1
|
Yang L, Liu Q, Kumar P, Sengupta A, Farnoud A, Shen R, Trofimova D, Ziegler S, Davoudi N, Doryab A, Yildirim AÖ, Diefenbacher ME, Schiller HB, Razansky D, Piraud M, Burgstaller G, Kreyling WG, Isensee F, Rehberg M, Stoeger T, Schmid O. LungVis 1.0: an automatic AI-powered 3D imaging ecosystem unveils spatial profiling of nanoparticle delivery and acinar migration of lung macrophages. Nat Commun 2024; 15:10138. [PMID: 39604430 PMCID: PMC11603200 DOI: 10.1038/s41467-024-54267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Targeted (nano-)drug delivery is essential for treating respiratory diseases, which are often confined to distinct lung regions. However, spatio-temporal profiling of drugs or nanoparticles (NPs) and their interactions with lung macrophages remains unresolved. Here, we present LungVis 1.0, an AI-powered imaging ecosystem that integrates light sheet fluorescence microscopy with deep learning-based image analysis pipelines to map NP deposition and dosage holistically and quantitatively across bronchial and alveolar (acinar) regions in murine lungs for widely-used bulk-liquid and aerosol-based delivery methods. We demonstrate that bulk-liquid delivery results in patchy NP distribution with elevated bronchial doses, whereas aerosols achieve uniform deposition reaching distal alveoli. Furthermore, we reveal that lung tissue-resident macrophages (TRMs) are dynamic, actively patrolling and redistributing NPs within alveoli, contesting the conventional paradigm of TRMs as static entities. LungVis 1.0 provides an advanced framework for exploring pulmonary delivery dynamics and deepening insights into TRM-mediated lung immunity.
Collapse
Affiliation(s)
- Lin Yang
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany.
| | - Qiongliang Liu
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pramod Kumar
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Arunima Sengupta
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ali Farnoud
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ruolin Shen
- Helmholtz AI, Helmholtz Munich, Munich, Germany
| | - Darya Trofimova
- Helmholtz Imaging, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Ziegler
- Helmholtz Imaging, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Neda Davoudi
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Ali Doryab
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ali Önder Yildirim
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Markus E Diefenbacher
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Ludwig Maximilian University Munich, Munich, Germany
- DKTK Munich, Munich, Germany
| | - Herbert B Schiller
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Research Unit for Precision Regenerative Medicine (PRM), Helmholtz Munich, Munich, Germany
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | | | - Gerald Burgstaller
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Wolfgang G Kreyling
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Epidemiology (EPI), Helmholtz Munich, Munich, Germany
| | - Fabian Isensee
- Helmholtz Imaging, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Tobias Stoeger
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
2
|
Choukali MA, Amirani MC, Valizadeh M, Abbasi A, Komeili M. Pseudo-class part prototype networks for interpretable breast cancer classification. Sci Rep 2024; 14:10341. [PMID: 38710757 PMCID: PMC11074258 DOI: 10.1038/s41598-024-60743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/26/2024] [Indexed: 05/08/2024] Open
Abstract
Interpretability in machine learning has become increasingly important as machine learning is being used in more and more applications, including those with high-stakes consequences such as healthcare where Interpretability has been regarded as a key to the successful adoption of machine learning models. However, using confounding/irrelevant information in making predictions by deep learning models, even the interpretable ones, poses critical challenges to their clinical acceptance. That has recently drawn researchers' attention to issues beyond the mere interpretation of deep learning models. In this paper, we first investigate application of an inherently interpretable prototype-based architecture, known as ProtoPNet, for breast cancer classification in digital pathology and highlight its shortcomings in this application. Then, we propose a new method that uses more medically relevant information and makes more accurate and interpretable predictions. Our method leverages the clustering concept and implicitly increases the number of classes in the training dataset. The proposed method learns more relevant prototypes without any pixel-level annotated data. To have a more holistic assessment, in addition to classification accuracy, we define a new metric for assessing the degree of interpretability based on the comments of a group of skilled pathologists. Experimental results on the BreakHis dataset show that the proposed method effectively improves the classification accuracy and interpretability by respectively 8 % and 18 % . Therefore, the proposed method can be seen as a step toward implementing interpretable deep learning models for the detection of breast cancer using histopathology images.
