1
|
Obeidat WM, Lahlouh IK. Chitosan Nanoparticles: Approaches to Preparation, Key Properties, Drug Delivery Systems, and Developments in Therapeutic Efficacy. AAPS PharmSciTech 2025; 26:108. [PMID: 40244367 DOI: 10.1208/s12249-025-03100-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
The integration of nanotechnology into drug delivery systems holds great promise for enhancing pharmaceutical effectiveness. This approach enables precise targeting, controlled release, improved patient compliance, reduced side effects, and increased bioavailability. Nanoparticles are vital for transporting biomolecules-such as proteins, enzymes, genes, and vaccines-through various administration routes, including oral, intranasal, vaginal, buccal, and pulmonary. Among biodegradable polymers, chitosan, a linear polysaccharide derived from chitin, stands out due to its biocompatibility, safety, biodegradability, mucoadhesive properties, and ability to enhance permeation. Its cationic nature supports strong molecular interactions and provides antimicrobial, anti-inflammatory, and hemostatic benefits. However, its solubility, influenced by pH and ionic sensitivity, poses challenges requiring effective solutions. This review explores chitosan, its modified derivatives and chitosan nanoparticles mainly, focusing on nanoparticles physicochemical properties, drug release mechanisms, preparation methods, and factors affecting their mean hydrodynamic diameter (particle size). It highlights their application in drug delivery systems and disease treatments across various routes. Key considerations include drug loading capacity, zeta potential, and stability, alongside the impact of molecular weight, degree of deacetylation, and drug solubility on nanoparticle properties. Recent advancements and studies underscore chitosan's potential, emphasizing its modified derivatives'versatility in improving therapeutic outcomes.
Collapse
Affiliation(s)
- Wasfy M Obeidat
- Jordan University of Science and Technology, 3030, Irbid, 22110, Jordan.
| | - Ishraq K Lahlouh
- Jordan University of Science and Technology, 3030, Irbid, 22110, Jordan
| |
Collapse
|
2
|
Priya, Gaur PK, Kumar S. Nanocarrier-Mediated Dermal Drug Delivery System of Antimicrobial Agents for Targeting Skin and Soft Tissue Infections. Assay Drug Dev Technol 2025; 23:2-28. [PMID: 39587945 DOI: 10.1089/adt.2024.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Abstract
Antimicrobial resistance in disease-causing microbes is seen as a severe problem that affects the entire world, makes therapy less effective, and raises mortality rates. Dermal antimicrobial therapy becomes a desirable choice in the management of infectious disorders since the rising resistance to systemic antimicrobial treatment frequently necessitates the use of more toxic drugs. Nanoparticulate systems such as nanobactericides, which have built-in antibacterial activity, and nanocarriers, which function as drug delivery systems for conventional antimicrobials, are just two examples of the treatment methods made feasible by nanotechnology. Silver nanoparticles, zinc oxide nanoparticles, and titanium dioxide nanoparticles are examples of inorganic nanoparticles that are efficient on sensitive and multidrug-resistant bacterial strains both as nanobactericides and nanocarriers. To stop the growth of microorganisms that are resistant to standard antimicrobials, various antimicrobials for dermal application are widely used. This review covers the most prevalent microbes responsible for skin and soft tissue infections, techniques to deliver dermal antimicrobials, topical antimicrobial safety concerns, current issues, challenges, and potential future developments. A thorough and methodical search of databases, such as Google Scholar, PubMed, Science Direct, and others, using specified keyword combinations, such as "antimicrobials," "dermal," "nanocarriers," and numerous others, was used to gather relevant literature for this work.
Collapse
Affiliation(s)
- Priya
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, Meerut, Uttar Pradesh, India
| | - Praveen Kumar Gaur
- Department of Pharmaceutics, Metro College of Health Sciences & Research, Greater Noida, Uttar Pradesh, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, Meerut, Uttar Pradesh, India
| |
Collapse
|
3
|
Dmour I. Absorption enhancement strategies in chitosan-based nanosystems and hydrogels intended for ocular delivery: Latest advances for optimization of drug permeation. Carbohydr Polym 2024; 343:122486. [PMID: 39174104 DOI: 10.1016/j.carbpol.2024.122486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Ophthalmic diseases can be presented as acute diseases like allergies, ocular infections, etc., or chronic ones that can be manifested as a result of systemic disorders, like diabetes mellitus, thyroid, rheumatic disorders, and others. Chitosan (CS) and its derivatives have been widely investigated as nanocarriers in the delivery of drugs, genes, and many biological products. The biocompatibility and biodegradability of CS made it a good candidate for ocular delivery of many ingredients, including immunomodulating agents, antibiotics, ocular hypertension medications, etc. CS-based nanosystems have been successfully reported to modulate ocular diseases by penetrating biological ocular barriers and targeting and controlling drug release. This review provides guidance to drug delivery formulators on the most recently published strategies that can enhance drug permeation to the ocular tissues in CS-based nanosystems, thus improving therapeutic effects through enhancing drug bioavailability. This review will highlight the main ocular barriers to drug delivery observed in the nano-delivery system. In addition, the CS physicochemical properties that contribute to formulation aspects are discussed. It also categorized the permeation enhancement strategies that can be optimized in CS-based nanosystems into four aspects: CS-related physicochemical properties, formulation components, fabrication conditions, and adopting a novel delivery system like implants, inserts, etc. as described in the published literature within the last ten years. Finally, challenges encountered in CS-based nanosystems and future perspectives are mentioned.
Collapse
Affiliation(s)
- Isra Dmour
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan.
| |
Collapse
|
4
|
Kailasam V, Kumara BN, Prasad KS, Nirmal J. Combination of self-assembling system and N,O-carboxymethyl chitosan improves ocular residence of anti-glaucoma drug. Eur J Pharm Biopharm 2024; 197:114208. [PMID: 38336235 DOI: 10.1016/j.ejpb.2024.114208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Glaucoma is known to be one of the principal causes of vision loss due to elevated intraocular pressure. Currently, latanoprost eye drops is used as first-line treatment for glaucoma; however, it possesses low bioavailability due to rapid precorneal clearance. A novel delivery system with a mucoadhesive property could overcome this problem. Therefore, we attempt to develop a combination of self-assembling latanoprost nanomicelles (Latcel) and a mucoadhesive polymer (N,O-carboxymethyl chitosan: N,O-CMC) to improve the corneal residence time. Latcel was developed using Poloxamer-407 by thin film hydration method, followed by the addition of N,O-CMC using simple solvation to obtain Latcel-CMC and characterized using various physicochemical characterization techniques. The particle size of Latcel-CMC was 94.07 ± 2.48 nm and a zeta potential of -16.03 ± 0.66 mV, with a sustained release for 24h whereas marketed latanoprost drops released 90 % of the drug within 1h. In vitro cytotoxicity studies, HET-CAM, and in vivo Draize test showed the biocompatibility of Latcel-CMC. Cellular uptake studies performed using fluorescein isothiocyanate (FITC) loaded nanomicelles in human corneal epithelial cells indicates the increased cellular uptake as compare to plain FITC solution. In vivo ocular residence time was evaluated in Wistar rats using Indocyanine green (ICG) loaded nanomicelles by an in vivo imaging system (IVIS), indicating Latcel-CMC (8h) has better residence time than plain ICG solution (2h). The Latcel-CMC showed improved corneal residence time and sustained release of latanoprost due to increased mucoadhesion. Thus, the developed N,O-Carboxymethyl chitosan based nanomicelles eye drop could be a better strategy than conventional eye drops for topical delivery of latanoprost to treat glaucoma.
