1
|
Lepreux G, Henricks AM, Wei G, Go BS, Erikson CM, Abella RM, Pham A, Walker BM. Kappa-opioid receptor antagonism in the nucleus accumbens shell distinguishes escalated alcohol consumption and negative affective-like behavior from physiological withdrawal in alcohol-dependence. Pharmacol Biochem Behav 2024; 243:173840. [PMID: 39096973 DOI: 10.1016/j.pbb.2024.173840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Alcohol use disorder (AUD) is a chronic relapsing disease that is deleterious at individual, familial, and societal levels. Although AUD is one of the highest preventable causes of death in the USA, therapies for the treatment of AUD are not sufficient given the heterogeneity of the disorder and the limited number of approved medications. To provide better pharmacological strategies, it is important to understand the neurological underpinnings of AUD. Evidence implicates the endogenous dynorphin (DYN)/κ-opioid receptor (KOR) system recruitment in dysphoric and negative emotional states in AUD to promote maladaptive behavioral regulation. The nucleus accumbens shell (AcbSh), mediating motivational and emotional processes that is a component of the mesolimbic dopamine system and the extended amygdala, is an important site related to alcohol's reinforcing actions (both positive and negative) and neuroadaptations in the AcbSh DYN/KOR system have been documented to induce maladaptive symptoms in AUD. We have previously shown that in other nodes of the extended amygdala, site-specific KOR antagonism can distinguish different symptoms of alcohol dependence and withdrawal. In the current study, we examined the role of the KOR signaling in the AcbSh of male Wistar rats in operant alcohol self-administration, measures of negative affective-like behavior, and physiological symptoms during acute alcohol withdrawal in alcohol-dependence. To induce alcohol dependence, rats were exposed to chronic intermittent ethanol vapor for 14 h/day for three months, during which stable escalation of alcohol self-administration was achieved and pharmacological AcbSh KOR antagonism ensued. The results showed that AcbSh KOR antagonism significantly reduced escalated alcohol intake and negative affective-like states but did not alter somatic symptoms of withdrawal. Understanding the relative contribution of these different drivers is important to understand and inform therapeutic efficacy approaches in alcohol dependence and further emphasis the importance of the KOR/DYN system as a target for AUD therapeutics.
Collapse
Affiliation(s)
- Gaetan Lepreux
- Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Angela M Henricks
- Department of Psychology, Washington State University, Pullman, WA, USA
| | - Gengze Wei
- Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Department of Psychology, Washington State University, Pullman, WA, USA
| | - Bok Soon Go
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Chloe M Erikson
- Department of Psychology, Washington State University, Pullman, WA, USA
| | - Rachel M Abella
- Department of Psychology, Washington State University, Pullman, WA, USA
| | - Amy Pham
- Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Brendan M Walker
- Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Department of Psychology, Washington State University, Pullman, WA, USA; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; USF Neuroscience Institute, USF Health, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
2
|
Lepreux G, Shinn GE, Wei G, Suko A, Concepcion G, Sirohi S, Soon Go B, Bruchas MR, Walker BM. Recapitulating phenotypes of alcohol dependence via overexpression of Oprk1 in the ventral tegmental area of non-dependent TH::Cre rats. Neuropharmacology 2023; 228:109457. [PMID: 36764577 PMCID: PMC10034863 DOI: 10.1016/j.neuropharm.2023.109457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
The dynorphin (DYN)/kappa-opioid receptor (KOR) system is involved in dysphoria and negative emotional states. Dysregulation of KOR function promotes maladaptive behavioral regulation during withdrawal associated with alcohol dependence. Mesolimbic dopaminergic (DA) projections from the ventral tegmental area (VTA) innervate the extended amygdala circuitry and presynaptic KORs attenuate DA in these regions leading to an excessive alcohol consumption and negative affective-like behavior, whereas mesocortical KOR-regulated DA projections have been implicated in executive function and decision-making. Thus, the neuroadaptations occurring in DYN/KOR systems are important aspects to consider for the development of personalized therapeutic solutions. Herein, we study the contribution of the VTA DA neuron Oprk1 (KOR gene) in excessive alcohol consumption, negative emotional state, and executive function. To do so, Oprk1 mRNA expression and KOR function were characterized to confirm alcohol dependence-induced dysregulation in the VTA. Then, a transgenic Cre-Lox rat model (male and female TH::Cre rats) was used to allow for conditional and inducible overexpression of Oprk1 in VTA DA neurons. The effect of this overexpression was evaluated on operant alcohol self-administration, negative emotional states, and executive function. We found that VTA Oprk1 overexpression recapitulates some phenotypes of alcohol dependence including escalated alcohol self-administration and depressive-like behavior. However, working memory performance was not impacted following VTA Oprk1 overexpression in TH::Cre rats. This supports the hypothesis that dysregulated KOR signaling within the mesolimbic DA system is an important contributor to symptoms of alcohol dependence and shows that understanding Oprk1-mediated contributions to alcohol use disorder (AUD) should be an important future goal.