Collapse
Affiliation(s)
| | - Mehdi Chehel Amirani
- Department of Electrical and Computer Engineering, Urmia University, Urmia, Iran
| | - Morteza Valizadeh
- Department of Electrical and Computer Engineering, Urmia University, Urmia, Iran.
| | - Ata Abbasi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pathology, Faculty of Medicine, Urmia University of medical sciences, Urmia, Iran
| | - Majid Komeili
- School of Computer Science, Carleton University, Ottawa, Canada
| |
Collapse
|
3
|
McGenity C, Clarke EL, Jennings C, Matthews G, Cartlidge C, Freduah-Agyemang H, Stocken DD, Treanor D. Artificial intelligence in digital pathology: a systematic review and meta-analysis of diagnostic test accuracy. NPJ Digit Med 2024; 7:114. [PMID: 38704465 PMCID: PMC11069583 DOI: 10.1038/s41746-024-01106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 04/12/2024] [Indexed: 05/06/2024] Open
Abstract
Ensuring diagnostic performance of artificial intelligence (AI) before introduction into clinical practice is essential. Growing numbers of studies using AI for digital pathology have been reported over recent years. The aim of this work is to examine the diagnostic accuracy of AI in digital pathology images for any disease. This systematic review and meta-analysis included diagnostic accuracy studies using any type of AI applied to whole slide images (WSIs) for any disease. The reference standard was diagnosis by histopathological assessment and/or immunohistochemistry. Searches were conducted in PubMed, EMBASE and CENTRAL in June 2022. Risk of bias and concerns of applicability were assessed using the QUADAS-2 tool. Data extraction was conducted by two investigators and meta-analysis was performed using a bivariate random effects model, with additional subgroup analyses also performed. Of 2976 identified studies, 100 were included in the review and 48 in the meta-analysis. Studies were from a range of countries, including over 152,000 whole slide images (WSIs), representing many diseases. These studies reported a mean sensitivity of 96.3% (CI 94.1-97.7) and mean specificity of 93.3% (CI 90.5-95.4). There was heterogeneity in study design and 99% of studies identified for inclusion had at least one area at high or unclear risk of bias or applicability concerns. Details on selection of cases, division of model development and validation data and raw performance data were frequently ambiguous or missing. AI is reported as having high diagnostic accuracy in the reported areas but requires more rigorous evaluation of its performance.
Collapse
Affiliation(s)
- Clare McGenity
- University of Leeds, Leeds, UK.
- Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| | - Emily L Clarke
- University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Charlotte Jennings
- University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | | | | | | | - Darren Treanor
- University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Department of Clinical Pathology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| |
Collapse
|
4
|
Çalışkan M, Tazaki K. AI/ML advances in non-small cell lung cancer biomarker discovery. Front Oncol 2023; 13:1260374. [PMID: 38148837 PMCID: PMC10750392 DOI: 10.3389/fonc.2023.1260374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths among both men and women, representing approximately 25% of cancer fatalities each year. The treatment landscape for non-small cell lung cancer (NSCLC) is rapidly evolving due to the progress made in biomarker-driven targeted therapies. While advancements in targeted treatments have improved survival rates for NSCLC patients with actionable biomarkers, long-term survival remains low, with an overall 5-year relative survival rate below 20%. Artificial intelligence/machine learning (AI/ML) algorithms have shown promise in biomarker discovery, yet NSCLC-specific studies capturing the clinical challenges targeted and emerging patterns identified using AI/ML approaches are lacking. Here, we employed a text-mining approach and identified 215 studies that reported potential biomarkers of NSCLC using AI/ML algorithms. We catalogued these studies with respect to BEST (Biomarkers, EndpointS, and other Tools) biomarker sub-types and summarized emerging patterns and trends in AI/ML-driven NSCLC biomarker discovery. We anticipate that our comprehensive review will contribute to the current understanding of AI/ML advances in NSCLC biomarker research and provide an important catalogue that may facilitate clinical adoption of AI/ML-derived biomarkers.
