1
|
Arias E, Haynes ME, Nadkarni NA, Lipfert ZK, Muller WA, Batra A, Sullivan DP. EdU tracking of leukocyte recruitment in mouse models of ischemic stroke and sterile lung inflammation. J Cell Sci 2025; 138:jcs263835. [PMID: 40260638 DOI: 10.1242/jcs.263835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
The discovery of copper(I)-catalyzed azide-alkyne cycloaddition (click chemistry) has significantly advanced the detection of proliferating cells by utilizing 5-ethynyl-2'-deoxyuridine (EdU). EdU, a thymidine analogue, is incorporated into DNA during replication and detected by the direct reaction with an azide-conjugated fluorophore. Traditionally, dividing cells are labeled using 5-bromodeoxyuridine (BrdU), another nucleotide analogue. However, BrdU detection is a harsh method that requires substantial sample processing, unlike EdU detection. EdU is classically used to identify proliferating cells; however, we report a streamlined methodology that uses EdU to label and track leukocyte recruitment that is compatible with flow cytometry and microscopy and preserves transgenic fluorophores. EdU labeling was performed in two different models of sterile inflammation: ischemic stroke and hydrochloric acid aspiration. EdU injection was timed to differentially label circulating monocytes, neutrophils and T cells. Tissue analysis showed EdU-positive monocytes and T cells were enriched in both inflammatory models. This suggests that recently divided monocytes and T cells are preferentially recruited to these vascular beds during inflammation and highlights the utility of this labeling approach to track leukocyte subtypes longitudinally during inflammation.
Collapse
Affiliation(s)
- Erika Arias
- Department of Pathology, Northwestern University, Chicago, IL 60643, USA
| | - Maureen E Haynes
- Department of Pathology, Northwestern University, Chicago, IL 60643, USA
| | - Neil A Nadkarni
- Department of Neurology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Zoie K Lipfert
- Department of Neurology, Northwestern University, Chicago, IL 60643, USA
| | - William A Muller
- Department of Pathology, Northwestern University, Chicago, IL 60643, USA
| | - Ayush Batra
- Department of Pathology, Northwestern University, Chicago, IL 60643, USA
- Department of Neurology, Northwestern University, Chicago, IL 60643, USA
| | - David P Sullivan
- Department of Pathology, Northwestern University, Chicago, IL 60643, USA
| |
Collapse
|
2
|
Zhou L, Lian H, Yin Y, Zheng YS, Han YX, Liu GQ, Wang ZY. New insights into muscularis macrophages in the gut: from their origin to therapeutic targeting. Immunol Res 2023; 71:785-799. [PMID: 37219708 DOI: 10.1007/s12026-023-09397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Muscularis macrophages, as the most abundant immune cells in the intestinal muscularis externa, exhibit tissue protective phenotype in the steady state. Owing to tremendous advances in technology, we now know the fact that muscularis macrophages are a heterogeneous population of cells which could be divided into different functional subsets depending on their anatomic niches. There is emerging evidence showing that these subsets, through molecular interactions with their neighbours, take part in a wide range of physiological and pathophysiological processes in the gut. In this review, we summarize recent progress (particularly over the past 4 years) on distribution, morphology, origin and functions of muscularis macrophages and, where possible, the characteristics of specific subsets in response to the microenvironment they occupy, with particular emphasis on their role in muscular inflammation. Furthermore, we also integrate their role in inflammation-related gastrointestinal disorders, such as post-operative ileus and diabetic gastroparesis, in order to propose future therapeutic strategies.
Collapse
Affiliation(s)
- Li Zhou
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Hui Lian
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yue Yin
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yuan-Sheng Zheng
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yu-Xin Han
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Gao-Qi Liu
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhi-Yong Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
- Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
3
|
Boles JS, Krueger ME, Jernigan JE, Cole CL, Neighbarger NK, Huarte OU, Tansey MG. A leaky gut dysregulates gene networks in the brain associated with immune activation, oxidative stress, and myelination in a mouse model of colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552488. [PMID: 37609290 PMCID: PMC10441416 DOI: 10.1101/2023.08.10.552488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The gut and brain are increasingly linked in human disease, with neuropsychiatric conditions classically attributed to the brain showing an involvement of the intestine and inflammatory bowel diseases (IBDs) displaying an ever-expanding list of neurological comorbidities. To identify molecular systems that underpin this gut-brain connection and thus discover therapeutic targets, experimental models of gut dysfunction must be evaluated for brain effects. In the present study, we examine disturbances along the gut-brain axis in a widely used murine model of colitis, the dextran sodium sulfate (DSS) model, using high-throughput transcriptomics and an unbiased network analysis strategy coupled with standard biochemical outcome measures to achieve a comprehensive approach to identify key disease processes in both colon and brain. We examine the reproducibility of colitis induction with this model and its resulting genetic programs during different phases of disease, finding that DSS-induced colitis is largely reproducible with a few site-specific molecular features. We focus on the circulating immune system as the intermediary between the gut and brain, which exhibits an activation of pro-inflammatory innate immunity during colitis. Our unbiased transcriptomics analysis provides supporting evidence for immune activation in the brain during colitis, suggests that myelination may be a process vulnerable to increased intestinal permeability, and identifies a possible role for oxidative stress and brain oxygenation. Overall, we provide a comprehensive evaluation of multiple systems in a prevalent experimental model of intestinal permeability, which will inform future studies using this model and others, assist in the identification of druggable targets in the gut-brain axis, and contribute to our understanding of the concomitance of intestinal and neuropsychiatric dysfunction.
