1
|
D’aloisio G, Acevedo MB, Angulo-Alcalde A, Trujillo V, Molina JC. Moderate ethanol exposure during early ontogeny of the rat alters respiratory plasticity, ultrasonic distress vocalizations, increases brain catalase activity, and acetaldehyde-mediated ethanol intake. Front Behav Neurosci 2022; 16:1031115. [DOI: 10.3389/fnbeh.2022.1031115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Early ontogeny of the rat (late gestation and postnatal first week) is a sensitive period to ethanol’s positive reinforcing effects and its detrimental effects on respiratory plasticity. Recent studies show that acetaldehyde, the first ethanol metabolite, plays a key role in the modulation of ethanol motivational effects. Ethanol brain metabolization into acetaldehyde via the catalase system appears critical in modulating ethanol positive reinforcing consequences. Catalase system activity peak levels occur early in the ontogeny. Yet, the role of ethanol-derived acetaldehyde during the late gestational period on respiration response, ultrasonic vocalizations (USVs), and ethanol intake during the first week of the rat remains poorly explored. In the present study, pregnant rats were given a subcutaneous injection of an acetaldehyde-sequestering agent (D-penicillamine, 50 mg/kg) or saline (0.9% NaCl), 30 min prior to an intragastric administration of ethanol (2.0 g/kg) or water (vehicle) on gestational days 17–20. Respiration rates (breaths/min) and apneic episodes in a whole-body plethysmograph were registered on postnatal days (PDs) 2 and 4, while simultaneously pups received milk or ethanol infusions for 40-min in an artificial lactation test. Each intake test was followed by a 5-min long USVs emission record. On PD 8, immediately after pups completed a 15-min ethanol intake test, brain samples were collected and kept frozen for catalase activity determination. Results indicated that a moderate experience with ethanol during the late gestational period disrupted breathing plasticity, increased ethanol intake, as well brain catalase activity. Animals postnatally exposed to ethanol increased their ethanol intake and exerted differential affective reactions on USVs and apneic episodes depending on whether the experience with ethanol occur prenatal or postnatally. Under the present experimental conditions, we failed to observe, a clear role of acetaldehyde mediating ethanol’s effects on respiratory plasticity or affective states, nevertheless gestational acetaldehyde was of crucial importance in determining subsequent ethanol intake affinity. As a whole, results emphasize the importance of considering the participation of acetaldehyde in fetal programming processes derived from a brief moderate ethanol experience early in development, which in turn, argues against “safe or harmless” ethanol levels of exposure.
Collapse
|
2
|
Anunziata F, Macchione AF, Alcalde AA, Tejerina DN, Amigone JL, Wille-Bille A, Trujillo V, Molina JC. Ethanol's disruptive effects upon early breathing plasticity and blood parameters associated with hypoxia and hypercapnia. Exp Neurol 2021; 344:113796. [PMID: 34224736 DOI: 10.1016/j.expneurol.2021.113796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Early ethanol exposure affects respiratory neuroplasticity; a risk factor associated with the Sudden Infant Death Syndrome. High and chronic ethanol doses exert long-lasting effects upon respiratory rates, apneic episodes and ventilatory processes triggered by hypoxia. The present study was performed in 3-9-day-old rat pups. Respiratory processes under normoxic and hypoxic conditions were analyzed in pups intoxicated with different ethanol doses which were pre-exposed or not to the drug. A second major goal was to examine if acute and/or chronic early ethanol exposure affects blood parameters related with hypercapnic or hypoxic states. In Experiment 1, at postnatal day 9, animals previously treated with ethanol (2.0 g/kg) or vehicle (0.0 g/kg) were tested sober or intoxicated with 0.75, 1.37 or 2.00 g/kg ethanol. The test involved sequential air conditions defined as initial normoxia, hypoxia and recovery normoxia. Motor activity was also evaluated. In Experiment 2, blood parameters indicative of possible hypoxic and hypercapnic states were assessed as a function of early chronic or acute experiences with the drug. The main results of Experiment 1 were as follows: i) ethanol's depressant effects upon respiratory rates increased as a function of sequential treatment with the drug (sensitization); ii) ethanol inhibited apneic episodes even when employing the lowest dose at test (0.75 g/kg); iii) the hyperventilatory response caused by hypoxia negatively correlated with the ethanol dose administered at test; iv) ventilatory long-term facilitation (LTF) during recovery normoxia was observed in pups pre-exposed to the drug and in pups that received the different ethanol doses at test; v) self-grooming increased in pups treated with either 1.37 or 2.00 g/kg ethanol. The main result of Experiment 2 indicated that acute as well as chronic ethanol exposure results in acidosis-hypercapnia. The results indicate that early and brief experiences with ethanol are sufficient to affect different respiratory plasticity processes as well as blood biomarkers indicative of acidosis-hypercapnia. An association between the LTF process and the acidosis-hypercapnic state caused by ethanol seems to exist. The mentioned experiences with the drug are sufficient to result in an anomalous programming of respiratory patterns and metabolic conditions.
Collapse
Affiliation(s)
- Florencia Anunziata
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ana F Macchione
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto de Investigaciones Psicológicas, IIPsi-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Asier Angulo Alcalde
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Procesos Psicológicos Básicos y su Desarrollo, Facultad de Psicología, Universidad del País Vasco UPV-EHU, Donostia-San Sebastián, Guipúzcoa, Spain
| | - David N Tejerina
- Laboratorio de Bioquímica Clínica, Hospital Privado de Córdoba, Córdoba, Argentina
| | - José L Amigone
- Laboratorio de Bioquímica Clínica, Hospital Privado de Córdoba, Córdoba, Argentina
| | - Aranza Wille-Bille
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Verónica Trujillo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Juan C Molina
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
3
|
Trujillo V, Macchione AF, Albrecht PA, Virgolini MB, Molina JC. Learning experiences comprising central ethanol exposure in rat neonates: Impact upon respiratory plasticity and the activity of brain catalase. Alcohol 2020; 88:11-27. [PMID: 32615265 DOI: 10.1016/j.alcohol.2020.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 01/29/2023]
Abstract
Fetal ethanol exposure represents a risk factor for sudden infant death syndrome, and the respiratory effects of fetal ethanol exposure promote hypoxic ischemic consequences. This study analyzes central ethanol's effects upon breathing plasticity during an ontogenetic stage equivalent to the human third gestational trimester. Ethanol's unconditioned breathing effects and their intervention in learning processes were examined. Since central ethanol is primarily metabolized via the catalase system, we also examined the effects of early history with the drug upon this system. During postnatal days 3, 5, and 7 (PDs 3-7), pups were intracisternally administered with vehicle or ethanol (300 mg%). They were tested in a plethysmograph scented or not scented with ethanol odor. The state of intoxication attenuated the onset of apneas, a phenomenon that is suggestive of ethanol's anxiolytic effects given the state of arousal caused by the novel environment and the stress of ethanol administration. At PD9, pups were evaluated when sober under sequential air conditions (initial-normoxia, hypoxia, and recovery-normoxia), with or without the presence of ethanol odor. Initial apneic episodes increased when ethanol intoxication was previously associated with the odor. Pups then ingested ethanol, and brain catalase activity was determined. Pre-exposure to ethanol intoxication paired with the odor of the drug resulted in heightened enzymatic activity. Central ethanol exposure appears to exert antianxiety effects that attenuate apneic disruptions. However, during withdrawal, the cues associated with such effects elicit an opposite reaction. The activity of the catalase system was also dependent upon learning processes that involved the association of environmental stimuli and ethanol intoxication.