Collapse
Affiliation(s)
- Velmurugan Kailasam
- Translational Pharmaceutics Research Laboratory (TPRL), Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Bommanahalli Nagaraju Kumara
- Nanomaterial Research Laboratory [NMRL], Nano Division, Yenepoya Research Centre, Yenepoya [Deemed to be University], Deralakatte, Mangalore 575 018, India
| | - K Sudhakara Prasad
- Nanomaterial Research Laboratory [NMRL], Nano Division, Yenepoya Research Centre, Yenepoya [Deemed to be University], Deralakatte, Mangalore 575 018, India; Centre for Nutrition Studies, Yenepoya [Deemed to be University], Deralakatte, Mangalore 575 018, India.
| | - Jayabalan Nirmal
- Translational Pharmaceutics Research Laboratory (TPRL), Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India.
| |
Collapse
|
5
|
Elhabal SF, Abdelaal N, Saeed Al-Zuhairy SAK, Elrefai MFM, Elsaid Hamdan AM, Khalifa MM, Hababeh S, Khasawneh MA, Khamis GM, Nelson J, Mohie PM, Gad RA, Rizk A, Kabil SL, El-Ashery MK, Jasti BR, Elzohairy NA, Elnawawy T, Hassan FE, El- Nabarawi MA. Green Synthesis of Zinc Oxide Nanoparticles from Althaea officinalis Flower Extract Coated with Chitosan for Potential Healing Effects on Diabetic Wounds by Inhibiting TNF-α and IL-6/IL-1β Signaling Pathways. Int J Nanomedicine 2024; 19:3045-3070. [PMID: 38559447 PMCID: PMC10981898 DOI: 10.2147/ijn.s455270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Background Diabetes Mellitus is a multisystem chronic pandemic, wound inflammation, and healing are still major issues for diabetic patients who may suffer from ulcers, gangrene, and other wounds from uncontrolled chronic hyperglycemia. Marshmallows or Althaea officinalis (A.O.) contain bioactive compounds such as flavonoids and phenolics that support wound healing via antioxidant, anti-inflammatory, and antibacterial properties. Our study aimed to develop a combination of eco-friendly formulations of green synthesis of ZnO-NPs by Althaea officinalis extract and further incorporate them into 2% chitosan (CS) gel. Method and Results First, develop eco-friendly green Zinc Oxide Nanoparticles (ZnO-NPs) and incorporate them into a 2% chitosan (CS) gel. In-vitro study performed by UV-visible spectrum analysis showed a sharp peak at 390 nm, and Energy-dispersive X-ray (EDX) spectrometry showed a peak of zinc and oxygen. Besides, Fourier transforms infrared (FTIR) was used to qualitatively validate biosynthesized ZnO-NPs, and transmission electron microscope (TEM) showed spherical nanoparticles with mean sizes of 76 nm and Zeta potential +30mV. The antibacterial potential of A.O.-ZnO-NPs-Cs was examined by the diffusion agar method against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Based on the zone of inhibition and minimal inhibitory indices (MIC). In addition, an in-silico study investigated the binding affinity of A.O. major components to the expected biological targets that may aid wound healing. Althaea Officinalis, A.O-ZnO-NPs group showed reduced downregulation of IL-6, IL-1β, and TNF-α and increased IL-10 levels compared to the control group signaling pathway expression levels confirming the improved anti-inflammatory effect of the self-assembly method. In-vivo study and histopathological analysis revealed the superiority of the nanoparticles in reducing signs of inflammation and wound incision in rat models. Conclusion These biocompatible green zinc oxide nanoparticles, by using Althaea Officinalis chitosan gel ensure an excellent new therapeutic approach for quickening diabetic wound healing.
Collapse
Affiliation(s)
- Sammar Fathy Elhabal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo, Egypt
| | - Nashwa Abdelaal
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Mohamed Fathi Mohamed Elrefai
- Department of Anatomy, Histology, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | - Sandra Hababeh
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Gehad M Khamis
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Jakline Nelson
- Department of Microbiology and Immunology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Passant M Mohie
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Rania A Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Amira Rizk
- Food Science and Technology Department, Faculty of Agricultural, Tanta University, Tanta, Egypt
| | - Soad L Kabil
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Kandeel El-Ashery
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University, Ras-Sedr, South Sinai, Egypt
| | - Bhaskara R Jasti
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, USA
| | - Nahla A Elzohairy
- Air Force Specialized Hospital, Cairo, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo, Egypt
| | - Tayseer Elnawawy
- Department of Pharmaceutics, Egyptian Drug Authority, Cairo, Egypt
| | - Fatma E Hassan
- Medical Physiology Department, Faculty of Medicine, Cairo University, Giza, Egypt
- General Medicine Practice Program, Department of Physiology, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Mohamed A El- Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Geng F, Fan X, Liu Y, Lu W, Wei G. Recent advances in nanocrystal-based technologies applied for ocular drug delivery. Expert Opin Drug Deliv 2024; 21:211-227. [PMID: 38271023 DOI: 10.1080/17425247.2024.2311119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024]
Abstract
INTRODUCTION The intricate physiological barriers of the eye and the limited volume of eye drops impede efficient delivery of poorly water-soluble drugs. In the last decade, nanocrystals have emerged as versatile drug delivery systems in various administration routes from bench to bedside. The unique superiorities of nanocrystals, mainly embodied in high drug-loading capacity, good mucosal adhesion and penetration, and greatly improved drug solubility, reveal a promising prospect for ocular delivery of poorly water-soluble drugs. AREAS COVERED This article focuses on the ophthalmic nanocrystal technologies and products that are in the literature, clinical trials, and even on the market. The recent research progress in the preparation, ocular application, and absorption of nanocrystals are highlighted, and the pros and cons of nanocrystals in overcoming the physiological barriers of the eye are also summarized. EXPERT OPINION Nanocrystals have demonstrated success as glucocorticoid eye drops in the treatment of anterior segment diseases. However, the thermodynamic stability of nanocrystals remains the major challenge in product development. New technologies for efficiently optimizing stabilizers and sterilization processes are still expected. Strategies to confer more diverse functions via surface modification are also worth exploration to improve the potential of nanocrystals in delivering poorly water-soluble drugs to posterior segment of the eye.