Collapse
Affiliation(s)
- Jake Sondag Boles
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Maeve E. Krueger
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Janna E. Jernigan
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Cassandra L. Cole
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Noelle K. Neighbarger
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Oihane Uriarte Huarte
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
4
|
Wei C, Zhu F, Yu J, Gao F, Yuan Y, Zhang Y, Liu X, Chu S, Cui D, Fan H, Wang W. Tongqiao Huoxue Decoction ameliorates traumatic brain injury-induced gastrointestinal dysfunction by regulating CD36/15-LO/NR4A1 signaling, which fails when CD36 and CX3CR1 are deficient. CNS Neurosci Ther 2023; 29 Suppl 1:161-184. [PMID: 37157929 PMCID: PMC10314107 DOI: 10.1111/cns.14247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/15/2022] [Accepted: 04/20/2023] [Indexed: 05/10/2023] Open
Abstract
AIMS Gastrointestinal (GI) dysfunction, as a common peripheral-organ complication after traumatic brain injury (TBI), is primarily characterized by gut inflammation and damage to the intestinal mucosal barrier (IMB). Previous studies have confirmed that TongQiao HuoXue Decoction (TQHXD) has strong anti-inflammatory properties and protects against gut injury. However, few have reported on the therapeutic effects of TQHXD in a TBI-induced GI dysfunction model. We aimed to explore the effects of TQHXD on TBI-induced GI dysfunction and the underlying mechanism thereof. METHODS We assessed the protective effects and possible mechanism of TQHXD in treating TBI-induced GI dysfunction via gene engineering, histological staining, immunofluorescence (IF), 16S ribosomal ribonucleic acid (rRNA) sequencing, real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), Western blot (WB), and flow cytometry (FCM). RESULTS TQHXD administration ameliorated TBI-induced GI dysfunction by modulating the abundance and structure of bacteria; reconstructing the destroyed epithelial and chemical barriers of the IMB; and improving M1/M2 macrophage, T-regulatory cell (Treg)/T helper 1 cell (Th1 ), as well as Th17 /Treg ratios to preserve homeostasis of the intestinal immune barrier. Notably, Cluster of Differentiation 36 (CD36)/15-lipoxygenase (15-LO)/nuclear receptor subfamily 4 group A member 1 (NR4A1) signaling was markedly stimulated in colonic tissue of TQHXD-treated mice. However, insufficiency of both CD36 and (C-X3-C motif) chemokine receptor 1 (CX3CR1) worsened GI dysfunction induced by TBI, which could not be rescued by TQHXD. CONCLUSION TQHXD exerted therapeutic effects on TBI-induced GI dysfunction by regulating the intestinal biological, chemical, epithelial, and immune barriers of the IMB, and this effect resulted from the stimulation of CD36/NR4A1/15-LO signaling; however, it could not do so when CX3CR1 and CD36 were deficient. TQHXD might therefore be a potential drug candidate for treating TBI-induced GI dysfunction.
Collapse
Affiliation(s)
- Chunzhu Wei
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Feng Zhu
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jintao Yu
- Department of Otolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Fei Gao
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuyi Yuan
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yanlong Zhang
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xinjie Liu
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Si Chu
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dandan Cui
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Heng Fan
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wenzhu Wang
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
5
|
Masanetz RK, Winkler J, Winner B, Günther C, Süß P. The Gut-Immune-Brain Axis: An Important Route for Neuropsychiatric Morbidity in Inflammatory Bowel Disease. Int J Mol Sci 2022; 23:11111. [PMID: 36232412 PMCID: PMC9570400 DOI: 10.3390/ijms231911111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) comprises Crohn's disease (CD) and ulcerative colitis (UC) and is associated with neuropsychiatric symptoms like anxiety and depression. Both conditions strongly worsen IBD disease burden. In the present review, we summarize the current understanding of the pathogenesis of depression and anxiety in IBD. We present a stepwise cascade along a gut-immune-brain axis initiated by evasion of chronic intestinal inflammation to pass the epithelial and vascular barrier in the gut and cause systemic inflammation. We then summarize different anatomical transmission routes of gut-derived peripheral inflammation into the central nervous system (CNS) and highlight the current knowledge on neuroinflammatory changes in the CNS of preclinical IBD mouse models with a focus on microglia, the brain-resident macrophages. Subsequently, we discuss how neuroinflammation in IBD can alter neuronal circuitry to trigger symptoms like depression and anxiety. Finally, the role of intestinal microbiota in the gut-immune-brain axis in IBD will be reviewed. A more comprehensive understanding of the interaction between the gastrointestinal tract, the immune system and the CNS accounting for the similarities and differences between UC and CD will pave the path for improved prediction and treatment of neuropsychiatric comorbidities in IBD and other inflammatory diseases.
Collapse
Affiliation(s)
- Rebecca Katharina Masanetz
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Center of Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Claudia Günther
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Department of Internal Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Patrick Süß
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|