Collapse
|
4
|
Co-existence of ethanol-related respiratory and motivational learning processes based on a tactile discrimination procedure in neonatal rats. Alcohol 2020; 85:65-76. [PMID: 31734305 DOI: 10.1016/j.alcohol.2019.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 01/08/2023]
Abstract
In rats, high ethanol doses during early postnatal life exert deleterious effects upon brain development that impact diverse social and cognitive abilities. This stage in development partially overlaps with the third human gestational trimester, commonly referred to as the brain growth spurt period. At this stage in development, human fetuses and rat neonates (postnatal days [PD] 3-9) exhibit relatively high respiratory rates that are affected by subteratogenic ethanol doses. Recent studies suggest conditioned breathing responses in the developing organism, given that there are explicit associations between exteroceptive stimuli and the state of ethanol intoxication. Furthermore, studies performed with near-term rat fetuses suggest heightened sensitivity to ethanol's motivational effects. The present study was meant to analyze the unconditioned effects of ethanol intoxication and the possible co-occurrence of learning mechanisms that can impact respiratory plasticity, and to analyze the preference for cues that signal the state of intoxication as well as the effects of the drug, related with motor stimulation. Neonatal rats were subjected to differential experiences with salient tactile cues explicitly paired or not paired with the effects of vehicle or ethanol (2.0 g/kg). A tactile discrimination procedure applied during PDs 3, 5, 7, and 9 allowed the identification of the emergence of ethanol-derived non-associative and associative learning processes that affect breathing plasticity, particularly when considering apneic disruptions. Ethanol was found to partially inhibit the disruptions that appeared to be intimately related with stressful circumstances defined by the experimental procedure. Tactile cues paired with the drug's effects were also observed to exert an inhibitory effect upon these breathing disruptions. The level of contingency between a given tactile cue and ethanol intoxication also resulted in significant changes in the probability of seeking this cue in a tactile preference test. In addition, the state of intoxication exerted motor-stimulating effects. When contrasting the data obtained via the analysis of the different dependent variables, it appears that most ethanol-derived changes are modulated by positive and/or negative (anti-anxiety) reinforcing effects of the drug. As a whole, the study indicates co-existence of ethanol-related functional changes in the developing organism that simultaneously affect respiratory plasticity and preference patterns elicited by stimuli that signal ethanol's motivational effects. These results emphasize the need to consider significant alterations due to minimal ethanol experiences that argue against "safe" levels of exposure in a critical stage in brain development.
Collapse
|
5
|
Miranda-Morales RS, D'Aloisio G, Anunziata F, Abate P, Molina JC. Fetal Alcohol Programming of Subsequent Alcohol Affinity: A Review Based on Preclinical, Clinical and Epidemiological Studies. Front Behav Neurosci 2020; 14:33. [PMID: 32210775 PMCID: PMC7077749 DOI: 10.3389/fnbeh.2020.00033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/17/2020] [Indexed: 12/20/2022] Open
Abstract
The anatomo-physiological disruptions inherent to different categories of the Fetal Alcohol Spectrum Disorder do not encompass all the negative consequences derived from intrauterine ethanol (EtOH) exposure. Preclinical, clinical and epidemiological studies show that prenatal EtOH exposure also results in early programming of alcohol affinity. This affinity has been addressed through the examination of how EtOH prenatally exposed organisms recognize and prefer the drug’s chemosensory cues and their predisposition to exhibit heightened voluntary EtOH intake during infancy and adolescence. In altricial species these processes are determined by the interaction of at least three factors during stages equivalent to the 2nd and 3rd human gestational trimester: (i) fetal processing of the drug’s olfactory and gustatory attributes present in the prenatal milieu; (ii) EtOH’s recruitment of central reinforcing effects that also imply progressive sensitization to the drug’s motivational properties; and (iii) an associative learning process involving the prior two factors. This Pavlovian learning phenomenon is dependent upon the recruitment of the opioid system and studies also indicate a significant role of EtOH’s principal metabolite (acetaldehyde, ACD) which is rapidly generated in the brain via the catalase system. The central and rapid accumulation of this metabolite represents a major factor involved in the process of fetal alcohol programming. According to recent investigations, it appears that ACD exerts early positive reinforcing consequences and antianxiety effects (negative reinforcement). Finally, this review also acknowledges human clinical and epidemiological studies indicating that moderate and binge-like drinking episodes during gestation result in neonatal recognition of EtOH’s chemosensory properties coupled with a preference towards these cues. As a whole, the studies under discussion emphasize the notion that even subteratogenic EtOH exposure during fetal life seizes early functional sensory and learning capabilities that pathologically shape subsequent physiological and behavioral reactivity towards the drug.
Collapse
Affiliation(s)
- Roberto Sebastián Miranda-Morales
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Genesis D'Aloisio
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Florencia Anunziata
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paula Abate
- Instituto de Investigaciones Psicológicas, Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Juan Carlos Molina
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
6
|
Fernández MS, Bellia F, Ferreyra A, Chiner F, Jiménez García AM, D’Addario C, Pautassi RM. Short-term selection for high and low ethanol intake during adolescence exerts lingering effects in stress-induced ethanol drinking and yields an anxiety-prone phenotype. Behav Brain Res 2020; 380:112445. [DOI: 10.1016/j.bbr.2019.112445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
|
7
|
Wille-Bille A, Bellia F, Jiménez García AM, Miranda-Morales RS, D'Addario C, Pautassi RM. Early exposure to environmental enrichment modulates the effects of prenatal ethanol exposure upon opioid gene expression and adolescent ethanol intake. Neuropharmacology 2019; 165:107917. [PMID: 31926456 DOI: 10.1016/j.neuropharm.2019.107917] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022]
Abstract
Prenatal ethanol exposure (PEE) promotes ethanol consumption in the adolescent offspring accompanied by the transcriptional regulation of kappa opioid receptor (KOR) system genes. This study analysed if environmental enrichment (EE, from gestational day 20 to postnatal day 26) exerts protective effects upon PEE-modulation of gene expression, ethanol intake and anxiety responses. Pregnant rats were exposed to PEE (0.0 or 2.0 g/kg ethanol, gestational days 17-20) and subsequently the dam and offspring were reared under EE or standard conditions. PEE upregulated KOR mRNA levels in amygdala (AMY) and prodynorphin (PDYN) mRNA levels in ventral tegmental area (VTA) with the latter effect associated with lower DNA methylation at the gene promoter. These effects were normalized by exposure to EE. PEE modulated BDNF mRNA levels in VTA and Nucleus accumbens (AcbN), and EE mitigated the changes in AcbN. EE induced a protective effect on ethanol intake and preference, an effect more noticeable in males than in females, and in prenatal vehicle-treated (PV) than in PEE rats. The male offspring drank significantly less ethanol than the female offspring. The latter result suggests that the protective effect of EE on ethanol drinking may only emerge at lower levels of drinking. In the dams, PEE induced an upregulation of PDYN and KOR in AcbN. PDYN gene expression was normalized by exposure to EE. These results suggest that EE is a promising treatment to inhibit the effects of PEE. The results confirm that PEE effects are mediated by alterations in the transcriptional regulation of KOR system genes.