Collapse
Affiliation(s)
- Feiyang Geng
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xingyan Fan
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yu Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
- The Institutes of Integrative Medicine of Fudan University, Shanghai, China
| | - Gang Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
- The Institutes of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Engineering Research Center of ImmunoTherapeutics, Shanghai, China
| |
Collapse
|
7
|
Soe HMSH, Junthip J, Chamni S, Chansriniyom C, Limpikirati P, Thanusuwannasak T, Asasutjarit R, Pruksakorn P, Autthateinchai R, Wet-Osot S, Loftsson T, Jansook P. A promising synthetic citric crosslinked β-cyclodextrin derivative for antifungal drugs: Solubilization, cytotoxicity, and antifungal activity. Int J Pharm 2023; 645:123394. [PMID: 37689255 DOI: 10.1016/j.ijpharm.2023.123394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Effective antifungal therapy for the treatment of fungal keratitis requires a high drug concentration at the corneal surface. However, the use of natural β-cyclodextrin (βCD) in the preparation of aqueous eye drop formulations for treating fungal keratitis is limited by its low aqueous solubility. Here, we synthesized water-soluble anionic βCD derivatives capable of forming water-soluble complexes and evaluated the solubility, cytotoxicity, and antifungal efficacy of drug prepared using the βCD derivative. To achieve this, a citric acid crosslinked βCD (polyCTR-βCD) was successfully synthesized, and the aqueous solubilities of selected antifungal drugs, including voriconazole, miconazole (MCZ), itraconazole, and amphotericin B, in polyCTR-βCD and analogous βCD solutions were evaluated. Among the drugs tested, complexation of MCZ with polyCTR-βCD (MCZ/polyCTR-βCD) increased MCZ aqueous solubility by 95-fold compared with that of MCZ/βCD. The inclusion complex formation of MCZ/βCD and MCZ/polyCTR-βCD was confirmed by spectroscopic techniques. Additionally, the nanoaggregates of saturated MCZ/polyCTR-βCD and MCZ/βCD solutions were observed using dynamic light scattering and transmission electron microscopy. Moreover, MCZ/polyCTR-βCD solution exhibited good mucoadhesion, sustained drug release, and high drug permeation of porcine cornea ex vivo. Hen's Egg test-chorioallantoic membrane assay and cell viability study using Statens Seruminstitut Rabbit Cornea cell line showed that both MCZ/polyCTR-βCD and MCZ/βCD exhibited no sign of irritation and non-toxic to cell line. Additionally, antifungal activity evaluation demonstrated that all isolated fungi, including Candida albicans, Aspergillus flavus, and Fusarium solani, were susceptible to MCZ/polyCTR-βCD. Overall, the results showed that polyCTR-βCD could be a promising nanocarrier for the ocular delivery of MCZ.
Collapse
Affiliation(s)
- Hay Man Saung Hnin Soe
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Jatupol Junthip
- Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
| | - Supakarn Chamni
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaisak Chansriniyom
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok 10330, Thailand; Cyclodextrin Application and Nanotechnology-based Delivery Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Patanachai Limpikirati
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | | | - Rathapon Asasutjarit
- Faculty of Pharmacy, Thammasat University, Klong Luang, Rangsit, Pathum Thani 12120, Thailand
| | - Patamaporn Pruksakorn
- Department of Medical Sciences, Ministry of Public Health, Amphoe Muang, Nonthaburi 11000, Thailand
| | - Rinrapas Autthateinchai
- Department of Medical Sciences, Ministry of Public Health, Amphoe Muang, Nonthaburi 11000, Thailand
| | - Sirawit Wet-Osot
- Department of Medical Sciences, Ministry of Public Health, Amphoe Muang, Nonthaburi 11000, Thailand
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, IS-107 Reykjavik, Iceland
| | - Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Cyclodextrin Application and Nanotechnology-based Delivery Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
8
|
Zembala J, Forma A, Zembala R, Januszewski J, Zembala P, Adamowicz D, Teresiński G, Buszewicz G, Flieger J, Baj J. Technological Advances in a Therapy of Primary Open-Angle Glaucoma: Insights into Current Nanotechnologies. J Clin Med 2023; 12:5798. [PMID: 37762739 PMCID: PMC10531576 DOI: 10.3390/jcm12185798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Glaucoma is a leading cause of irreversible blindness and is characterized by increased intraocular pressure (IOP) and progressive optic nerve damage. The current therapeutic approaches for glaucoma management, such as eye drops and oral medications, face challenges including poor bioavailability, low patient compliance, and limited efficacy. In recent years, nanotechnology has emerged as a promising approach to overcome these limitations and revolutionize glaucoma treatment. In this narrative review, we present an overview of the novel nanotechnologies employed in the treatment of primary open-angle glaucoma. Various nanosystems, including liposomes, niosomes, nanoparticles, and other nanostructured carriers, have been developed to enhance the delivery and bioavailability of antiglaucoma drugs. They offer advantages such as a high drug loading capacity, sustained release, improved corneal permeability, and targeted drug delivery to the ocular tissues. The application of nanotechnologies in glaucoma treatment represents a transformative approach that addresses the limitations of conventional therapies. However, further research is needed to optimize the formulations, evaluate long-term safety, and implement these nanotechnologies into clinical practice. With continued advancements in nanotechnology, the future holds great potential for improving the management and outcomes of glaucoma, ultimately preserving vision and improving the lives of millions affected by this debilitating disease.
Collapse
Affiliation(s)
- Julita Zembala
- University Clinical Center, Medical University of Warsaw, Lindleya 4, 02-005 Warsaw, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.); (G.B.)
| | - Roksana Zembala
- Faculty of Medicine, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland;
| | - Jacek Januszewski
- Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (J.B.)
| | - Patryk Zembala
- Faculty of Medicine, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Dominik Adamowicz
- University Clinical Center, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.); (G.B.)
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.); (G.B.)
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (J.B.)
| |
Collapse
|
9
|
Bigdeli A, Makhmalzadeh BS, Feghhi M, SoleimaniBiatiani E. Cationic liposomes as promising vehicles for timolol/brimonidine combination ocular delivery in glaucoma: formulation development and in vitro/in vivo evaluation. Drug Deliv Transl Res 2023; 13:1035-1047. [PMID: 36477776 DOI: 10.1007/s13346-022-01266-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2022] [Indexed: 12/12/2022]
Abstract
Glaucoma is a chronic eye disease in which the pressure inside the eye increases and leads to damage to the optic nerve, and eventually causes blindness. In this disease, it is often necessary to use a multi-drug treatment system. There is a fixed combination of timolol maleate and brimonidine tartrate among the combination drugs in glaucoma treatment. Liposomes are one of the most important targeted drug delivery systems to eye tissue, which leads to improved drug permeability and durability in ocular tissue. In this study, thin layer hydration was used to make liposomal formulations containing timolol maleate (TM) and brimonidine tartrate (BT). After the necessary evaluations, one of the eight initial formulations was selected as an optimization formulation. Then, characteristics such as drug loading percentage, particle size, pH, zeta potential, and drug release were performed on the optimized formulation. The study of reducing intraocular pressure was performed on the optimized formulation. This study in total was performed on 18 rabbits in three groups. Hydroxypropyl methylcellulose (HPMC) polymer was injected into the anterior chamber to experimental induce glaucoma. The selected formulation was within the acceptable range of ocular products in terms of physical properties. HPMC polymer injection successfully induced glaucoma in the animal model, resulting in a 79% increase in intraocular pressure. The results showed that the liposomal formulation significantly reduced the intraocular pressure compared to the simple formulation of the aqueous solution, and both formulations were able to significantly reduce the intraocular pressure compared to the control group (P < 0.001). The results also showed that liposomal formulation has a therapeutic effect in reducing intraocular pressure. It seems that the selected liposomal formulation made by thin layer hydration can act as a suitable drug carrier to increase the effectiveness of the fixed combination of timolol maleate and brimonidine tartrate and be proposed as a new drug formulation for targeted and controlled drug delivery in the treatment of glaucoma.