Collapse
Affiliation(s)
- Gaetan Lepreux
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychiatry and Behavioral Neurosciences, Tampa, FL, USA
| | - Grace E Shinn
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Gengze Wei
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychiatry and Behavioral Neurosciences, Tampa, FL, USA
| | - Azra Suko
- Department of Anesthesiology and Pain Medicine, Seattle, WA, USA
| | - George Concepcion
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychiatry and Behavioral Neurosciences, Tampa, FL, USA
| | - Sunil Sirohi
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, USA
| | - Bok Soon Go
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, Seattle, WA, USA; Department of Pharmacology, Seattle, WA, USA; Center for the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA, USA
| | - Brendan M Walker
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychiatry and Behavioral Neurosciences, Tampa, FL, USA; Department of Molecular Medicine, Tampa, FL, USA; USF Health Neuroscience Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
3
|
de Guglielmo G, Simpson S, Kimbrough A, Conlisk D, Baker R, Cantor M, Kallupi M, George O. Voluntary and forced exposure to ethanol vapor produces similar escalation of alcohol drinking but differential recruitment of brain regions related to stress, habit, and reward in male rats. Neuropharmacology 2023; 222:109309. [PMID: 36334765 PMCID: PMC10022477 DOI: 10.1016/j.neuropharm.2022.109309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
A major limitation of the most widely used current animal models of alcohol dependence is that they use forced exposure to ethanol including ethanol-containing liquid diet and chronic intermittent ethanol (CIE) vapor to produce clinically relevant blood alcohol levels (BAL) and addiction-like behaviors. We recently developed a novel animal model of voluntary induction of alcohol dependence using ethanol vapor self-administration (EVSA). However, it is unknown whether EVSA leads to an escalation of alcohol drinking per se, and whether such escalation is associated with neuroadaptations in brain regions related to stress, reward, and habit. To address these issues, we compared the levels of alcohol drinking during withdrawal between rats passively exposed to alcohol (CIE) or voluntarily exposed to EVSA and measured the number of Fos+ neurons during acute withdrawal (16 h) in key brain regions important for stress, reward, and habit-related processes. CIE and EVSA rats exhibited similar BAL and similar escalation of alcohol drinking and motivation for alcohol during withdrawal. Acute withdrawal from EVSA and CIE recruited a similar number of Fos+ neurons in the Central Amygdala (CeA), however, acute withdrawal from EVSA recruited a higher number of Fos+ neurons in every other brain region analyzed compared to acute withdrawal from CIE. In summary, while the behavioral measures of alcohol dependence between the voluntary (EVSA) and passive (CIE) model were similar, the recruitment of neuronal ensembles during acute withdrawal was very different. The EVSA model may be particularly useful to unveil the neuronal networks and pharmacology responsible for the voluntary induction and maintenance of alcohol dependence and may improve translational studies by providing preclinical researchers with an animal model that highlights the volitional aspects of alcohol use disorder.
Collapse
Affiliation(s)
| | - Sierra Simpson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47906, USA
| | - Dana Conlisk
- Univ. Bordeaux, INSERM, Neurocenter Magendie, Psychobiology of Drug Addiction Group, U1215, F-33000, Bordeaux, France
| | - Robert Baker
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Maxwell Cantor
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Marsida Kallupi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Olivier George
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Carpio MJ, Gao R, Wooner E, Cayton CA, Richard JM. Alcohol availability during withdrawal gates the impact of alcohol vapor exposure on responses to alcohol cues. Psychopharmacology (Berl) 2022; 239:3103-3116. [PMID: 35881146 PMCID: PMC9526241 DOI: 10.1007/s00213-022-06192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022]
Abstract
RATIONALE Chronic intermittent ethanol (CIE) vapor inhalation is a widely used model of alcohol dependence, but the impact of CIE on cue-elicited alcohol seeking is poorly understood. OBJECTIVE Here, we assessed the effects of CIE on alcohol-seeking elicited by cues paired with alcohol before or after CIE vapor inhalation. METHODS In experiment 1, male and female Long-Evans rats were trained in a discriminative stimulus (DS) task, in which one auditory cue (the DS) predicts the availability of 15% ethanol and a control cue (the NS) predicts no ethanol. Rats then underwent CIE or served as controls. Subsets of each group received access to oral ethanol twice a week during acute withdrawal. After CIE, rats were presented with the DS and NS cues under extinction and retraining conditions to determine whether they would alter their responses to these cues. In experiment 2, rats underwent CIE prior to training in the DS task. RESULTS CIE enhanced behavioral responses to cues previously paired with alcohol, but only in rats that received access to alcohol during acute withdrawal. When CIE occurred before task training, male rats were slower to develop cue responses and less likely to enter the alcohol port, even though they had received alcohol during acute withdrawal. CONCLUSIONS These results suggest that CIE vapor inhalation alone does not potentiate the motivational value of alcohol cues but that an increase in cue responses requires alcohol experience during acute withdrawal. Furthermore, under some conditions, CIE may disrupt responses to alcohol-paired cues.