Collapse
Affiliation(s)
- Aranza Wille-Bille
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, C.P. 5000, Argentina
| | - Fabio Bellia
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, Università degli Studi di Teramo, Teramo, C.P. 64100, Italy
| | - Ana María Jiménez García
- Facultad de Medicina, Departamento de Farmacología, Universidad de Granada, Granada, C.P. 18071, Spain
| | - Roberto Sebastián Miranda-Morales
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, C.P. 5000, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, Università degli Studi di Teramo, Teramo, C.P. 64100, Italy.
| | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, C.P. 5000, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina.
| |
Collapse
|
8
|
Echeverry-Alzate V, Bühler KM, Calleja-Conde J, Huertas E, Maldonado R, Rodríguez de Fonseca F, Santiago C, Gómez-Gallego F, Santos A, Giné E, López-Moreno JA. Adult-onset hypothyroidism increases ethanol consumption. Psychopharmacology (Berl) 2019; 236:1187-1197. [PMID: 30470859 DOI: 10.1007/s00213-018-5123-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/14/2018] [Indexed: 12/29/2022]
Abstract
RATIONALE Only in Europe it can be estimated that more than 20 million of people would be affected by hypothyroidism in some moment of their life. Given that ethanol consumption is so frequent, it would be reasonable to ask what the consequences of ethanol consumption in those individuals affected by hypothyroidism are. OBJECTIVES To study the interaction between hypothyroidism and ethanol consumption. METHODS We study ethanol consumption in a rat model of methyl-mercaptoimidazole-induced-adult-onset hypothyroidism and thyroid T4/T3 hormone supplementation. Also, we studied the effects of ethanol on motor activity, memory, and anxiety. RESULTS We found that hypothyroidism increased the voluntary ethanol consumption and that this was enhanced by thyroid hormone supplementation. Hypothyroidism was associated with motor hyperactivity which was prevented either by T4/T3 supplementation or ethanol. The relationship between hypothyroidism, ethanol, and anxiety was more complex. In an anxiogenic context, hypothyroidism and T4/T3 supplementation would increase immobility, an anxiety-like behavior, while in a less anxiogenic context would decrease rearing, a behavior related to anxiety. Regarding memory, acute ethanol administration did not alter episodic-like memory in hypothyroid rats. Gene expression of enzymes involved in the metabolism of ethanol, i.e., Adh1 and Aldh2, were altered by hypothyroidism and T4/T3 supplementation. CONCLUSIONS Our results suggest that hypothyroid patients would need personalized attention in terms of ethanol consumption. In addition, they point that it would be useful to embrace the thyroid axis in the study of ethanol addiction, including as a possible therapeutic target for the treatment of alcoholism and its comorbid disorders.
Collapse
Affiliation(s)
- V Echeverry-Alzate
- Department of Psychobiology & Behavioral Sciences Methods, School of Psychology, Campus de Somosaguas, Complutense University of Madrid, 28223, Madrid, Spain
| | - K M Bühler
- Department of Psychobiology & Behavioral Sciences Methods, School of Psychology, Campus de Somosaguas, Complutense University of Madrid, 28223, Madrid, Spain
| | - J Calleja-Conde
- Department of Psychobiology & Behavioral Sciences Methods, School of Psychology, Campus de Somosaguas, Complutense University of Madrid, 28223, Madrid, Spain
| | - E Huertas
- Department of Experimental Psychology, Cognitive Processes & Speech Therapy, School of Psychology, Complutense University of Madrid, 28223, Madrid, Spain
| | - R Maldonado
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - F Rodríguez de Fonseca
- Fundación IMABIS, Laboratorio de Medicina Regenerativa, Hospital Regional Universitario Carlos Haya, 29010, Málaga, Spain
| | - C Santiago
- Department of Basic Biomedical Science, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670, Madrid, Spain
| | - F Gómez-Gallego
- Facultad de Ciencias de la Salud, Universidad Internacional de la Rioja (UNIR), La Rioja, Spain
| | - A Santos
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Complutense University of Madrid, 28040, Madrid, Spain
| | - E Giné
- Department of Cellular Biology, School of Medicine, Complutense University of Madrid, 28040, Madrid, Spain
| | - J A López-Moreno
- Department of Psychobiology & Behavioral Sciences Methods, School of Psychology, Campus de Somosaguas, Complutense University of Madrid, 28223, Madrid, Spain.
| |
Collapse
|
9
|
Samuel N, Taub A, Paz R, Raz A. Implicit aversive memory under anaesthesia in animal models: a narrative review. Br J Anaesth 2018; 121:219-232. [DOI: 10.1016/j.bja.2018.05.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/23/2022] Open
|
10
|
Macchione AF, Anunziata F, Haymal BO, Abate P, Molina JC. Brief ethanol exposure and stress-related factors disorganize neonatal breathing plasticity during the brain growth spurt period in the rat. Psychopharmacology (Berl) 2018; 235:983-998. [PMID: 29464303 DOI: 10.1007/s00213-017-4815-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/13/2017] [Indexed: 12/24/2022]
Abstract
RATIONALE The effects of early ethanol exposure upon neonatal respiratory plasticity have received progressive attention given a multifactorial perspective related with sudden infant death syndrome or hypoxia-associated syndromes. The present preclinical study was performed in 3-9-day-old pups, a stage in development characterized by a brain growth spurt that partially overlaps with the 3rd human gestational trimester. METHODS Breathing frequencies and apneas were examined in pups receiving vehicle or a relatively moderate ethanol dose (2.0 g/kg) utilizing a whole body plethysmograph. The experimental design also considered possible associations between drug administration stress and exteroceptive cues (plethysmographic context or an artificial odor). Ethanol exposure progressively exerted a detrimental effect upon breathing frequencies. A test conducted at PD9 when pups were under the state of sobriety confirmed ethanol's detrimental effects upon respiratory plasticity (breathing depression). RESULTS Pre-exposure to the drug also resulted in a highly disorganized respiratory response following a hypoxic event, i.e., heightened apneic episodes. Associative processes involving drug administration procedures and placement in the plethysmographic context also affected respiratory plasticity. Pups that experienced intragastric administrations in close temporal contiguity with such a context showed diminished hyperventilation during hypoxia. In a 2nd test conducted at PD9 while pups were intoxicated and undergoing hypoxia, an attenuated hyperventilatory response was observed. In this test, there were also indications that prior ethanol exposure depressed breathing frequencies during hypoxia and a recovery normoxia phase. CONCLUSION As a whole, the results demonstrated that brief ethanol experience and stress-related factors significantly disorganize respiratory patterns as well as arousal responses linked to hypoxia in neonatal rats.