Collapse
Affiliation(s)
- Ali Bigdeli
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Ahvaz Jundishapur University of Medical Sciences, Golestan avenue, Ahvaz, Iran
| | - Behzad Sharif Makhmalzadeh
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Ahvaz Jundishapur University of Medical Sciences, Golestan avenue, Ahvaz, Iran.
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mostafa Feghhi
- Department of Ophthalmology, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Emad SoleimaniBiatiani
- Department of Ophthalmology, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Voriconazole Eye Drops: Enhanced Solubility and Stability through Ternary Voriconazole/Sulfobutyl Ether β-Cyclodextrin/Polyvinyl Alcohol Complexes. Int J Mol Sci 2023; 24:ijms24032343. [PMID: 36768671 PMCID: PMC9917179 DOI: 10.3390/ijms24032343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Voriconazole (VCZ) is a broad-spectrum antifungal agent used to treat ocular fungal keratitis. However, VCZ has low aqueous solubility and chemical instability in aqueous solutions. This study aimed to develop VCZ eye drop formulations using cyclodextrin (CD) and water-soluble polymers, forming CD complex aggregates to improve the aqueous solubility and chemical stability of VCZ. The VCZ solubility was greatly enhanced using sulfobutyl ether β-cyclodextrin (SBEβCD). The addition of polyvinyl alcohol (PVA) showed a synergistic effect on VCZ/SBEβCD solubilization and a stabilization effect on the VCZ/SBEβCD complex. The formation of binary VCZ/SBEβCD and ternary VCZ/SBEβCD/PVA complexes was confirmed by spectroscopic techniques and in silico studies. The 0.5% w/v VCZ eye drop formulations were developed consisting of 6% w/v SBEβCD and different types and concentrations of PVA. The VCZ/SBEβCD systems containing high-molecular-weight PVA prepared under freeze-thaw conditions (PVA-H hydrogel) provided high mucoadhesion, sustained release, good ex vivo permeability through the porcine cornea and no sign of irritation. Additionally, PVA-H hydrogel was effective against the filamentous fungi tested. The stability study revealed that our VCZ eye drops provide a shelf-life of more than 2.5 years at room temperature, while a shelf-life of only 3.5 months was observed for the extemporaneous Vfend® eye drops.
Collapse
|
11
|
Romeo A, Bonaccorso A, Carbone C, Lupo G, Daniela Anfuso C, Giurdanella G, Caggia C, Randazzo C, Russo N, Romano GL, Bucolo C, Rizzo M, Tosi G, Thomas Duskey J, Ruozi B, Pignatello R, Musumeci T. Melatonin loaded hybrid nanomedicine: DoE approach, optimization and in vitro study on diabetic retinopathy model. Int J Pharm 2022; 627:122195. [PMID: 36115466 DOI: 10.1016/j.ijpharm.2022.122195] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
Melatonin (MEL) is a pleiotropic neurohormone of increasing interest as a neuroprotective agent in ocular diseases. Improving the mucoadhesiveness is a proposed strategy to increase the bioavailability of topical formulations. Herein, the design and optimization of MEL-loaded lipid-polymer hybrid nanoparticles (mel-LPHNs) using Design of Experiment (DoE) was performed. LPHNs consisted of PLGA-PEG polymer nanoparticles coated with a cationic lipid-shell. The optimized nanomedicine showed suitable size for ophthalmic administration (189.4 nm; PDI 0.260) with a positive surface charge (+39.8 mV), high encapsulation efficiency (79.8 %), suitable pH and osmolarity values, good mucoadhesive properties and a controlled release profile. Differential Scanning Calorimetry and Fourier-Transform Infrared Spectroscopy confirmed the encapsulation of melatonin in the systems and the interaction between lipids and polymer matrix. Biological evaluation in an in vitro model of diabetic retinopathy demonstrated enhanced neuroprotective and antioxidant activities of mel-LPHNs, compared to melatonin aqueous solution at the same concentration (0.1 and 1 μM). A modified Draize test was performed to assess the ocular tolerability of the formulation showing no signs of irritation. To the best our knowledge, this study reported for the first time the development of mel-LPHNs, a novel and safe hybrid platform suitable for the topical management of retinal diseases.
Collapse
Affiliation(s)
- Alessia Romeo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 6 - 95125 Catania, Italy.
| | - Angela Bonaccorso
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 6 - 95125 Catania, Italy; Department of Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy.
| | - Claudia Carbone
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 6 - 95125 Catania, Italy; Department of Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy.
| | - Gabriella Lupo
- Department of Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy.
| | - Carmelina Daniela Anfuso
- Department of Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy.
| | - Giovanni Giurdanella
- Department of Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy.
| | - Cinzia Caggia
- NANO-i, Research Centre for Ocular Nanotechnology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia 100, 95123 Catania, Italy.
| | - Cinzia Randazzo
- NANO-i, Research Centre for Ocular Nanotechnology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia 100, 95123 Catania, Italy.
| | - Nunziatina Russo
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia 100, 95123 Catania, Italy.
| | - Giovanni Luca Romano
- Department of Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy.
| | - Claudio Bucolo
- Department of Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy.
| | - Milena Rizzo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 6 - 95125 Catania, Italy.
| | - Giovanni Tosi
- Department of Life Sciences, Nanotech Lab, Te.Far.T.I., University of Modena & Reggio Emilia, Via Campi 103, Modena 41125, Italy.
| | - Jason Thomas Duskey
- Department of Life Sciences, Nanotech Lab, Te.Far.T.I., University of Modena & Reggio Emilia, Via Campi 103, Modena 41125, Italy.
| | - Barbara Ruozi
- Department of Life Sciences, Nanotech Lab, Te.Far.T.I., University of Modena & Reggio Emilia, Via Campi 103, Modena 41125, Italy.