Collapse
Affiliation(s)
- M J Carpio
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55415, USA
- Medical Discovery Team On Addiction, University of Minnesota, Minneapolis, MN, 55415, USA
| | - Runbo Gao
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55415, USA
- Medical Discovery Team On Addiction, University of Minnesota, Minneapolis, MN, 55415, USA
| | - Erica Wooner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55415, USA
- Medical Discovery Team On Addiction, University of Minnesota, Minneapolis, MN, 55415, USA
| | - Christelle A Cayton
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55415, USA
- Medical Discovery Team On Addiction, University of Minnesota, Minneapolis, MN, 55415, USA
| | - Jocelyn M Richard
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55415, USA.
- Medical Discovery Team On Addiction, University of Minnesota, Minneapolis, MN, 55415, USA.
| |
Collapse
|
5
|
Hashimoto N, Habu H, Takao S, Sakamoto S, Okahisa Y, Matsuo K, Takaki M, Kishi Y, Yamada N. Clinical moderators of response to nalmefene in a randomized-controlled trial for alcohol dependence: An exploratory analysis. Drug Alcohol Depend 2022; 233:109365. [PMID: 35228081 DOI: 10.1016/j.drugalcdep.2022.109365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Nalmefene is the only medication marketed to reduce the consumption of alcohol in patients with alcohol dependence, but it remains unclear which patients could most benefit from it. This study aimed to identify clinical moderators that affect treatment response to nalmefene in patients with alcohol dependence. METHODS In a multicenter, randomized, controlled, double-blind, phase 3 study of nalmefene on Japanese patients with alcohol dependence, the relationship between the reduction of heavy drinking days (HDD) and total alcohol consumption (TAC) at 12 and 24 weeks of treatment and baseline variables of the participants were analyzed in a linear regression and multiple adjusted analysis. RESULTS Age < 65, no family history of problem drinking, age at onset of problem drinking ≥ 25, and not currently smoking were possible positive moderators. Nalmefene showed a significant HDD reduction in patients with age < 65 or no family history of problem drinking, and a significant TAC reduction in patients with age at onset of problem drinking ≥ 25 or who were not currently smoking. After multiple adjusted analyses, age < 65 (p = .028), no family history of problem drinking (p = .047), and age at onset of problem drinking ≥ 25 (p = .030) were statistically significant. Not currently smoking (p = .071) was marginally significant. In combination, these moderators indicated synergistic effects. CONCLUSIONS Alcohol-dependent patients with favorable prognostic factors such as non-smoking status, no family history of problem drinking, and a late-onset of problem drinking selectively benefit from nalmefene. Further research is needed to validate these exploratory results.
Collapse
Affiliation(s)
- Nozomu Hashimoto
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan; Okayama Psychiatric Medical Center, Japan
| | - Hiroshi Habu
- Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Soshi Takao
- Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Shinji Sakamoto
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Yuko Okahisa
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Japan
| | - Manabu Takaki
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan.
| | | | - Norihito Yamada
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| |
Collapse
|
6
|
Tadori Y. [Pharmacological profile and clinical findings of nalmefene (Selincro ®) for reducing alcohol consumption in patients with alcohol dependence]. Nihon Yakurigaku Zasshi 2020; 155:113-119. [PMID: 32115477 DOI: 10.1254/fpj.19136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Nalmefene (Selincro®), an opioid receptor modulator, is approved in Japan, the European Union, and other countries for reducing alcohol consumption in patients with alcohol dependence. This article reviews the efficacy and safety of as-needed use of nalmefene in the treatment of alcohol dependence, as well as summarizing its pharmacological properties. Ethanol increases the release of endogenous opioids, such as β-endorphin, a μ-opioid receptor agonist; and dynorphin, a κ-opioid receptor agonist. Preclinical data suggest that nalmefene acts as an antagonist at the μ-opioid receptor and a partial agonist at the κ-opioid receptor, and reduces ethanol self-administration in ethanol-dependent and ethanol-non-dependent rats. Nalmefene counters alcohol-induced dysregulation of the β-endorphin/μ-opioid receptor and the dynorphin/κ-opioid receptor systems. In a multicenter, randomized, double-blind, phase 3 study of as-needed use of nalmefene combined with psychosocial support in alcohol-dependent Japanese patients with at least high drinking risk level, compared with placebo, nalmefene 10 mg and 20 mg significantly reduced the number of heavy drinking days and total alcohol consumption at week 12. In the 24-week treatment period, treatment-emergent adverse events occurred in ≥5% of patients in either the nalmefene 10 mg or 20 mg group and at least twice as often as in the placebo group were nausea, dizziness, somnolence, vomiting, insomnia, decreased appetite, constipation, malaise, and palpitations. Most adverse events were mild or moderate in severity. In conclusion, as-needed use of nalmefene provides a new concept for the treatment of alcohol dependence: namely, "reduction of alcohol intake".