Collapse
Affiliation(s)
- A F Macchione
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - F Anunziata
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina
| | - B O Haymal
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina
| | - P Abate
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - J C Molina
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina. .,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina. .,Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, USA.
| |
Collapse
|
11
|
Acevedo MB, D'Aloisio G, Haymal OB, Molina JC. Brain Acetaldehyde Exposure Impacts upon Neonatal Respiratory Plasticity and Ethanol-Related Learning in Rodents. Front Behav Neurosci 2017; 11:39. [PMID: 28377702 PMCID: PMC5359529 DOI: 10.3389/fnbeh.2017.00039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/23/2017] [Indexed: 01/14/2023] Open
Abstract
Prior studies indicate that neonates are very sensitive to ethanol's positive reinforcing effects and to its depressant effects upon breathing. Acetaldehyde (ACD) appears to play a major role in terms of modulating early reinforcing effects of the drug. Yet, there is no pre-existing literature relative to the incidence of this metabolite upon respiratory plasticity. The present study analyzed physiological and behavioral effects of early central administrations of ethanol, acetaldehyde or vehicle. Respiration rates (breaths/min) were registered at post-natal days (PDs) 2 and 4 (post-administration time: 5, 60, or 120 min). At PD5, all pups were placed in a context (plethysmograph) where they had previously experienced the effects of central administrations and breathing patterns were recorded. Following this test, pups were evaluated using and operant conditioning procedure where ethanol or saccharin served as positive reinforcers. Body temperatures were also registered prior to drug administrations as well as at the beginning and the end of each specific evaluation. Across days, breathing responses were high at the beginning of the evaluation session and progressively declined as a function of the passage of time. At PDs 2 and 4, shortly after central administration (5 min), ACD exerted a significant depression upon respiration frequencies. At PD5, non-intoxicated pups with a prior history of ACD central administrations, exhibited a marked increase in respiratory frequencies; a result that probably indicates a conditioned compensatory response. When operant testing procedures were conducted, prior ethanol or ACD central administrations were found to reduce the reinforcing effects of ethanol. This was not the case when saccharin was employed as a reinforcer. As a whole, the results indicate a significant role of central ACD upon respiratory plasticity of the neonate and upon ethanol's reinforcing effects; phenomena that affect the physiological integrity of the immature organism and its subsequent affinity for ethanol operationalized through self-administration procedures.
Collapse
Affiliation(s)
- María B Acevedo
- Laboratorio de Alcohol, Ontogenia y Aprendizaje, Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de Córdoba Córdoba, Argentina
| | - Génesis D'Aloisio
- Laboratorio de Alcohol, Ontogenia y Aprendizaje, Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de CórdobaCórdoba, Argentina; Experimental Psychobiology Chair, Department of Psychology, Universidad Nacional de CórdobaCórdoba, Argentina
| | - Olga B Haymal
- Laboratorio de Alcohol, Ontogenia y Aprendizaje, Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de Córdoba Córdoba, Argentina
| | - Juan C Molina
- Laboratorio de Alcohol, Ontogenia y Aprendizaje, Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET), Universidad Nacional de CórdobaCórdoba, Argentina; Experimental Psychobiology Chair, Department of Psychology, Universidad Nacional de CórdobaCórdoba, Argentina
| |
Collapse
|
12
|
Macchione AF, Anunziata F, Culleré ME, Haymal BO, Spear N, Abate P, Molina JC. Conditioned breathing depression during neonatal life as a function of associating ethanol odor and the drug's intoxicating effects. Dev Psychobiol 2016; 58:670-86. [DOI: 10.1002/dev.21398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/03/2016] [Indexed: 01/27/2023]
Affiliation(s)
- A. F. Macchione
- Instituto de Investigación Médica Mercedes y Martín Ferreyra; INIMEC-CONICET-Universidad Nacional de Córdoba; Friuli 2434 Córdoba 5016 Argentina
- Facultad de Odontología; Universidad Nacional de Córdoba; Córdoba Argentina
| | - F. Anunziata
- Instituto de Investigación Médica Mercedes y Martín Ferreyra; INIMEC-CONICET-Universidad Nacional de Córdoba; Friuli 2434 Córdoba 5016 Argentina
| | - M. E. Culleré
- Instituto de Investigación Médica Mercedes y Martín Ferreyra; INIMEC-CONICET-Universidad Nacional de Córdoba; Friuli 2434 Córdoba 5016 Argentina
| | - B. O. Haymal
- Instituto de Investigación Médica Mercedes y Martín Ferreyra; INIMEC-CONICET-Universidad Nacional de Córdoba; Friuli 2434 Córdoba 5016 Argentina
| | - N. Spear
- Center for Development and Behavioral Neuroscience; Binghamton University; Binghamton NY
| | - P. Abate
- Instituto de Investigación Médica Mercedes y Martín Ferreyra; INIMEC-CONICET-Universidad Nacional de Córdoba; Friuli 2434 Córdoba 5016 Argentina
- Facultad de Psicología; Universidad Nacional de Córdoba; Córdoba Argentina
| | - J. C. Molina
- Instituto de Investigación Médica Mercedes y Martín Ferreyra; INIMEC-CONICET-Universidad Nacional de Córdoba; Friuli 2434 Córdoba 5016 Argentina
- Center for Development and Behavioral Neuroscience; Binghamton University; Binghamton NY
- Facultad de Psicología; Universidad Nacional de Córdoba; Córdoba Argentina
| |
Collapse
|
13
|
Fernández MS, Fabio MC, Miranda-Morales RS, Virgolini MB, De Giovanni LN, Hansen C, Wille-Bille A, Nizhnikov ME, Spear LP, Pautassi RM. Age-related effects of chronic restraint stress on ethanol drinking, ethanol-induced sedation, and on basal and stress-induced anxiety response. Alcohol 2016; 51:89-100. [PMID: 26830848 DOI: 10.1016/j.alcohol.2015.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/16/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
Abstract
Adolescents are sensitive to the anxiolytic effect of ethanol, and evidence suggests that they may be more sensitive to stress than adults. Relatively little is known, however, about age-related differences in stress modulation of ethanol drinking or stress modulation of ethanol-induced sedation and hypnosis. We observed that chronic restraint stress transiently exacerbated free-choice ethanol drinking in adolescent, but not in adult, rats. Restraint stress altered exploration patterns of a light-dark box apparatus in adolescents and adults. Stressed animals spent significantly more time in the white area of the maze and made significantly more transfers between compartments than their non-stressed peers. Behavioral response to acute stress, on the other hand, was modulated by prior restraint stress only in adults. Adolescents, unlike adults, exhibited ethanol-induced motor stimulation in an open field. Stress increased the duration of loss of the righting reflex after a high ethanol dose, yet this effect was similar at both ages. Ethanol-induced sleep time was much higher in adult than in adolescent rats, yet stress diminished ethanol-induced sleep time only in adults. The study indicates age-related differences that may increase the risk for initiation and escalation in alcohol drinking.
Collapse
|
14
|
Bisby JA, King JA, Sulpizio V, Degeilh F, Valerie Curran H, Burgess N. Extinction learning is slower, weaker and less context specific after alcohol. Neurobiol Learn Mem 2015; 125:55-62. [PMID: 26234587 PMCID: PMC4655873 DOI: 10.1016/j.nlm.2015.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 07/24/2015] [Indexed: 11/29/2022]
Abstract
Alcohol is frequently involved in psychological trauma and often used by individuals to reduce fear and anxiety. We examined the effects of alcohol on fear acquisition and extinction within a virtual environment. Healthy volunteers were administered alcohol (0.4 g/kg) or placebo and underwent acquisition and extinction from different viewpoints of a virtual courtyard, in which the conditioned stimulus, paired with a mild electric shock, was centrally located. Participants returned the following day to test fear recall from both viewpoints of the courtyard. Skin conductance responses were recorded as an index of conditioned fear. Successful fear acquisition under alcohol contrasted with impaired extinction learning evidenced by persistent conditioned responses (Experiment 1). Participants’ impairments in extinction under alcohol correlated with impairments in remembering object-locations in the courtyard seen from one viewpoint when tested from the other viewpoint. Alcohol-induced extinction impairments were overcome by increasing the number of extinction trials (Experiment 2). However, a test of fear recall the next day showed persistent fear in the alcohol group across both viewpoints. Thus, alcohol impaired extinction rather than acquisition of fear, suggesting that extinction is more dependent than acquisition on alcohol-sensitive representations of spatial context. Overall, extinction learning under alcohol was slower, weaker and less context-specific, resulting in persistent fear at test that generalized to the extinction viewpoint. The selective effect on extinction suggests an effect of alcohol on prefrontal involvement, while the reduced context-specificity implicates the hippocampus. These findings have important implications for the use of alcohol by individuals with clinical anxiety disorders.