Collapse
Affiliation(s)
- Minal Çalışkan
- Translational Science Department, Precision Medicine Function, Daiichi Sankyo, Inc., Basking Ridge, NJ, United States
| | - Koichi Tazaki
- Translational Science Department I, Precision Medicine Function, Daiichi Sankyo, Tokyo, Japan
| |
Collapse
|
5
|
Cooper M, Ji Z, Krishnan RG. Machine learning in computational histopathology: Challenges and opportunities. Genes Chromosomes Cancer 2023; 62:540-556. [PMID: 37314068 DOI: 10.1002/gcc.23177] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/15/2023] Open
Abstract
Digital histopathological images, high-resolution images of stained tissue samples, are a vital tool for clinicians to diagnose and stage cancers. The visual analysis of patient state based on these images are an important part of oncology workflow. Although pathology workflows have historically been conducted in laboratories under a microscope, the increasing digitization of histopathological images has led to their analysis on computers in the clinic. The last decade has seen the emergence of machine learning, and deep learning in particular, a powerful set of tools for the analysis of histopathological images. Machine learning models trained on large datasets of digitized histopathology slides have resulted in automated models for prediction and stratification of patient risk. In this review, we provide context for the rise of such models in computational histopathology, highlight the clinical tasks they have found success in automating, discuss the various machine learning techniques that have been applied to this domain, and underscore open problems and opportunities.
Collapse
Affiliation(s)
- Michael Cooper
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- University Health Network, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
| | - Zongliang Ji
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
| | - Rahul G Krishnan
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Dehkharghanian T, Mu Y, Ross C, Sur M, Tizhoosh H, Campbell CJ. Cell projection plots: A novel visualization of bone marrow aspirate cytology. J Pathol Inform 2023; 14:100334. [PMID: 37732298 PMCID: PMC10507226 DOI: 10.1016/j.jpi.2023.100334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/25/2023] [Accepted: 08/26/2023] [Indexed: 09/22/2023] Open
Abstract
Deep models for cell detection have demonstrated utility in bone marrow cytology, showing impressive results in terms of accuracy and computational efficiency. However, these models have yet to be implemented in the clinical diagnostic workflow. Additionally, the metrics used to evaluate cell detection models are not necessarily aligned with clinical goals and targets. In order to address these issues, we introduce novel, automatically generated visual summaries of bone marrow aspirate specimens called cell projection plots (CPPs). Encompassing relevant biological patterns such as neutrophil maturation, CPPs provide a compact summary of bone marrow aspirate cytology. To gauge clinical relevance, CPPs were inspected by 3 hematopathologists, who decided whether corresponding diagnostic synopses matched with generated CPPs. Pathologists were able to match CPPs to the correct synopsis with a matching degree of 85%. Our finding suggests CPPs can represent clinically relevant information from bone marrow aspirate specimens and may be used to efficiently summarize bone marrow cytology to pathologists. CPPs could be a step toward human-centered implementation of artificial intelligence (AI) in hematopathology, and a basis for a diagnostic-support tool for digital pathology workflows.
Collapse
Affiliation(s)
| | | | - Catherine Ross
- McMaster University, Hamilton, Canada
- Juravinski Hospital and Cancer Centre, Hamilton, Canada
| | - Monalisa Sur
- McMaster University, Hamilton, Canada
- Juravinski Hospital and Cancer Centre, Hamilton, Canada
| | - H.R. Tizhoosh
- Rhazes Lab, Artificial Intelligence & Informatics, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
7
|
Davri A, Birbas E, Kanavos T, Ntritsos G, Giannakeas N, Tzallas AT, Batistatou A. Deep Learning for Lung Cancer Diagnosis, Prognosis and Prediction Using Histological and Cytological Images: A Systematic Review. Cancers (Basel) 2023; 15:3981. [PMID: 37568797 PMCID: PMC10417369 DOI: 10.3390/cancers15153981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer is one of the deadliest cancers worldwide, with a high incidence rate, especially in tobacco smokers. Lung cancer accurate diagnosis is based on distinct histological patterns combined with molecular data for personalized treatment. Precise lung cancer classification from a single H&E slide can be challenging for a pathologist, requiring most of the time additional histochemical and special immunohistochemical stains for the final pathology report. According to WHO, small biopsy and cytology specimens are the available materials for about 70% of lung cancer patients with advanced-stage unresectable disease. Thus, the limited available diagnostic material necessitates its optimal management and processing for the completion of diagnosis and predictive testing according to the published guidelines. During the new era of Digital Pathology, Deep Learning offers the potential for lung cancer interpretation to assist pathologists' routine practice. Herein, we systematically review the current Artificial Intelligence-based approaches using histological and cytological images of lung cancer. Most of the published literature centered on the distinction between lung adenocarcinoma, lung squamous cell carcinoma, and small cell lung carcinoma, reflecting the realistic pathologist's routine. Furthermore, several studies developed algorithms for lung adenocarcinoma predominant architectural pattern determination, prognosis prediction, mutational status characterization, and PD-L1 expression status estimation.
