, Hamblin MR, Mirzaei H. Gynecologic cancers and non-coding RNAs: Epigenetic regulators with emerging roles. Crit Rev Oncol Hematol 2020; 157:103192. [PMID: 33290823 DOI: 10.1016/j.critrevonc.2020.103192] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
Gynecologic cancers involve the female genital organs, such as the vulva, vagina, cervix, endometrium, ovaries, and fallopian tubes. The occurrence and frequency of gynecologic cancer depends on personal lifestyle, history of exposure to viruses or carcinogens, genetics, body shape, and geographical habitat. For a long time, research into the molecular biology of cancer was broadly restricted to protein-coding genes. Recently it has been realized that non-coding RNAs (ncRNA), including long noncoding RNAs (LncRNAs), microRNAs, circular RNAs and piRNAs (PIWI-interacting RNAs), can all play a role in the regulation of cellular function within gynecological cancer. It is now known that ncRNAs are able to play dual roles, i.e. can exert both oncogenic or tumor suppressive functions in gynecological cancer. Moreover, several clinical trials are underway looking at the biomarker and therapeutic roles of ncRNAs. These efforts may provide a new horizon for the diagnosis and treatment of gynecological cancer. Herein, we summarize some of the ncRNAs that have been shown to be important in gynecological cancers.
Collapse
Affiliation(s)
| | - Vida Tajiknia
- Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahab Majidi
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Ghandali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
15
|
LncRNAs in Ovarian Cancer Progression, Metastasis, and Main Pathways: ceRNA and Alternative Mechanisms. Int J Mol Sci 2020; 21:ijms21228855. [PMID: 33238475 PMCID: PMC7700431 DOI: 10.3390/ijms21228855] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OvCa) develops asymptomatically until it reaches the advanced stages with metastasis, chemoresistance, and poor prognosis. Our review focuses on the analysis of regulatory long non-coding RNAs (lncRNAs) competing with protein-coding mRNAs for binding to miRNAs according to the model of competitive endogenous RNA (ceRNA) in OvCa. Analysis of publications showed that most lncRNAs acting as ceRNAs participate in OvCa progression: migration, invasion, epithelial-mesenchymal transition (EMT), and metastasis. More than 30 lncRNAs turned out to be predictors of survival and/or response to therapy in patients with OvCa. For a number of oncogenic (CCAT1, HOTAIR, NEAT1, and TUG1 among others) and some suppressive lncRNAs, several lncRNA/miRNA/mRNA axes were identified, which revealed various functions for each of them. Our review also considers examples of alternative mechanisms of actions for lncRNAs besides being ceRNAs, including binding directly to mRNA or protein, and some of them (DANCR, GAS5, MALAT1, and UCA1 among others) act by both mechanisms depending on the target protein. A systematic analysis based on the data from literature and Panther or KEGG (Kyoto Encyclopedia of Genes and Genomes) databases showed that a significant part of lncRNAs affects the key pathways involved in OvCa metastasis, EMT, and chemoresistance.
Collapse
|
16
|
Unveiling the ups and downs of miR-205 in physiology and cancer: transcriptional and post-transcriptional mechanisms. Cell Death Dis 2020; 11:980. [PMID: 33191398 PMCID: PMC7667162 DOI: 10.1038/s41419-020-03192-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
miR-205 plays important roles in the physiology of epithelia by regulating a variety of pathways that govern differentiation and morphogenesis. Its aberrant expression is frequently found in human cancers, where it was reported to act either as tumor-suppressor or oncogene depending on the specific tumor context and target genes. miR-205 expression and function in different cell types or processes are the result of the complex balance among transcription, processing and stability of the microRNA. In this review, we summarize the principal mechanisms that regulate miR-205 expression at the transcriptional and post-transcriptional level, with particular focus on the transcriptional relationship with its host gene. Elucidating the mechanisms and factors regulating miR-205 expression in different biological contexts represents a fundamental step for a better understanding of the contribution of such pivotal microRNA to epithelial cell function in physiology and disease, and for the development of modulation strategies for future application in cancer therapy.