Collapse
Affiliation(s)
- James A Bisby
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AR, UK; Institute of Neurology, University College London, Queen Square, London, WC1 3BG, UK.
| | - John A King
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AR, UK; Clinical, Education and Health Psychology, University College London, London, UK
| | - Valentina Sulpizio
- Department of Psychology, Sapienza University, Rome, Italy; Laboratory of Neuropsychology, Fondazione Santa Lucia IRCCS, Roma, Italy
| | - Fanny Degeilh
- Inserm-EPHE-UCBN, Unité U1077, Boulevard Becquerel, 14000 Caen, France
| | - H Valerie Curran
- Clinical Psychopharmacology Unit, University College London, London, UK; Clinical, Education and Health Psychology, University College London, London, UK
| | - Neil Burgess
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AR, UK; Institute of Neurology, University College London, Queen Square, London, WC1 3BG, UK.
| |
Collapse
|
15
|
Miranda-Morales RS, Nizhnikov ME, Waters DH, Spear NE. New evidence of ethanol's anxiolytic properties in the infant rat. Alcohol 2014; 48:367-74. [PMID: 24776303 DOI: 10.1016/j.alcohol.2014.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/16/2013] [Accepted: 01/28/2014] [Indexed: 12/24/2022]
Abstract
Ethanol induces appetitive, aversive, and anxiolytic effects that are involved in the development of ethanol use and dependence. Because early ethanol exposure produces later increased responsiveness to ethanol, considerable effort has been devoted to analysis of ethanol's appetitive and aversive properties during early ontogeny. Yet, there is a relative scarcity of research related to the anxiolytic effects of ethanol during early infancy, perhaps explained by a lack of age-appropriate tests. The main aim of this study was to validate a model for the assessment of ethanol's anxiolytic effects in the infant rat (postnatal days 13-16). The potentially anxiolytic effects of ethanol tested included: i) amelioration of conditioned place aversion, ii) ethanol intake in the presence of an aversive conditioned stimulus, iii) the inhibitory behavioral effect in an anxiogenic environment, and iv) innate aversion to a brightly illuminated area in a modified light/dark paradigm. Ethanol doses employed across experiments were 0.0, 0.5, and 2.0 g/kg. Results indicated that a low ethanol dose (0.5 g/kg) was effective in attenuating expression of a conditioned aversion. Ethanol intake, however, was unaffected by simultaneous exposure to an aversive stimulus. An anxiogenic environment diminished ethanol-induced locomotor stimulation. Finally, animals given 0.5 g/kg ethanol and evaluated in a light/dark box showed increased time spent in the illuminated area and increased latency to escape from the brightly lit compartment than rats treated with a higher dose of ethanol or vehicle. These new results suggest that ethanol doses as low as 0.5 g/kg are effective in ameliorating an aversive and/or anxiogenic state in preweanling rats. These behavioral preparations can be used to assess ethanol's anxiolytic properties during early development.
Collapse
Affiliation(s)
- Roberto Sebastián Miranda-Morales
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902-6000, USA.
| | - Michael E Nizhnikov
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Dustin H Waters
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Norman E Spear
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902-6000, USA
| |
Collapse
|
16
|
Fernández M, Fabio MC, Nizhnikov ME, Spear NE, Abate P, Pautassi RM. Maternal isolation during the first two postnatal weeks affects novelty-induced responses and sensitivity to ethanol-induced locomotor activity during infancy. Dev Psychobiol 2013; 56:1070-82. [DOI: 10.1002/dev.21192] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 12/02/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Macarena Fernández
- Instituto de Investigación Médica M. y M. Ferreyra; INIMEC-CONICET; Universidad Nacional de Córdoba; Córdoba C.P. 5000 Argentina
- Facultad de Psicología; Universidad Nacional de Córdoba; Córdoba C.P. 5000 Argentina
| | - María Carolina Fabio
- Instituto de Investigación Médica M. y M. Ferreyra; INIMEC-CONICET; Universidad Nacional de Córdoba; Córdoba C.P. 5000 Argentina
- Facultad de Psicología; Universidad Nacional de Córdoba; Córdoba C.P. 5000 Argentina
| | - Michael E Nizhnikov
- Center for Developmental Psychobiology; Binghamton University; Binghamton NY 13902-6000
| | - Norman E. Spear
- Center for Developmental Psychobiology; Binghamton University; Binghamton NY 13902-6000
| | - Paula Abate
- Instituto de Investigación Médica M. y M. Ferreyra; INIMEC-CONICET; Universidad Nacional de Córdoba; Córdoba C.P. 5000 Argentina
- Facultad de Psicología; Universidad Nacional de Córdoba; Córdoba C.P. 5000 Argentina
| | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra; INIMEC-CONICET; Universidad Nacional de Córdoba; Córdoba C.P. 5000 Argentina
- Facultad de Psicología; Universidad Nacional de Córdoba; Córdoba C.P. 5000 Argentina
| |
Collapse
|
17
|
Fabio MC, March SM, Molina JC, Nizhnikov ME, Spear NE, Pautassi RM. Prenatal ethanol exposure increases ethanol intake and reduces c-Fos expression in infralimbic cortex of adolescent rats. Pharmacol Biochem Behav 2012; 103:842-52. [PMID: 23266368 DOI: 10.1016/j.pbb.2012.12.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 12/18/2022]
Abstract
Prenatal ethanol exposure significantly increases later predisposition for alcohol intake, but the mechanisms associated with this phenomenon remain hypothetical. This study analyzed (Experiment 1) ethanol intake in adolescent inbred WKAH/Hok Wistar rats prenatally exposed to ethanol (2.0g/kg) or vehicle, on gestational days 17-20. Subsequent Experiments (2, 3 and 4) tested several variables likely to underlie the effect of gestational ethanol on adolescent ethanol preference, including ethanol-induced locomotor activation (LMA), ethanol-induced emission of ultrasonic vocalizations (USVs) after exposure to a rough exteroceptive stimulus, and induction of the immediate early gene C-fos in brain areas associated with processing of reward stimuli and with the retrieval and extinction of associative learning. Prenatal ethanol induced a two-fold increase in ethanol intake. Adolescents exhibited significant ethanol-induced LMA, emitted more aversive than appetitive USVs, and postnatal ethanol administration significantly exacerbated the emission of USVs. These effects, however, were not affected by prenatal ethanol. Adolescents prenatally exposed to ethanol as fetuses exhibited reduced neural activity in infralimbic cortex (but not in prelimbic cortex or nucleus accumbens core or shell), an area that has been implicated in the extinction of drug-mediated associative memories. Ethanol metabolism was not affected by prenatal ethanol. Late gestational exposure to ethanol significantly heightened drinking in the adolescent offspring of an inbred rat strain. Ethanol-induced LMA and USVs were not associated with differential ethanol intake due to prenatal ethanol exposure. Prenatal ethanol, however, altered basal neural activity in the infralimbic prefrontal cortex. Future studies should analyze the functionality of medial prefrontal cortex after prenatal ethanol and its potential association with predisposition for heightened ethanol intake.