| | - Rosario Pignatello
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 6 - 95125 Catania, Italy; NANO-i, Research Centre for Ocular Nanotechnology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Teresa Musumeci
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 6 - 95125 Catania, Italy; NANO-i, Research Centre for Ocular Nanotechnology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
12
|
Development of Fenofibrate/Randomly Methylated β-Cyclodextrin-Loaded Eudragit ® RL 100 Nanoparticles for Ocular Delivery. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154755. [PMID: 35897940 PMCID: PMC9370055 DOI: 10.3390/molecules27154755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 01/01/2023]
Abstract
Fenofibrate (FE) has been shown to markedly reduce the progression of diabetic retinopathy and age-related macular degeneration in clinical trials and animal models. Owing to the limited aqueous solubility of FE, it may hamper ocular bioavailability and result in low efficiency to treat such diseases. To enhance the solubility of FE, water-soluble FE/cyclodextrin (CD) complex formation was determined by a phase-solubility technique. Randomly methylated-β-CD (RMβCD) exhibited the best solubility and the highest complexation efficiency (CE) for FE. Additionally, water-soluble polymers (i.e., hydroxypropyl methyl cellulose and polyvinyl alcohol [PVA]) enhanced the solubility of FE/RMβCD complexes. Solid- and solution-state characterizations were performed to elucidate and confirm the formation of inclusion FE/RMβCD complex. FE-loaded Eudragit® nanoparticle (EuNP) dispersions and suspensions were developed. The physicochemical properties (i.e., pH, osmolality, viscosity, particle size, size distribution, and zeta potential) were within acceptable ranges. Moreover, in vitro mucoadhesion, in vitro release, and in vitro permeation studies revealed that the FE-loaded EuNP eye drop suspensions had excellent mucoadhesive properties and sustained FE release. The hemolytic activity, hen’s egg test on chorioallantoic membrane assay, and in vitro cytotoxicity test showed that the FE formulations had low hemolytic activity, were cytocompatible, and were moderately irritable to the eyes. In conclusion, PVA-stabilized FE/RMβCD-loaded EuNP eye drop suspensions were successfully developed, warranting further in vivo testing.
Collapse
|
13
|
Mura P, Maestrelli F, Cirri M, Mennini N. Multiple Roles of Chitosan in Mucosal Drug Delivery: An Updated Review. Mar Drugs 2022; 20:335. [PMID: 35621986 PMCID: PMC9146108 DOI: 10.3390/md20050335] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Chitosan (CS) is a linear polysaccharide obtained by the deacetylation of chitin, which, after cellulose, is the second biopolymer most abundant in nature, being the primary component of the exoskeleton of crustaceans and insects. Since joining the pharmaceutical field, in the early 1990s, CS attracted great interest, which has constantly increased over the years, due to its several beneficial and favorable features, including large availability, biocompatibility, biodegradability, non-toxicity, simplicity of chemical modifications, mucoadhesion and permeation enhancer power, joined to its capability of forming films, hydrogels and micro- and nanoparticles. Moreover, its cationic character, which renders it unique among biodegradable polymers, is responsible for the ability of CS to strongly interact with different types of molecules and for its intrinsic antimicrobial, anti-inflammatory and hemostatic activities. However, its pH-dependent solubility and susceptibility to ions presence may represent serious drawbacks and require suitable strategies to be overcome. Presently, CS and its derivatives are widely investigated for a great variety of pharmaceutical applications, particularly in drug delivery. Among the alternative routes to overcome the problems related to the classic oral drug administration, the mucosal route is becoming the favorite non-invasive delivery pathway. This review aims to provide an updated overview of the applications of CS and its derivatives in novel formulations intended for different methods of mucosal drug delivery.
Collapse
Affiliation(s)
- Paola Mura
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (F.M.); (M.C.); (N.M.)
| | | | | | | |
Collapse
|
14
|
Parrish RH, Ashworth LD, Löbenberg R, Benavides S, Cies JJ, MacArthur RB. Compounded Nonsterile Preparations and FDA-Approved Commercially Available Liquid Products for Children: A North American Update. Pharmaceutics 2022; 14:1032. [PMID: 35631618 PMCID: PMC9144535 DOI: 10.3390/pharmaceutics14051032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this work was to evaluate the suitability of recent US Food and Drug Administration (US-FDA)-approved and marketed oral liquid, powder, or granule products for children in North America, to identify the next group of Active Pharmaceutical Ingredients (APIs) that have high potential for development as commercially available FDA-approved finished liquid dosage forms, and to propose lists of compounded nonsterile preparations (CNSPs) that should be developed as commercially available FDA-approved finished liquid dosage forms, as well as those that pharmacists should continue to compound extemporaneously. Through this identification and categorization process, the pharmaceutical industry, government, and professionals are encouraged to continue to work together to improve the likelihood that patients will receive high-quality standardized extemporaneously compounded CNSPs and US-FDA-approved products.
Collapse
Affiliation(s)
- Richard H. Parrish
- Department of Biomedical Sciences, Mercer University School of Medicine, Columbus, GA 31902, USA
| | - Lisa D. Ashworth
- Department of Pharmacy Services, Children’s Health System of Texas, Dallas, TX 75235, USA;
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Sandra Benavides
- School of Pharmacy, Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, USA;
| | - Jeffrey J. Cies
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA 19129, USA;
- Department of Pharmacy Services, St. Christopher’s Hospital for Children/Tower Health, Philadelphia, PA 19134, USA
| | - Robert B. MacArthur
- Department of Pharmacy Services, Rockefeller University Hospital, New York, NY 10065, USA;
| |
Collapse
|
15
|
Abosabaa SA, Arafa MG, ElMeshad AN. Hybrid chitosan-lipid nanoparticles of green tea extract as natural anti-cellulite agent with superior in vivo potency: full synthesis and analysis. Drug Deliv 2021; 28:2160-2176. [PMID: 34623203 PMCID: PMC8510615 DOI: 10.1080/10717544.2021.1989088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The aim of this work is to exploit the advantages of chitosan (CS) as a nanocarrier for delivery of anti-cellulite drug, green tea extract (GTE), into subcutaneous adipose tissue. Primarily, analysis of herbal extract was conducted via newly developed and validated UPLC method. Ionic gelation method was adopted in the preparation of nanoparticles where the effect lecithin was investigated resulting in the formation of hybrid lipid-chitosan nanoparticles. Optimal formula showed a particle size of 292.6 ± 8.98 nm, polydispersity index of 0.253 ± 0.02, zeta potential of 41.03 ± 0.503 mV and an entrapment efficiency percent of 68.4 ± 1.88%. Successful interaction between CS, sodium tripolyphosphate (TPP) and lecithin was confirmed by Fourier-transform infrared spectroscopy, differential scanning calorimetry and X-ray diffraction. Morphological examination was done using transmission electron microscope and scanning electron microscope confirmed spherical uniform nature of GTE load CS-TPP nanoparticles. Ex vivo permeation study revealed permeability enhancing activity of the selected optimal formula due to higher GTE deposition in skin in comparison to GTE solution. Moreover in vivo study done on female albino Wistar rats carried out for 21 days proved successful potential anti-cellulite activity upon its application on rats’ skin. Histological examination showed significant reduction of adipocyte perimeter and area and fat layer thickness. Results of the current study demonstrated that the developed GTE-loaded CS-TPP nanoparticle comprised of chitosan and lecithin showed permeability enhancing activity along with the proven lipolytic effect of green tea represent a promising delivery system for anti-cellulite activity.