Collapse
|
17
|
Li Z, Xu D, Chen X, Li S, Chan MTV, Wu WKK. LINC01133: an emerging tumor-associated long non-coding RNA in tumor and osteosarcoma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:32467-32473. [PMID: 32556990 DOI: 10.1007/s11356-020-09631-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Emerging evidence suggested that long non-coding RNAs (lncRNAs) play pivotal roles in tumorigenesis. LINC01133 is a newly identified lncRNA first discovered as an oncogene in lung squamous cell carcinoma. Subsequent studies further demonstrated this lncRNA was deregulated in a wide spectrum of tumors, including colorectal, gastric, lung, and pancreatic ductal adenocarcinoma as well as osteosarcoma and hepatocellular carcinoma. Intriguingly, this lncRNA exerted oncogenic or tumor-suppressive action in a tissue-dependent manner. This review sought to summarize our current understanding concerning the deregulation of LINC01133 in human tumors in relation to its molecular mechanisms and cellular functions. The clinical utilization of LINC01133 as a potential prognostic biomarker and a treatment target is also discussed.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Derong Xu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xin Chen
- Department of Orthopaedic, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugang Li
- Department of Orthopaedic, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - William K K Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The University of Hong Kong, Pok Fu Lam, Hong Kong
- State Laboratory of Digestive Diseases, Centre for Gut Microbiota Research, Institute of Digestive Diseases and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
18
|
Ryu HS, Park KW, Choi N, Kim J, Park YM, Jo S, Kim MJ, Kim YJ, Kim J, Kim K, Koh SB, Chung SJ. Genomic Analysis Identifies New Loci Associated With Motor Complications in Parkinson's Disease. Front Neurol 2020; 11:570. [PMID: 32733355 PMCID: PMC7358548 DOI: 10.3389/fneur.2020.00570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Parkinson's disease (PD) is a common neurodegenerative disorder, characterized by a clinical symptomatology involving both motor and non-motor symptoms. Motor complications associated with long-term dopaminergic treatment include motor fluctuations and levodopa-induced dyskinesia (LID), which may have a major impact on the quality of life. The clinical features and onset time of motor complications in the disease course are heterogeneous, and the etiology remains unknown. Objective: We aimed to identify genomic variants associated with the development of motor fluctuations and LID at 5 years after the onset of PD. Methods: Genomic data were obtained using Affymetrix Axiom KORV1.1 array, including an imputation genome-wide association study (GWAS) grid and other GWAS loci; functional variants of the non-synonymous exome; pharmacogenetic variants; variants in genes involved in absorption, distribution, metabolism, and excretion of drugs; and expression quantitative trait loci in 741 patients with PD. Results: FAM129B single-nucleotide polymorphism (SNP) rs10760490 was nominally associated with the occurrence of motor fluctuations at 5 years after the onset of PD [odds ratio (OR) = 2.9, 95% confidence interval (CI) = 1.8-4.8, P = 6.5 × 10-6]. GALNT14 SNP rs144125291 was significantly associated with the occurrence of LID (OR = 5.5, 95% CI = 2.9-10.3, P = 7.88 × 10-9) and was still significant after Bonferroni correction. Several other genetic variants were associated with the occurrence of motor fluctuations or LID, but the associations were not significant after Bonferroni correction. Conclusion: This study identified new loci associated with the occurrence of motor fluctuations and LID at 5 years after the onset of PD. However, further studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Ho-Sung Ryu
- Department of Neurology, Kyungpook National University Hospital, Daegu, South Korea
| | - Kye Won Park
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Nari Choi
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jinhee Kim
- Department of Neurology & Parkinson's Disease Center, Guro Hospital, Korea University, Seoul, South Korea
| | - Young-Min Park
- Department of Neurology, Dobong Hospital, Seoul, South Korea
| | - Sungyang Jo
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Mi-Jung Kim
- Department of Neurology, Bobath Memorial Hospital, Seongnam-si, South Korea
| | - Young Jin Kim
- Department of Neurology, Best Heals Hospital, Ansan-si, South Korea
| | - Juyeon Kim
- Department of Neurology, Metro Hospital, Anyang, South Korea
| | - Kiju Kim
- Department of Neurology, The Good Light Hospital, Gwangju, South Korea
| | - Seong-Beom Koh
- Department of Neurology & Parkinson's Disease Center, Guro Hospital, Korea University, Seoul, South Korea
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|