Collapse
Affiliation(s)
- Maria Carolina Fabio
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina
| | | | | | | | | | | |
Collapse
|
18
|
Kozlov AP, Nizhnikov ME, Kramskaya TA, Varlinskaya EI, Spear NE. μ-Opioid blockade reduces ethanol effects on intake and behavior of the infant rat during short-term but not long-term social isolation. Pharmacol Biochem Behav 2012. [PMID: 23182856 DOI: 10.1016/j.pbb.2012.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Numerous findings in adult and infant rats have shown that the endogenous opioid system is involved in control of ethanol consumption and its reinforcing effects. Opioid systems are also involved in reactivity to social isolation with several factors (age, duration, and type of isolation) affecting this modulation. The present study investigated the effects of a selective mu-opioid antagonist CTOP (0, 0.1, 0.5mg/kg), ethanol (0, 0.5 g/kg), and the interaction of the two drugs on the behavioral consequences of two types of social isolation given to preweanling rats: 1) short-term social isolation from littermates (STSI, duration 8 min) and 2) relatively long-term (5h) isolation (LTSI) from the dam and littermates. Voluntary intake of saccharin, locomotion, rearing activity, paw licking, and grooming were assessed during an 8-min. intake test. Thermal nociceptive reactivity was also measured before and after the testing session with normalized differences in pre- and post-test latencies of paw withdrawal from a hot plate (49°C) used as an index of isolation-induced analgesia (IIA). The results indicate that pharmacological blockade of mu-opioid receptors by CTOP substantially attenuated ethanol's anxiolytic effects on the developing rat's reactions to social isolation. Some of these stress-attenuating effects of CTOP were observed only in animals exposed to short-term isolation (STSI) but not in pups isolated for 5h (LTSI). Ethanol selectively increased saccharin intake during STSI in females and CTOP blocked this effect. Ethanol decreased the magnitude of analgesia associated with STSI but had no effect on pain reactivity during LTSI. CTOP by itself did not affect IIA or saccharin intake in sober animals. The findings of the present experiments indicate that the anxiolytic effects of 0.5 g/kg ethanol on pups exposed to STSI are modulated by endogenous opioid activity.
Collapse
Affiliation(s)
- Andrey P Kozlov
- Center for Development & Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York 13902-6000, United States
| | | | | | | | | |
Collapse
|
19
|
Kozlov AP, Nizhnikov ME, Varlinskaya EI, Spear NE. The role of social isolation in ethanol effects on the preweanling rat. Behav Brain Res 2012; 227:43-57. [PMID: 22051944 DOI: 10.1016/j.bbr.2011.10.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/19/2011] [Indexed: 01/08/2023]
Abstract
The present experiments investigated the effects of acute ethanol exposure on voluntary intake of 0.1% saccharin or water as well as behavioral and nociceptive reactivity in 12-day-old (P12) rats exposed to differing levels of isolation. The effects of ethanol emerged only during short-term social isolation (STSI) with different patterns observed in males and females and in pups exposed to saccharin or water. The 0.5g/kg ethanol dose selectively increased saccharin intake in females, decreased rearing activity in males and attenuated isolation-induced analgesia (IIA) in all water-exposed pups. Ingestion of saccharin decreased IIA, and the 0.5g/kg ethanol dose further reduced IIA. The 1.0g/kg ethanol dose, administered either intragastrically or intraparentionally, also decreased IIA in P12 females, but not in P9 pups. A significant correlation between voluntary saccharin intake and baseline nociceptive reactivity was revealed in saline injected animals, saccharin intake was inversely correlated with behavioral activation and latency of reaction to noxious heat after 0.5g/kg ethanol in females. The 0.5g/kg ethanol dose did not affect plasma corticosterone (CORT) measured 5h after maternal separation or 20min after ethanol injection. Female pups CORT level was inversely correlated with magnitude of IIA that accompanied the first episode of STSI (pretest isolation) 1.5-2h before CORT measurement. The present findings suggest that the anxiolytic properties of ethanol are responsible for enhancement of saccharin intake during STSI. Furthermore, differential reactivity of P12 males and females to STSI plays an important role in ethanol effects observed at this age.
Collapse
Affiliation(s)
- Andrey P Kozlov
- Center for Development & Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | | | | | | |
Collapse
|
20
|
Early role of the κ opioid receptor in ethanol-induced reinforcement. Physiol Behav 2012; 105:1231-41. [PMID: 22261437 DOI: 10.1016/j.physbeh.2012.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/26/2011] [Accepted: 01/03/2012] [Indexed: 11/23/2022]
Abstract
Effects of early ethanol exposure on later ethanol intake emphasize the importance of understanding the neurobiology of ethanol-induced reinforcement early in life. Infant rats exhibit ethanol-induced appetitive conditioning and ethanol-induced locomotor activation, which have been linked in theory and may have mechanisms in common. The appetitive effects of ethanol are significantly modulated by μ and δ opioid receptors, whereas μ but not δ receptors are involved in the motor stimulant effects of ethanol during early development. The involvement of the κ opioid receptor (KOR) system in the motivational effects of ethanol has been much less explored. The present study assessed, in preweanling (infant) rats, the modulatory role of the KOR system in several paradigms sensitive to ethanol-induced reinforcement. Kappa opioid activation and blockade were examined in second-order conditioned place preference with varied timing before conditioning and with varied ethanol doses. The role of KOR on ethanol-induced locomotion and ethanol-induced taste conditioning was also explored. The experiments were based on the assumption that ethanol concurrently induces appetitive and aversive effects and that the latter may be mediated by activation of kappa receptors. The main result was that blockade of kappa function facilitated the expression of appetitive ethanol reinforcement in terms of tactile and taste conditioning. The effects of kappa activation on ethanol conditioning seemed to be independent from ethanol's stimulant effects. Kappa opioid activation potentiated the motor depressing effects of ethanol but enhanced motor activity in control subjects. Overall, the results support the hypothesis that a reduced function of the KOR system in nondependent subjects should attenuate the aversive consequences of ethanol.
Collapse
|
21
|
Pautassi RM, Nizhnikov ME, Fabio MC, Spear NE. Early maternal separation affects ethanol-induced conditioning in a nor-BNI insensitive manner, but does not alter ethanol-induced locomotor activity. Pharmacol Biochem Behav 2011; 100:630-8. [PMID: 22108648 DOI: 10.1016/j.pbb.2011.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/29/2011] [Accepted: 11/07/2011] [Indexed: 12/12/2022]
Abstract
Early environmental stress significantly affects the development of offspring. This stress has been modeled in rats through the maternal separation (MS) paradigm, which alters the functioning of the HPA axis and can enhance ethanol intake at adulthood. Infant rats are sensitive to ethanol's reinforcing effects, which modulate ethanol seeking and intake. Little is known about the impact of MS on sensitivity to ethanol's appetitive and aversive effects during infancy. The present study assessed ethanol-induced conditioned place preference established through second-order conditioning (SOC), spontaneous or ethanol-induced locomotor activity and ethanol intake in preweanling rats that experienced normal animal facility rearing (AFR) or daily episodes of maternal separation (MS) during postnatal days 1-13 (PDs 1-13). Low-ethanol dose (0.5 g/kg) induced appetitive conditioned place preference (via SOC) in control rats given conventional rearing but not in rats given maternal separation in early infancy, whereas 2.0 g/kg ethanol induced aversive conditioned place preference in the former but not the latter. The administration of a kappa antagonist at PD 1 or immediately before testing did not alter ethanol-induced reinforcement. High (i.e., 2.5 and 2.0 g/kg) but not low (i.e., 0.5 g/kg) ethanol dose induced reliable motor stimulation, which was independent of early maternal separation. Ethanol intake and blood alcohol levels during conditioning were unaffected by rearing conditions. Pups given early maternal separation had lower body weights than controls and showed an altered pattern of exploration when placed in an open field. These results indicate that, when assessed in infant rats, earlier maternal separation alters the balance between the appetitive and aversive motivational effects of ethanol but has no effect on the motor activating effects of the drug.