Collapse
Affiliation(s)
- Sara A Abosabaa
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, The British University in Egypt (BUE), El Sherouk City, Egypt
| | - Mona G Arafa
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, The British University in Egypt (BUE), El Sherouk City, Egypt.,Chemotherapeutic Unit, Mansoura University Hospitals, Mansoura, Egypt
| | - Aliaa Nabil ElMeshad
- Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt.,Faculty of Pharmacy and Drug Technology, Department of Pharmaceutics, The Egyptian Chinese University, Cairo, Egypt
| |
Collapse
|
16
|
Silva B, São Braz B, Delgado E, Gonçalves L. Colloidal nanosystems with mucoadhesive properties designed for ocular topical delivery. Int J Pharm 2021; 606:120873. [PMID: 34246741 DOI: 10.1016/j.ijpharm.2021.120873] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
Over the last years, the scientific interest about topical ocular delivery targeting the posterior segment of the eye has been increasing. This is probably due to the fact that this is a non-invasive administration route, well tolerated by patients and with fewer local and systemic side effects. However, it is a challenging task due to the external ocular barriers, tear film clearance, blood flow in the conjunctiva and choriocapillaris and due to the blood-retinal barriers, amongst other features. An enhanced intraocular bioavailability of drugs can be achieved by either improving corneal permeability or by improving precorneal retention time. Regarding this last option, increasing residence time in the precorneal area can be achieved using mucoadhesive polymers such as xyloglucan, poly(acrylate), hyaluronic acid, chitosan, and carbomers. On the other hand, colloidal particles can interact with the ocular mucosa and enhance corneal and conjunctival permeability. These nanosystems are able to deliver a wide range of drugs, including macromolecules, providing stability and improving ocular bioavailability. New pharmaceutical approaches based on nanotechnology associated to bioadhesive compounds have emerged as strategies for a more efficient treatment of ocular diseases. Bearing this in mind, this review provides an overview of the current mucoadhesive colloidal nanosystems developed for ocular topical administration, focusing on their advantages and limitations.
Collapse
Affiliation(s)
- Beatriz Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Berta São Braz
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Esmeralda Delgado
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
17
|
Ahmed MM, Fatima F, Anwer MK, Ibnouf EO, Kalam MA, Alshamsan A, Aldawsari MF, Alalaiwe A, Ansari MJ. Formulation and in vitro evaluation of topical nanosponge-based gel containing butenafine for the treatment of fungal skin infection. Saudi Pharm J 2021; 29:467-477. [PMID: 34135673 PMCID: PMC8180615 DOI: 10.1016/j.jsps.2021.04.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
In the current study, four formulae (BNS1-BNS4) of butenafine (BTF) loaded nanosponges (NS) were fabricated by solvent emulsification technology, using different concentration of ethyl cellulose (EC) and polyvinyl alcohol (PVA) as a rate retarding polymer and surfactant, respectively. Prepared NS were characterized for particle size (PS), polydispersity index (PDI), zeta potential (ZP), entrapment efficiency (EE) and drug loading (DL). Nanocarrier BNS3 was optimized based on the particle characterizations and drug encapsulation. It was further evaluated for physicochemical characterizations; FTIR, DSC, XRD and SEM. Selected NS BNS3 composed of BTF (100 mg), EC (200 mg) and 0.3% of PVA showed, PS (543 ± 0.67 nm), PDI (0.330 ± 0.02), ZP (-33.8 ± 0.89 mV), %EE (71.3 ± 0.34%) and %DL (22.8 ± 0.67%), respectively. Fabricated NS also revealed; polymer-drug compatibility, drug-encapsulation, non-crystalline state of the drug in the spherical NS as per the physicochemical evaluations. Optimized NS (BNS3) with equivalent amount of (1%, w/w or w/v) BTF was incorporated into the (1%, w/w or w/v) carbopol gel. BTF loaded NS based gel was then evaluated for viscosity, spreadability, flux, drug diffusion, antifungal, stability and skin irritation studies. BNS3 based topical gels exhibited a flux rate of 0.18 (mg/cm2.h), drug diffusion of 89.90 ± 0.87% in 24 h with Higuchi model following anomalous non-Fickian drug release. The BNS3 based-gel could be effective against pathogenic fungal strains.
Collapse
Affiliation(s)
- Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, AlKharj 11942, Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, AlKharj 11942, Saudi Arabia
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, AlKharj 11942, Saudi Arabia
| | - Elmutasim Osman Ibnouf
- Department of Pharmaceutical Microbiology College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, AlKharj 11942, Saudi Arabia
| | - Mohd Abul Kalam
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Aws Alshamsan
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, AlKharj 11942, Saudi Arabia
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, AlKharj 11942, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, AlKharj 11942, Saudi Arabia
| |
Collapse
|
18
|
Rubenicia AML, Cubillan LDP, Sicam VADP, Macabeo APG, Villaflores OB, Castillo AL. Intraocular Pressure Reduction Effect of 0.005% Latanoprost Eye Drops in a Hyaluronic Acid-Chitosan Nanoparticle Drug Delivery System in Albino Rabbits. Transl Vis Sci Technol 2021; 10:2. [PMID: 34003979 PMCID: PMC8024779 DOI: 10.1167/tvst.10.4.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/13/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose The purpose of this study was to evaluate the intraocular pressure (IOP) reduction efficiency of hyaluronic acid-chitosan-latanoprost link nanoparticle (HA-CS-latanoprost link NP) formulated eye drops. Methods The IOP reduction study was performed in 24 normotensive albino rabbits. The test animals were randomized and grouped accordingly to treatment namely, HA-CS-latanoprost link NP, plain latanoprost, and the commercially available Xalatan eye drop, all were formulated with 0.005% latanoprost. The 9 days of the experiment were divided into baseline period (days 1-2), treatment period (days 3-6), and recovery period (days 7-9). A wireless noncontact tonometer was used to measure IOP at a time interval of 2 hours for 12 hours per day with 5 readings each. Results The highest mean daily IOP reduction during the treatment period was 24% for plain latanoprost, 23% for Xalatan, and 29% for HA-CS-latanoprost link NP. The maximum reduction in IOP for plain latanoprost and Xalatan all occurred at the sixth hour with the peak effects of 4.85 mm Hg (37%) and 4.8 mm Hg (36%), respectively. Although HA-CS-latanoprost link NP had peak effects of 5.75 mm Hg (43%) at the sixth hour and 5.22 mm Hg (39%) at the eighth hour. Daily mean IOP measurements of each treatment group showed that HA-CS-latanoprost link NP has a greater IOP reduction effect compared with the other two treatments (P < 0.001). Conclusions The results showed that the formulation of latanoprost with CS and HA is more effective in reducing the IOP than by drug alone. Translational Relevance The results provide evidence from animal experiment that HA-CS-latanoprost link NP formulation could improve and sustain drug concentration in the anterior segment of the eye. The improved reduction in IOP with that HA-CS-latanoprost link NP formulation can serve as a basis that latanoprost eye drops can be formulated with decreased concentration of benzalkonium HCl, an irritant preservative and penetration enhancer.