Collapse
Affiliation(s)
- Athena Davri
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece;
| | - Effrosyni Birbas
- Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.B.); (T.K.)
| | - Theofilos Kanavos
- Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.B.); (T.K.)
| | - Georgios Ntritsos
- Department of Hygiene and Epidemiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
- Department of Informatics and Telecommunications, University of Ioannina, 47100 Arta, Greece;
| | - Nikolaos Giannakeas
- Department of Informatics and Telecommunications, University of Ioannina, 47100 Arta, Greece;
| | - Alexandros T. Tzallas
- Department of Informatics and Telecommunications, University of Ioannina, 47100 Arta, Greece;
| | - Anna Batistatou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece;
| |
Collapse
|
8
|
Dehkharghanian T, Bidgoli AA, Riasatian A, Mazaheri P, Campbell CJV, Pantanowitz L, Tizhoosh HR, Rahnamayan S. Biased data, biased AI: deep networks predict the acquisition site of TCGA images. Diagn Pathol 2023; 18:67. [PMID: 37198691 DOI: 10.1186/s13000-023-01355-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/07/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Deep learning models applied to healthcare applications including digital pathology have been increasing their scope and importance in recent years. Many of these models have been trained on The Cancer Genome Atlas (TCGA) atlas of digital images, or use it as a validation source. One crucial factor that seems to have been widely ignored is the internal bias that originates from the institutions that contributed WSIs to the TCGA dataset, and its effects on models trained on this dataset. METHODS 8,579 paraffin-embedded, hematoxylin and eosin stained, digital slides were selected from the TCGA dataset. More than 140 medical institutions (acquisition sites) contributed to this dataset. Two deep neural networks (DenseNet121 and KimiaNet were used to extract deep features at 20× magnification. DenseNet was pre-trained on non-medical objects. KimiaNet has the same structure but trained for cancer type classification on TCGA images. The extracted deep features were later used to detect each slide's acquisition site, and also for slide representation in image search. RESULTS DenseNet's deep features could distinguish acquisition sites with 70% accuracy whereas KimiaNet's deep features could reveal acquisition sites with more than 86% accuracy. These findings suggest that there are acquisition site specific patterns that could be picked up by deep neural networks. It has also been shown that these medically irrelevant patterns can interfere with other applications of deep learning in digital pathology, namely image search. This study shows that there are acquisition site specific patterns that can be used to identify tissue acquisition sites without any explicit training. Furthermore, it was observed that a model trained for cancer subtype classification has exploited such medically irrelevant patterns to classify cancer types. Digital scanner configuration and noise, tissue stain variation and artifacts, and source site patient demographics are among factors that likely account for the observed bias. Therefore, researchers should be cautious of such bias when using histopathology datasets for developing and training deep networks.
Collapse
Affiliation(s)
- Taher Dehkharghanian
- University Health Network, Toronto, ON, Canada
- Department of Pathology and Molecular Medicine, Faculty of Health Science, McMaster University, Hamilton, ON, Canada
| | - Azam Asilian Bidgoli
- Nature Inspired Computational Intelligence (NICI), Ontario Tech University, Oshawa, ON, Canada
- Nature Inspired Computational Intelligence (NICI) Lab, Department of Engineering, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
- Bharti School of Engineering and Computer Science, Laurentian University, Sudbury, ON, Canada
| | | | - Pooria Mazaheri
- Nature Inspired Computational Intelligence (NICI), Ontario Tech University, Oshawa, ON, Canada
| | - Clinton J V Campbell
- Department of Pathology and Molecular Medicine, Faculty of Health Science, McMaster University, Hamilton, ON, Canada
- William Osler Health System, Brampton, ON, Canada
| | | | - H R Tizhoosh
- KIMIA Lab, University of Waterloo, Waterloo, ON, Canada
- Rhazes Lab, Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Shahryar Rahnamayan
- Nature Inspired Computational Intelligence (NICI), Ontario Tech University, Oshawa, ON, Canada.
- Nature Inspired Computational Intelligence (NICI) Lab, Department of Engineering, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
9
|
A hybrid approach for lung cancer diagnosis using optimized random forest classification and K-means visualization algorithm. HEALTH AND TECHNOLOGY 2022. [DOI: 10.1007/s12553-022-00679-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|