Collapse
|
7
|
Go BS, Sirohi S, Walker BM. The role of matrix metalloproteinase-9 in negative reinforcement learning and plasticity in alcohol dependence. Addict Biol 2020; 25:e12715. [PMID: 30648329 DOI: 10.1111/adb.12715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/21/2018] [Accepted: 12/17/2018] [Indexed: 01/08/2023]
Abstract
A role for matrix metalloproteinases (MMPs) in plasticity-dependent learning has been established. MMPs degrade the extracellular matrix (ECM) when synaptic reorganization is warranted. Previously, we showed that escalation of alcohol self-administration is a learned plasticity-dependent process that requires an intact MMP system. To identify the MMP subtypes within specific brain regions that are associated with plasticity underlying the negative reinforcing effects of alcohol (as measured by escalated alcohol self-administration) during acute withdrawal in alcohol dependence, male Wistar rats were trained to self-administer alcohol in an operant paradigm, subjected to one month of intermittent alcohol vapor exposure to induce alcohol dependence and then allowed to self-administer alcohol during repeated acute withdrawal self-administration sessions. Subsequently, rat brains were extracted after initial or stable escalated alcohol self-administration phases of acute withdrawal and analyzed by immunoblot to detect MMP-2, -3, and -9 levels in the anterior cingulate cortex (ACC), bed nucleus of the stria terminalis, central amygdala (CeA), hippocampus, and nucleus accumbens (NAc). The results showed that MMP-9 expression in the CeA and NAc of alcohol-dependent rats was increased, however, MMP-9 expression in the ACC was decreased during negative reinforcement learning. Subsequently, the importance of plasticity mediated by MMP-9 in escalated alcohol self-administration during acute withdrawal was functionally assessed through site-specific intra-CeA MMP-9 inhibition during repeated acute withdrawal self-administration sessions. MMP-9 inhibition prevented acute withdrawal-induced escalation of alcohol self-administration in a manner that was not confounded by locomotor effects or a permanent inability to learn about the negative reinforcing effects of alcohol.
Collapse
Affiliation(s)
- Bok Soon Go
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Alcohol and Drug Abuse Research Program, Translational Addictions Research CenterWashington State University Pullman Washington USA
| | - Sunil Sirohi
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Alcohol and Drug Abuse Research Program, Translational Addictions Research CenterWashington State University Pullman Washington USA
| | - Brendan M. Walker
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Alcohol and Drug Abuse Research Program, Translational Addictions Research CenterWashington State University Pullman Washington USA
| |
Collapse
|
8
|
Mann K, Torup L, Sørensen P, Gual A, Swift R, Walker B, van den Brink W. Nalmefene for the management of alcohol dependence: review on its pharmacology, mechanism of action and meta-analysis on its clinical efficacy. Eur Neuropsychopharmacol 2016; 26:1941-1949. [PMID: 27842940 DOI: 10.1016/j.euroneuro.2016.10.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 10/05/2016] [Accepted: 10/29/2016] [Indexed: 12/20/2022]
Abstract
Nalmefene, a mu- and delta-opioid receptor (MOR, DOR) antagonist and a partial kappa-opioid receptor (KOR) agonist, is approved in the European Union and other countries for the reduction of alcohol consumption in alcohol dependent patients with a high drinking risk level according to WHO ("target population"). This review presents an overview of nalmefene׳s pharmacology, its mechanisms of action and a meta-analysis on its efficacy in reducing alcohol consumption. The review was based on a systematic search of the literature. Random effects meta-analyses were performed on published and unpublished trials directed at drinking reduction using the changes in heavy drinking days (HDDs) and daily total alcohol consumption (TAC) from baseline to the primary endpoint. For each included study and each dose, Hedges' g was used as an unbiased estimator of the standardised mean differences between nalmefene and placebo. Preclinical data suggests that nalmefene counters alcohol-induced dysregulations of the MOR/endorphine and the KOR/dynorphin system. Evidence further suggests that reduced alcohol consumption is an effective treatment strategy that appeals to patients not ready for abstinence. Finally, meta-analyses confirmed the efficacy of 20mg nalmefene for reducing HDDs in the ITT population (Hedge׳s g=-0.20; 95% CI -0.30 to -0.09) and the target population (Hedge׳s g=-0.33; 95% CI -0.48 to -0.18). Similar results were seen for TAC. Several meta-analyses, including this new meta-analysis, support nalmefene׳s efficacy in reducing alcohol consumption. In conclusion, because it does not require abstinence, this treatment has the potential to motivate more patients for treatment and thus helps to address a major public health concern.