Collapse
Affiliation(s)
- Ana Marie L. Rubenicia
- The Graduate School, University of Santo Tomas, Manila, Philippines
- School of Pharmacy, Centro Escolar University, Manila, Philippines
| | - Leo D. P. Cubillan
- Philippine Eye Research Institute, PGH Compound, Ermita, Manila, Philippines
- University of the Philippines – National Institute of Health, Ermita, Manila, Philippines
| | - Victor Arni D. P. Sicam
- Philippine Eye Research Institute, PGH Compound, Ermita, Manila, Philippines
- University of the Philippines – National Institute of Health, Ermita, Manila, Philippines
| | - Allan Patrick G. Macabeo
- Laboratory for Organic Reactivity, Discovery, and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Oliver B. Villaflores
- The Graduate School, University of Santo Tomas, Manila, Philippines
- Phytochemistry Laboratory, Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Agnes L. Castillo
- The Graduate School, University of Santo Tomas, Manila, Philippines
- Pharmacology Laboratory, Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
- Department of Pharmacy, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| |
Collapse
|
19
|
Abdelmonem R, Elhabal SF, Abdelmalak NS, El-Nabarawi MA, Teaima MH. Formulation and Characterization of Acetazolamide/Carvedilol Niosomal Gel for Glaucoma Treatment: In Vitro, and In Vivo Study. Pharmaceutics 2021; 13:pharmaceutics13020221. [PMID: 33562785 PMCID: PMC7915822 DOI: 10.3390/pharmaceutics13020221] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 11/18/2022] Open
Abstract
Acetazolamide (ACZ) is a diuretic used in glaucoma treatment; it has many side effects. Carvedilol (CAR) is a non-cardioselective beta-blocker used in the treatment of elevated intraocular pressure; it is subjected to the first-pass metabolism and causes fluids accumulation leading to edema. This study focuses on overcoming previous side effects by using a topical formula of a combination of the two previous drugs. Sixty formulations of niosomes containing Span 20, Span 60, Tween 20, and Tween 60 with two different ratios were prepared and characterized. Formulation with the lowest particle size (416.30 ± 0.23), the highest zeta potential (72.04 ± 0.43 mv), and the highest apparent coefficient of corneal permeability (0.02 ± 0.29 cm/h) were selected. The selected formula was incorporated into the gel using factorial design 23. Niosomes (acetazolamide/carvedilol) consisting of Span 60 and cholesterol in the molar ratio (7:6), HMPC, and carbopol with two different ratios were used. The selected formula was subjected to an in vivo study of intraocular pressure in ocular hypertensive rabbits for 60 h. The sustained gel formula of the combination decreased (IOP) to normal after 1 h and sustained efficacy for 4 days. Histological analysis of rabbit eyeballs treated with the selected formula showed improvement in glaucomatous eye retinal atrophy.
Collapse
Affiliation(s)
- Rehab Abdelmonem
- Department of Industrial Pharmacy, College of Pharmacy, Misr University for Science and Technology (MUST), 6th of October City, Giza 12566, Egypt;
| | - Sammar F. Elhabal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt
- Correspondence: ; Tel.: +20-010-088-56536
| | - Nevine S. Abdelmalak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; (N.S.A.); (M.A.E.-N.); (M.H.T.)
- Department of Pharmaceutics and Industrial Pharmacy, School of Pharmacy, Newgiza University (NGU), Km 22 Cairo-Alex Road, Giza 12256, Egypt
| | - Mohamed A. El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; (N.S.A.); (M.A.E.-N.); (M.H.T.)
| | - Mahmoud H. Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; (N.S.A.); (M.A.E.-N.); (M.H.T.)
| |
Collapse
|
20
|
Kelada M, Hill D, Yap TE, Manzar H, Cordeiro MF. Innovations and revolutions in reducing retinal ganglion cell loss in glaucoma. EXPERT REVIEW OF OPHTHALMOLOGY 2020. [DOI: 10.1080/17469899.2021.1835470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mary Kelada
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK
| | - Daniel Hill
- Glaucoma and Retinal Neurodegeneration Group, UCL Institute of Ophthalmology, London, UK
| | - Timothy E. Yap
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, UK
| | - Haider Manzar
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK
| | - M. Francesca Cordeiro
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK
- Glaucoma and Retinal Neurodegeneration Group, UCL Institute of Ophthalmology, London, UK
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, UK
| |
Collapse
|
21
|
Zamboulis A, Nanaki S, Michailidou G, Koumentakou I, Lazaridou M, Ainali NM, Xanthopoulou E, Bikiaris DN. Chitosan and its Derivatives for Ocular Delivery Formulations: Recent Advances and Developments. Polymers (Basel) 2020; 12:E1519. [PMID: 32650536 PMCID: PMC7407599 DOI: 10.3390/polym12071519] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Chitosan (CS) is a hemi-synthetic cationic linear polysaccharide produced by the deacetylation of chitin. CS is non-toxic, highly biocompatible, and biodegradable, and it has a low immunogenicity. Additionally, CS has inherent antibacterial properties and a mucoadhesive character and can disrupt epithelial tight junctions, thus acting as a permeability enhancer. As such, CS and its derivatives are well-suited for the challenging field of ocular drug delivery. In the present review article, we will discuss the properties of CS that contribute to its successful application in ocular delivery before reviewing the latest advances in the use of CS for the development of novel ophthalmic delivery systems. Colloidal nanocarriers (nanoparticles, micelles, liposomes) will be presented, followed by CS gels and lenses and ocular inserts. Finally, instances of CS coatings, aiming at conferring mucoadhesiveness to other matrixes, will be presented.