Collapse
Affiliation(s)
- Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET), Córdoba, C.P 5000, Argentina.
| | | | | | | |
Collapse
|
22
|
March SM, Abate P, Spear NE, Molina JC. Fetal exposure to moderate ethanol doses: heightened operant responsiveness elicited by ethanol-related reinforcers. Alcohol Clin Exp Res 2009; 33:1981-93. [PMID: 19719792 PMCID: PMC3085171 DOI: 10.1111/j.1530-0277.2009.01037.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Prenatal exposure to moderate ethanol doses during late gestation modifies postnatal ethanol palatability and ingestion. The use of Pavlovian associative procedures has indicated that these prenatal experiences broaden the range of ethanol doses capable of supporting appetitive conditioning. Recently, a novel operant technique aimed at analyzing neonatal predisposition to gain access to ethanol has been developed. Experiment 1 tested the operant conditioning technique for developing rats described by Arias and colleagues (2007) and Bordner and colleagues (2008). In Experiment 2, we analyzed changes in the disposition to gain access to ethanol as a result of moderate prenatal exposure to the drug. METHODS In Experiment 1, newborn pups were intraorally cannulated and placed in a supine position that allowed access to a touch-sensitive sensor. Paired pups received an intraoral administration of a given reinforcer (milk or quinine) contingent upon physical contact with the sensor. Yoked controls received similar reinforcers only when Paired pups activated the circuit. In Experiment 2, natural reinforcers (water or milk) as well as ethanol (3% or 6% v/v) or an ethanol-related reinforcer (sucrose compounded with quinine) were tested. In this experiment, pups had been exposed to water or ethanol (1 or 2 g/kg) during gestational days 17 to 20. RESULTS Experiment 1 confirmed previous results showing that 1-day-old pups rapidly learn an operant task to gain access to milk, but not to gain access to a bitter tastant. Experiment 2 showed that water and milk were highly reinforcing across prenatal treatments. Furthermore, general activity during training was not affected by prenatal exposure to ethanol. Most importantly, prenatal ethanol exposure facilitated conditioning when the reinforcer was 3% v/v ethanol or a psychophysical equivalent of ethanol's gustatory properties (sucrose-quinine). CONCLUSIONS The present results suggest that late prenatal experience with ethanol changes the predisposition of the newborn to gain access to ethanol-related stimuli. In conjunction with prior literature, this study emphasizes the fact that intrauterine experience with ethanol not only augments ethanol's palatability and ingestion, but also facilitates the acquisition of response-stimulus associations where the drug acts as an intraoral reinforcer.
Collapse
Affiliation(s)
- Samanta M. March
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC – CONICET), Córdoba, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paula Abate
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC – CONICET), Córdoba, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Norman E. Spear
- Center for Developmental Psychobiology, Binghamton University, Binghamton, NY, USA
| | - Juan Carlos Molina
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC – CONICET), Córdoba, Argentina
- Center for Developmental Psychobiology, Binghamton University, Binghamton, NY, USA
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
23
|
Nizhnikov ME, Pautassi RM, Truxell E, Spear NE. Opioid antagonists block the acquisition of ethanol-mediated conditioned tactile preference in infant rats. Alcohol 2009; 43:347-58. [PMID: 19671461 DOI: 10.1016/j.alcohol.2009.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 06/11/2009] [Accepted: 06/20/2009] [Indexed: 11/24/2022]
Abstract
It has been difficult to find conditioned preference for tactile cues paired with ethanol intoxication in rats. Toward understanding the ontogeny of ethanol reinforcement, we aimed at establishing a simple and reliable procedure for (1) assessing primary appetitive conditioning to ethanol in infant rats and (2) discerning the role the opioid system plays in ethanol-mediated conditioning at this age. Experiment 1 determined the parameters (i.e., dose, interval of conditioning) for assessing ethanol-mediated conditioning. Pups were then trained with differential Pavlovian conditioning (Experiments 2 and 3) in which ethanol intoxication (1.0-2.0 g/kg, intragastrically or intraperitoneally delivered) was paired with a tactile stimulus (sandpaper) while an alternative texture signaled the absence of ethanol's effects. Unpaired control conditions were also used. Tactile preferences were assessed after two conditioning sessions. Paired rats spent significantly more time on sandpaper than unpaired controls, an effect that was greater after intragastric administration of 1.0 than 2.0 g/kg ethanol. This effect was replicated in Experiments 4a and 4c and found to be inhibited by pretreatment with general (naloxone [NAL]) or specific (d-Pen-Cys-Tyr-d-Trp-Orn-Thr-Pen-Thr-NH2 [CTOP] and naltrindole) opioid antagonists. Blood ethanol levels at conditioning were not altered by NAL (Experiment 4b). The study outlines a procedure that reveals appetitive conditioning to ethanol by infant rats. The results are discussed in terms of a potential ethanol-induced activation of the endogenous opioid system during the onset of the intoxication process.
Collapse
|
24
|
Pautassi RM, Nizhnikov ME, Spear NE. Assessing appetitive, aversive, and negative ethanol-mediated reinforcement through an immature rat model. Neurosci Biobehav Rev 2009; 33:953-74. [PMID: 19428502 PMCID: PMC2693872 DOI: 10.1016/j.neubiorev.2009.03.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 03/13/2009] [Accepted: 03/13/2009] [Indexed: 11/25/2022]
Abstract
The motivational effects of drugs play a key role during the transition from casual use to abuse and dependence. Ethanol reinforcement has been successfully studied through Pavlovian and operant conditioning in adult rats and mice genetically selected for their ready acceptance of ethanol. Another model for studying ethanol reinforcement is the immature (preweanling) rat, which consumes ethanol and exhibits the capacity to process tactile, odor and taste cues and transfer information between different sensorial modalities. This review describes the motivational effects of ethanol in preweanling, heterogeneous non-selected rats. Preweanlings exhibit ethanol-mediated conditioned taste avoidance and conditioned place aversion. Ethanol's appetitive effects, however, are evident when using first- and second-order conditioning and operant procedures. Ethanol also devalues the motivational representation of aversive stimuli, suggesting early negative reinforcement. It seems that preweanlings are highly sensitive not only to the aversive motivational effects of ethanol but also to its positive and negative (anti-anxiety) reinforcement potential. The review underscores the advantages of using a developing rat to evaluate alcohol's motivational effects.