Collapse
Affiliation(s)
- Karl Mann
- Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany.
| | - Lars Torup
- Novo Nordisk Foundation, Copenhagen, Denmark
| | | | - Antoni Gual
- Neurosciences Institute, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Robert Swift
- Center for Alcohol and Addiction Studies, Brown University, and the Providence VA Medical Center, Providence, RI, USA
| | - Brendan Walker
- Laboratory of Alcoholism and Addictions Neuroscience, Washington State University, WA, USA
| | - Wim van den Brink
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Kissler JL, Walker BM. Dissociating Motivational From Physiological Withdrawal in Alcohol Dependence: Role of Central Amygdala κ-Opioid Receptors. Neuropsychopharmacology 2016; 41:560-7. [PMID: 26105136 PMCID: PMC5130131 DOI: 10.1038/npp.2015.183] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/30/2015] [Accepted: 06/19/2015] [Indexed: 11/09/2022]
Abstract
Chronic intermittent alcohol vapor exposure leads to increased dynorphin (DYN) A-like peptide expression and heightened kappa-opioid receptor (KOR) signaling in the central nucleus of the amygdala (CeA) and these neuroadaptive responses differentiate alcohol-dependent from non-dependent phenotypes. Important for therapeutic development efforts is understanding the nature of the stimulus that drives dependence-like phenotypes such as escalated alcohol self-administration. Accordingly, the present study examined the impact of intra-CeA KOR antagonism on escalated operant alcohol self-administration and physiological withdrawal symptoms during acute withdrawal and protracted abstinence in rats previously exposed to chronic intermittent alcohol vapor. Following operant training, rats were implanted with intra-CeA guide cannula and exposed to long-term intermittent alcohol vapor exposure that resulted in escalated alcohol self-administration and elevated physiological withdrawal signs during acute withdrawal. Animals received intra-CeA infusions of the KOR antagonist nor-binaltorphimine (nor-BNI; 0, 2, 4, or 6 μg) prior to operant alcohol self-administration sessions and physiological withdrawal assessment during acute withdrawal and protracted abstinence. The results indicated that site-specific KOR antagonism in the CeA ameliorated escalated alcohol self-administration during both acute withdrawal and protracted abstinence test sessions, whereas KOR antagonism had no effect on physiological withdrawal scores at either time point. These results dissociate escalated alcohol self-administration from physiological withdrawal symptoms in relation to KOR signaling in the CeA and help clarify the nature of the stimulus that drives escalated alcohol self-administration during acute withdrawal and protracted abstinence.
Collapse
Affiliation(s)
- Jessica L Kissler
- Laboratory of Alcoholism and Addictions Neuroscience, Translational Addiction Research Center, Department of Psychology, Washington State University, Pullman, WA, USA
| | - Brendan M Walker
- Laboratory of Alcoholism and Addictions Neuroscience, Translational Addiction Research Center, Department of Psychology, Washington State University, Pullman, WA, USA,Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University, 100 Dairy Road, Mail code: 644820, Pullman, WA 99164-4820 USA, Tel: +1 509 335 8526, Fax: +1 509 335 5324, E-mail:
| |
Collapse
|
10
|
The tetrapartite synapse: Extracellular matrix remodeling contributes to corticoaccumbens plasticity underlying drug addiction. Brain Res 2015; 1628:29-39. [PMID: 25838241 DOI: 10.1016/j.brainres.2015.03.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/10/2015] [Accepted: 03/13/2015] [Indexed: 12/29/2022]
Abstract
Synaptic plasticity has long been known to involve three key elements of neuropil, the presynapse, the postsynapse and adjacent glia. Here we review the role of the extracellular matrix in synaptic plasticity as a necessary component forming the tetrapartite synapse. We describe the role of matrix metalloproteinases as enzymes sculpting extracellular proteins and thereby creating an extracellular signaling domain required for synaptic plasticity. Specifically we focus on the role of the tetrapartite synapse in mediating the effects of addictive drugs at cortico-striatal synapses, and conclude that the extracellular signaling domain and its regulation by matrix metalloproteinases is critical for developing and expressing drug seeking behaviors.
Collapse
|
11
|
Buck CL, Malavar JC, George O, Koob GF, Vendruscolo LF. Anticipatory 50 kHz ultrasonic vocalizations are associated with escalated alcohol intake in dependent rats. Behav Brain Res 2014; 271:171-6. [PMID: 24914463 DOI: 10.1016/j.bbr.2014.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/22/2014] [Accepted: 06/02/2014] [Indexed: 12/31/2022]
Abstract
Rats emit 50kHz ultrasonic vocalizations (USVs) in situations of increased motivation, such as during the anticipation of palatable food or drugs of abuse. Whether the same holds true for the anticipation of alcohol intake remains unknown. Alcohol drinking in a nondependent state is thought to be mediated by its rewarding effects (positive reinforcement), whereas drinking in the dependent state is motivated by alcohol's stress-relieving effects (negative reinforcement). Here, we measured context-elicited 50kHz USVs in alcohol-dependent (alcohol vapor-exposed) and nondependent rats immediately before operant alcohol self-administration sessions. Dependent rats showed escalated levels of alcohol intake compared with nondependent rats. Overall, dependent and nondependent rats showed similar levels of anticipatory 50kHz USVs. However, the number of anticipatory USVs was positively correlated with alcohol intake in dependent rats but not nondependent rats. Additionally, dependent rats with higher alcohol intake displayed increased anticipatory 50kHz USVs compared with rats that had lower alcohol intake, whereas no difference was observed between rats with high and low alcohol intake in the nondependent group. Increased 50kHz USVs were specific for the anticipation of alcohol self-administration and did not generalize to a novel environment. These findings suggest that anticipatory 50kHz USVs may be an indicator of context-elicited negative reinforcement learning.