Collapse
Affiliation(s)
- Alexandra Zamboulis
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.N.); (G.M.); (I.K.); (M.L.); (N.M.A.); (E.X.)
| | | | | | | | | | | | | | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.N.); (G.M.); (I.K.); (M.L.); (N.M.A.); (E.X.)
| |
Collapse
|
22
|
Fabrication of Transgelosomes for Enhancing the Ocular Delivery of Acetazolamide: Statistical Optimization, In Vitro Characterization, and In Vivo Study. Pharmaceutics 2020; 12:pharmaceutics12050465. [PMID: 32443679 PMCID: PMC7284610 DOI: 10.3390/pharmaceutics12050465] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
Acetazolamide (ACZ) is a potent carbonic anhydrase inhibitor that is used for the treatment of glaucoma. Its oral administration causes various undesirable side effects. This study aimed to formulate transgelosomes (TGS) for enhancing the ocular delivery of ACZ. ACZ-loaded transfersomes were formulated by the ethanol injection method, using phosphatidylcholine (PC) and different edge activators, including Tween 80, Span 60, and Cremophor RH 40. The effects of the ratio of lipid to surfactant and type of surfactant on % drug released after 8 h (Q8h) and entrapment efficiency (EE%) were investigated by using Design-Expert software. The optimized formula was formulated as TGS, using poloxamers as gelling agents. In vitro and in vivo characterization of ACZ-loaded TGS was performed. According to optimization study, F8 had the highest desirability value and was chosen as the optimized formula for preparing TGS. F8 appeared as spherical elastic nanovesicles with Q8h of 93.01 ± 3.76% and EE% of 84.44 ± 2.82. Compared to a free drug, TGS exhibited more prolonged drug release of 71.28 ± 0.46% after 8 h, higher ex vivo permeation of 66.82 ± 1.11% after 8 h and a significant lowering of intraocular pressure (IOP) for 24 h. Therefore, TGS provided a promising technique for improving the corneal delivery of ACZ.
Collapse
|
23
|
Kaul S, Jain N, Pandey J, Nagaich U. Investigating The Retention Potential of Chitosan Nanoparticulate Gel: Design, Development, In Vitro & Ex Vivo Characterization. ACTA ACUST UNITED AC 2019; 15:41-67. [PMID: 31612834 PMCID: PMC8493795 DOI: 10.2174/1574891x14666191014141558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/22/2019] [Accepted: 08/23/2019] [Indexed: 11/24/2022]
Abstract
Introduction The main purpose of the research was to develop, optimize and characterize tobramycin sulphate loaded chitosan nanoparticles based gel in order to ameliorate its therapeutic efficacy, precorneal residence time, stability, targeting and to provide controlled release of the drug. Methods Box-Behnken design was used to optimize formulation by 3-factors (chitosan, STPP and tween 80) and 3-levels. Developed formulation was subjected for characterizations such as shape and surface morphology, zeta potential, particle size, in vitro drug release studies, entrapment efficiency of drug, visual inspection, pH, viscosity, spreadability, drug content, ex vivo transcorneal permeation studies, ocular tolerance test, antimicrobial studies, isotonicity evaluation and histopathology studies. Results Based on the evaluation parameters, the optimized formulation showed a particle size of 43.85 ± 0.86 nm and entrapment efficiency 91.56% ± 1.04, PDI 0.254. Cumulative in vitro drug release was up to 92.21% ± 1.71 for 12 hours and drug content was found between 95.36% ± 1.25 to 98.8% ± 1.34. TEM analysis unfolded spherical shape of nanoparticles. TS loaded nanoparticulate gel exhibited significantly higher transcorneal permeation as well as bioadhesion when compared with marketed formulation. Ocular tolerance was evaluated by HET-CAM test and formulation was non-irritant and well-tolerated. Histopathology studies revealed that there was no evidence of damage to the normal structure of the goat cornea. As per ICH guidelines, stability studies were conducted and were subjected for 6 months. Conclusion Results revealed that the developed formulation could be an ideal substitute for conventional eye drops for the treatment of bacterial keratitis.
Collapse
Affiliation(s)
- Shreya Kaul
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201301, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201301, India
| | - Jaya Pandey
- School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Upendra Nagaich
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201301, India
| |
Collapse
|
24
|
Liu C, Xu H, Sun Y, Zhang X, Cheng H, Mao S. Design of Virus-Mimicking Polyelectrolyte Complexes for Enhanced Oral Insulin Delivery. J Pharm Sci 2019; 108:3408-3415. [DOI: 10.1016/j.xphs.2019.05.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/26/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022]
|
25
|
Gómez-Ballesteros M, Andrés-Guerrero V, Parra FJ, Marinich J, de-Las-Heras B, Molina-Martínez IT, Vázquez-Lasa B, San Román J, Herrero-Vanrell R. Amphiphilic Acrylic Nanoparticles Containing the Poloxamer Star Bayfit® 10WF15 as Ophthalmic Drug Carriers. Polymers (Basel) 2019; 11:E1213. [PMID: 31331090 PMCID: PMC6680529 DOI: 10.3390/polym11071213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Topical application of drops containing ocular drugs is the preferred non-invasive route to treat diseases that affect the anterior segment of the eye. However, the formulation of eye drops is a major challenge for pharmacists since the access of drugs to ocular tissues is restricted by several barriers. Acetazolamide (ACZ) is a carbonic anhydrase inhibitor used orally for the treatment of ocular hypertension in glaucoma. However, large ACZ doses are needed which results in systemic side effects. Recently, we synthesized copolymers based on 2-hydroxyethyl methacrylate (HEMA) and a functionalized three-arm poloxamer star (Bayfit-MA). The new material (HEMA/Bayfit-MA) was engineered to be transformed into nanoparticles without the use of surfactants, which represents a significant step forward in developing new ophthalmic drug delivery platforms. Acetazolamide-loaded nanocarriers (ACZ-NPs) were prepared via dialysis (224 ± 19 nm, -17.2 ± 0.4 mV). The in vitro release rate of ACZ was constant over 24 h (cumulative delivery of ACZ: 83.3 ± 8.4%). Following standard specifications, ACZ-NPs were not cytotoxic in vitro in cornea, conjunctiva, and macrophages. In normotensive rabbits, ACZ-NPs generated a significant intraocular pressure reduction compared to a conventional solution of ACZ (16.4% versus 9.6%) with the same dose of the hypotensive drug (20 µg). In comparison to previously reported studies, this formulation reduced intraocular pressure with a lower dose of ACZ. In summary, HEMA:Bayfit-MA nanoparticles may be a promising system for ocular topical treatments, showing an enhanced ocular bioavailability of ACZ after a single instillation on the ocular surface.
Collapse
Affiliation(s)
- Miguel Gómez-Ballesteros
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - Vanessa Andrés-Guerrero
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, 28029 Madrid, Spain
| | - Francisco Jesús Parra
- Institute of Polymer Science and Technology, ICTP-CSIC, and CIBER-BBN, 28006 Madrid, Spain
| | - Jorge Marinich
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - Beatriz de-Las-Heras
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Pharmacology, Faculty of Pharmacy, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Irene Teresa Molina-Martínez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, 28029 Madrid, Spain
| | - Blanca Vázquez-Lasa
- Institute of Polymer Science and Technology, ICTP-CSIC, and CIBER-BBN, 28006 Madrid, Spain.
| | - Julio San Román
- Institute of Polymer Science and Technology, ICTP-CSIC, and CIBER-BBN, 28006 Madrid, Spain
| | - Rocío Herrero-Vanrell
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid (UCM), IdISSC, 28040 Madrid, Spain.
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
26
|
Covalently mucoadhesive amphiphilic prodrug of 5-fluorouracil for enhanced permeation and improved oral absorption. Drug Deliv Transl Res 2018. [DOI: 10.1007/s13346-018-0502-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|