Collapse
Affiliation(s)
- Ricardo M Pautassi
- Center for Development and Behavioral Neuroscience, State University of New York at Binghamton, Binghamton, NY 13902-6000, USA.
| | | | | |
Collapse
|
25
|
Conditioned preferences and aversions in infant rats mediated through ethanol inhalation. Alcohol 2009; 43:1-12. [PMID: 19185205 DOI: 10.1016/j.alcohol.2008.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Revised: 09/16/2008] [Accepted: 09/18/2008] [Indexed: 11/22/2022]
Abstract
Little is known about the acute motivational effects of inhaled ethanol during early postnatal development. We analyzed the motivational properties of ethanol inhalation in infant rats by using two distinct schedules of ethanol vapor delivery. Ethanol was presented in a continuous conditioning trial or in separate, distributed trials. Maximum blood ethanol concentrations (BECs) induced by these schedules were 55 and 15 mg%, respectively (Experiment 1). In Experiment 2, subjects were given daily pairings (postnatal days [PD] 14 and 15) between a tactile conditioned stimulus (CS, sandpaper) and the postabsorptive effects of ethanol inhalation. A tactile preference test (PD16) revealed a significant aversion for the CS in pups given continuous exposure to ethanol vapor. In Experiment 3, an ethanol pre-exposure phase (PD13) preceded tactile-ethanol pairings. During conditioning, pups were given distributed pairings between the tactile CS and ethanol or uncontaminated air. At test, ethanol-pre-exposed animals spent significantly more time on the ethanol-related CS than on an alternative texture. These results indicate that inhaled ethanol exerts differential hedonic effects in infant rats as a function of schedules of exposure that yield different levels of intoxication. Continuous experience with ethanol vapor induces aversive learning. Yet, pre-exposure to ethanol vapor allowed expression of ethanol-induced appetitive learning in pups given distributed vapor ethanol exposure.
Collapse
|
26
|
Arias C, Mlewski EC, Miller S, Molina JC, Spear NE. Novelty modulates the stimulating motor effects of ethanol in preweanling rats. Pharmacol Biochem Behav 2009; 92:448-56. [PMID: 19463258 DOI: 10.1016/j.pbb.2009.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/08/2009] [Accepted: 01/16/2009] [Indexed: 11/19/2022]
Abstract
During early ontogeny heterogeneous rats are sensitive to ethanol's stimulating effects. In adulthood locomotor activity in a novel environment is a valuable predictor of acute sensitivity to the activating effects of various drugs, including ethanol. Environmental novelty modulates response to ethanol and other drugs in adult rats. The present study analyzed the role of novelty in the acute locomotor response induced by ethanol earlier in development, during the preweanling period, a stage characterized by enhanced sensitivity to ethanol's reinforcing effects. In Experiment 1 we evaluated the predictive value of baseline locomotor activity upon ethanol-induced locomotor effects in 12-day-old rats. In Experiment 2 we tested whether repeated familiarization with the testing environment would reduce the stimulating effects induced by ethanol on postnatal day 12. Individual differences in response to an inescapable novel environment significantly predicted the locomotor activating effects of ethanol, but not other acute effects of the drug, such as hypothermia, motor impairment or sedation. Behavioral activation induced by ethanol during the preweanling period was attenuated after familiarization with the testing environment, suggesting that environmental novelty is critical for activating effects of ethanol.
Collapse
Affiliation(s)
- Carlos Arias
- Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902-6000, USA.
| | | | | | | | | |
Collapse
|
27
|
Ponce LF, Pautassi RM, Spear NE, Molina JC. Ethanol-mediated operant learning in the infant rat leads to increased ethanol intake during adolescence. Pharmacol Biochem Behav 2008; 90:640-50. [PMID: 18571224 DOI: 10.1016/j.pbb.2008.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 05/07/2008] [Accepted: 05/15/2008] [Indexed: 11/28/2022]
Abstract
Recent studies indicate that the infant rat has high affinity for ethanol ingestion and marked sensitivity to the drug's reinforcing effects [Spear, N.E., Molina, J.C. Fetal or infantile exposure to ethanol promotes ethanol ingestion in adolescence and adulthood: a theoretical review. Alcohol Clin Exp Res 2005; 29: 909-29.]. A novel operant technique was developed to analyze reinforcing effects of ethanol delivery during the third postnatal week. The impact of this ethanol-reinforcement experience upon subsequent ethanol consumption during adolescence (postnatal weeks 5-6) was also examined. In Experiment 1, pups (postnatal days 14-17) were given an explicit contingency between nose-poking behavior and intraoral delivery of either water or 3.75% v/v ethanol (paired groups). Yoked controls (pups receiving either reinforcer independently of their behavior) were also included. Paired subjects reinforced with ethanol exhibited rapid and robust operant conditioning leading to blood ethanol concentrations in the 25-48 mg% range. In Experiment 2, a higher ethanol concentration (7.5% v/v) provided significant reinforcement. During adolescence, animals originally reinforced with 3.75% v/v ethanol exhibited greater ingestion of ethanol than control animals without prior ethanol reinforcement. These results indicate that, without extensive initiation to ethanol, infant rats rapidly learn to gain access to ethanol and that this experience has a significant impact upon later ethanol intake patterns.
Collapse
Affiliation(s)
- Luciano Federico Ponce
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC - CONICET), Córdoba, CP 5000, Argentina
| | | | | | | |
Collapse
|
28
|
Bordner KA, Molina JC, Spear NE. Analysis of Ethanol Reinforcement in 1-Day-Old Rats: Assessment Through a Brief and Novel Operant Procedure. Alcohol Clin Exp Res 2008; 32:580-92. [DOI: 10.1111/j.1530-0277.2007.00609.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Arias C, Molina JC, Mlewski EC, Pautassi RM, Spear N. Acute sensitivity and acute tolerance to ethanol in preweanling rats with or without prenatal experience with the drug. Pharmacol Biochem Behav 2008; 89:608-22. [PMID: 18374972 DOI: 10.1016/j.pbb.2008.02.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 02/12/2008] [Accepted: 02/15/2008] [Indexed: 10/22/2022]
Abstract
The present study examined behavioral sensitivity and acute tolerance to ethanol in infants with or without a moderate prenatal ethanol experience. During gestational days 17-20 dams received 0.0 or 2.0 g/kg ethanol. On postnatal day 13 pups were administered 0.0, 0.5 or 2.5 g/kg ethanol prior to assessment of locomotion. One third of the pups were evaluated at 5-10, 30-35 and 60-65 min after ethanol administration; another third was tested only during the last two post-administration periods; and the remaining third was tested only at 60-65 min. At 30-35 min blood ethanol levels were similar to those attained at 60-65 min. The main results of the study were: (a) The 2.5 g/kg ethanol dose induced biphasic motor effects: stimulation 5-10 min after drug administration and sedation after 30-35 or 60-65 min. (b) Infants exhibited acute tolerance to ethanol's sedative effects. (c) Although pups prenatally treated with ethanol exhibited heightened locomotor activity levels, acute sensitivity and tolerance were not affected by prenatal treatment. In summary, infants are sensitive to biphasic motor consequences of ethanol and readily exhibit acute tolerance to ethanol's sedative effects. In addition, moderate prenatal ethanol exposure was sufficient to induce hyper-reactivity in the offspring without affecting habituation.
Collapse
Affiliation(s)
- Carlos Arias
- Center for Developmental Psychobiology, Binghamton University, Binghamton, NY 13902-6000, USA.
| | | | | | | | | |
Collapse
|
30
|
Pautassi RM, Arias C, Molina JC, Spear N. Domperidone interferes with conditioned disgust reactions but not taste avoidance evoked by a LiCl-paired taste in infant rats. Dev Psychobiol 2008; 50:343-52. [DOI: 10.1002/dev.20288] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|