Collapse
Affiliation(s)
- Cara L Buck
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, United States; Department of Psychology, University of California, San Diego, La Jolla, CA, United States.
| | - Jordan C Malavar
- Department of Psychology, University of California, San Diego, La Jolla, CA, United States
| | - Olivier George
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, United States
| | - George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, United States
| | - Leandro F Vendruscolo
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
12
|
Kissler JL, Sirohi S, Reis DJ, Jansen HT, Quock RM, Smith DG, Walker BM. The one-two punch of alcoholism: role of central amygdala dynorphins/kappa-opioid receptors. Biol Psychiatry 2014; 75:774-82. [PMID: 23611261 PMCID: PMC3749293 DOI: 10.1016/j.biopsych.2013.03.014] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND The dynorphin (DYN)/kappa-opioid receptor (KOR) system undergoes neuroadaptations following chronic alcohol exposure that promote excessive operant self-administration and negative affective-like states; however, the exact mechanisms are unknown. The present studies tested the hypothesis that an upregulated DYN/KOR system mediates excessive alcohol self-administration that occurs during withdrawal in alcohol-dependent rats by assessing DYN A peptide expression and KOR function, in combination with site-specific pharmacologic manipulations. METHODS Male Wistar rats were trained to self-administer alcohol using operant behavioral strategies and subjected to intermittent alcohol vapor or air exposure. Changes in self-administration were assessed by pharmacologic challenges during acute withdrawal. In addition, 22-kHz ultrasonic vocalizations were utilized to measure negative affective-like states. Immunohistochemical techniques assessed DYN A peptide expression and [(35)S]GTPγS coupling assays were performed to assess KOR function. RESULTS Alcohol-dependent rats displayed increased alcohol self-administration, negative affective-like behavior, DYN A-like immunoreactivity, and KOR signaling in the amygdala compared with nondependent control rats. Site-specific infusions of a KOR antagonist selectively attenuated self-administration in dependent rats, whereas a mu-opioid receptor/delta-opioid receptor antagonist cocktail selectively reduced self-administration in nondependent rats. A mu-opioid receptor antagonist/partial KOR agonist attenuated self-administration in both cohorts. CONCLUSIONS Increased DYN A and increased KOR signaling could set the stage for a one-two punch during withdrawal that drives excessive alcohol consumption in alcohol dependence. Importantly, intracentral nucleus of the amygdala pharmacologic challenges functionally confirmed a DYN/KOR system involvement in the escalated alcohol self-administration. Together, the DYN/KOR system is heavily dysregulated in alcohol dependence and contributes to the excessive alcohol consumption during withdrawal.
Collapse
Affiliation(s)
- Jessica L. Kissler
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology Washington State University, Pullman, WA
| | - Sunil Sirohi
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology Washington State University, Pullman, WA
| | - Daniel J. Reis
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology Washington State University, Pullman, WA
| | - Heiko T. Jansen
- Veterinary, Comparative Anatomy, Pharmacology and Physiology Department Washington State University, Pullman, WA
| | - Raymond M. Quock
- Department of Pharmaceutical Sciences, Washington State University, Pullman, WA
| | - Daniel G. Smith
- Neuroscience Drug Discovery, H. Lundbeck A/S, Copenhagen, Denmark
| | - Brendan M. Walker
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology Washington State University, Pullman, WA,Corresponding Author: Dr. Brendan M. Walker Laboratory of Alcoholism and Addictions Neuroscience Department of Psychology Graduate Program in Neuroscience Mail Code: 644820 Washington State University Pullman, WA 99164-4820 509-335-8526 (phone) 509-335-5043 (fax)
| |
Collapse
|
13
|
Zou S, Funk D, Shram MJ, Lê AD. Effects of stressors on the reinforcing efficacy of nicotine in adolescent and adult rats. Psychopharmacology (Berl) 2014; 231:1601-14. [PMID: 24510175 DOI: 10.1007/s00213-013-3314-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 10/04/2013] [Indexed: 11/25/2022]
Abstract
RATIONALE AND OBJECTIVES Stress increases drug intake. This depends on the stressor, drug, and aspect of drug seeking assessed. The objectives of these experiments done in adolescent and adult male rats were to (1) examine social defeat effects on acquisition of nicotine self-administration (SA) and the reinforcing efficacy of nicotine and (2) determine the effects of acute exposure to intermittent footshock (FS) or yohimbine on the reinforcing efficacy of nicotine. METHODS In experiment 1, rats received four defeat exposures prior to nicotine SA acquisition and progressive ratio (PR) SA sessions (30 μg/kg nicotine/infusion). Exposure to an olfactory cue previously paired with defeat was also tested on responding maintained by nicotine on the PR schedule. In experiments 2 and 3, the effects of FS (5 and 10 min) or yohimbine (0.625 and 1.25 mg/kg, i.p.) on PR responding for nicotine (15, 30, or 60 μg/kg/infusion) were assessed. Adolescents were aged PD34-36 and adults PD81-85 at the beginning of nicotine SA training. RESULTS Defeat did not affect nicotine SA acquisition. Prior exposure to defeat or a defeat-paired olfactory cue did not affect PR responding for nicotine. FS modestly decreased PR responding in adolescents at the middle nicotine infusion dose. Yohimbine increased PR responding independent of nicotine infusion dose and age. CONCLUSIONS Together with previous work with other drugs, our data indicate that the effects of stress on the reinforcing efficacy of nicotine are stressor- and drug-dependent. This suggests that there is heterogeneity among stressors on how they affect neuronal systems underlying drug intake.
Collapse
Affiliation(s)
- Sheng Zou
- Neurobiology of Alcohol Laboratory, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario, M5S 2S1, Canada
| | | | | | | |
Collapse
|
14
|
Perspectives on the neuroscience of alcohol from the National Institute on Alcohol Abuse and Alcoholism. HANDBOOK OF CLINICAL NEUROLOGY 2014; 125:15-29. [PMID: 25307566 DOI: 10.1016/b978-0-444-62619-6.00002-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mounting evidence over the last 40 years clearly indicates that alcoholism (alcohol dependence) is a disorder of the brain. The National Institute on Alcohol Abuse and Alcoholism (NIAAA) has taken significant steps to advance research into the neuroscience of alcohol. The Division of Neuroscience and Behavior (DNB) was formed within NIAAA in 2002 to oversee, fund, and direct all research areas that examine the effects of alcohol on the brain, the genetic underpinnings of alcohol dependence, the neuroadaptations resulting from excessive alcohol consumption, advanced behavioral models of the various stages of the addiction cycle, and preclinical medications development. This research portfolio has produced important discoveries in the etiology, treatment, and prevention of alcohol abuse and dependence. Several of these salient discoveries are highlighted and future areas of neuroscience research on alcohol are presented.
Collapse
|
15
|
Dissociable effects of kappa-opioid receptor activation on impulsive phenotypes in wistar rats. Neuropsychopharmacology 2013; 38:2278-85. [PMID: 23689673 PMCID: PMC3773679 DOI: 10.1038/npp.2013.129] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 02/06/2023]
Abstract
The kappa-opioid receptor (KOR) is the primary target for the endogenous opioid peptide dynorphin (DYN), and KORs reside within brain circuitry underlying the complex integration of information related to different behavioral domains such as motivation, negative affect, and decision-making. Alterations in extended amygdala DYNs and KOR function following chronic alcohol exposure have been shown to mediate escalated alcohol self-administration during acute withdrawal. In addition to excessive alcohol consumption and increased negative affect, other symptoms of alcohol dependence include compromised impulse control. Given that DYN and KOR expressions are dysregulated within prefrontal brain circuitry associated with decision-making and impulse control in alcohol-dependent humans and rodents, and have been shown to modify multiple neurotransmitter systems associated with impulse-control disorders, we hypothesized that KOR activation could contribute to impulsive phenotypes. To test this hypothesis, separate cohorts of male Wistar rats were trained in one of the two animal models of impulsivity: delay-discounting (DD) or stop-signal reaction time (SSRT) tasks, and once stable responding was observed, received intracerebroventricular (ICV) infusions of the KOR agonist U50,488 (0-50 μg) according to a within-subject dosing regimen. The results demonstrated a dissociable effect of U50,488 on impulsive phenotypes related to intolerance to delay or response inhibition, with selective effects in the SSRT. Furthermore, the pro-impulsive effects of KOR activation were rescued by pretreatment with the KOR antagonist nor-binaltorphimine (nor-BNI). Therefore, KOR activation was shown to induce an impulsive phenotype that was nor-BNI-sensitive. Dysregulation of impulsive behavior by increased DYN/KOR activity could serve to increase vulnerability for the initiation, or perpetuate existing patterns of excessive alcohol abuse and can enhance the probability of relapse in dependent individuals. Furthermore, KOR-mediated impulsivity has implications for numerous neuropsychiatric disorders.
Collapse
|
16
|
Luo YX, Xue YX, Shen HW, Lu L. Role of amygdala in drug memory. Neurobiol Learn Mem 2013; 105:159-73. [PMID: 23831499 DOI: 10.1016/j.nlm.2013.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/16/2013] [Accepted: 06/25/2013] [Indexed: 12/11/2022]
Abstract
Drug addiction is a chronic brain disorder with the hallmark of a high rate of relapse to compulsive drug seeking and drug taking even after long-term abstinence. Addiction has been considered as an aberrant memory that has been termed "addiction memory." Drug-related memory plays a critical role in the maintenance of learned addictive behaviors and emergence of relapse. Disrupting these long-lasting memories by administering amnestic agents or other manipulations during specific phases of drug memory is a promising strategy for relapse prevention. Recent studies on the processes of drug addiction and relapse have demonstrated that the amygdala is involved in associative drug addiction learning processes. In this review, we focus on preclinical studies that used conditioned place preference and self-administration models to investigate the differential roles of the amygdala in each phase of drug-related memory, including acquisition, consolidation, retrieval, reconsolidation, and extinction. These studies indicate that the amygdala plays a critical role in both cue-associative learning and the expression of cue-induced relapse to drug-seeking behavior.
Collapse
Affiliation(s)
- Yi-Xiao Luo
- National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | | | | | | |
Collapse
|
17
|
Mahoney MK, Olmstead MC. Neurobiology of an endophenotype: modeling the progression of alcohol addiction in rodents. Curr Opin Neurobiol 2013; 23:607-14. [PMID: 23541596 DOI: 10.1016/j.conb.2013.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/25/2013] [Accepted: 03/10/2013] [Indexed: 12/30/2022]
Abstract
Most adults in Western society consume alcohol on a regular basis with few or no negative consequences. However, for certain individuals, alcohol use escalates, leading to uncontrolled drinking bouts, craving, and repeated episodes of relapse. The transition from regulated to uncontrolled and compulsive drinking is a defining feature (i.e. an endophenotype) of alcohol addiction. This behavioral progression can be modeled in rodent paradigms that parallel the diagnostic criteria for addiction in humans. Using these criteria as a framework, this review outlines the neurobiological factors associated with increased vulnerability to excessive, compulsive, and dysregulated alcohol intake in rodents. We conclude by noting gaps in the literature and outline important directions for future research.
Collapse
Affiliation(s)
- Megan K Mahoney
- Department of Psychology, Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
18
|
Sirohi S, Bakalkin G, Walker BM. Alcohol-induced plasticity in the dynorphin/kappa-opioid receptor system. Front Mol Neurosci 2012; 5:95. [PMID: 23060746 PMCID: PMC3459013 DOI: 10.3389/fnmol.2012.00095] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/29/2012] [Indexed: 01/02/2023] Open
Abstract
Alcoholism is a chronic relapsing disorder characterized by continued alcohol use despite numerous adverse consequences. Alcohol has been shown to interact with numerous neurotransmitter systems to exert its pharmacological effects. The endogenous opioid system (EOS) has been strongly implicated in the positive and negative reinforcing effects of alcohol. Traditionally recognized as dysphoric/anhedonic in nature, the dynorphin/kappa-opioid receptor (DYN/KOR) system has recently received considerable attention due to evidence suggesting that an upregulated DYN/KOR system may be a critical contributor to the complex factors that result in escalated alcohol consumption once dependent. The present review will discuss alcohol-induced plasticity in the DYN/KOR system and how these neuroadaptations could contribute to excessive alcohol seeking and consumption.
Collapse
Affiliation(s)
- Sunil Sirohi
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University Pullman, WA, USA
| | | | | |
Collapse
|
19
|
Williams AM, Reis DJ, Powell AS, Neira LJ, Nealey KA, Ziegler CE, Kloss N, Bilimoria JL, Smith CE, Walker BM. The effect of intermittent alcohol vapor or pulsatile heroin on somatic and negative affective indices during spontaneous withdrawal in Wistar rats. Psychopharmacology (Berl) 2012; 223:75-88. [PMID: 22461104 PMCID: PMC3419345 DOI: 10.1007/s00213-012-2691-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 03/09/2012] [Indexed: 12/31/2022]
Abstract
RATIONALE Once dependent on alcohol or opioids, negative affect may accompany withdrawal. Dependent individuals are hypothesized to "self-medicate" in order to cope with withdrawal, which promotes escalated alcohol and drug use. OBJECTIVES The current study aimed to develop a reliable animal model to assess symptoms that occur during spontaneous alcohol and opioid withdrawal. METHODS Dependence was induced using intermittent alcohol exposure or pulsatile heroin delivery and assessed for the presence of withdrawal symptoms during acute withdrawal by measuring somatic signs, behavior in the forced swim test (FST), and air-puff-induced 22-kHz ultrasonic vocalizations (USVs). Additional animals subjected to 8 weeks of alcohol vapor exposure were evaluated for altered somatic signs, operant alcohol self-administration, and 22-kHz USV production, as well as performance in the elevated plus maze (EPM). RESULTS During spontaneous withdrawal from pulsatile heroin or intermittent alcohol vapor, animals displayed increased somatic withdrawal signs, FST immobility, and 22-kHz USV production but did not show any behavioral change in the EPM unless the duration of alcohol exposure was extended to 4 weeks. Following 8 weeks of alcohol vapor exposure, animals displayed somatic withdrawal signs, escalated alcohol self-administration, and increased 22-kHz USVs. CONCLUSIONS These paradigms provide consistent methods to evaluate the behavioral ramifications, and neurobiological substrates, of alcohol and opioid dependence during spontaneous withdrawal. As immobility in the FST and percent open-arm time in the EPM were dissociable, with 22-kHz USVs paralleling immobility in the FST, assessment of air-puff-induced 22-kHz USVs could provide an ethologically valid alternative to the FST.
Collapse
Affiliation(s)
- Angela M. Williams
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University, Pullman, WA
| | - Daniel J. Reis
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University, Pullman, WA
| | - Alexa S. Powell
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University, Pullman, WA
| | - Louis J. Neira
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University, Pullman, WA
| | - Kathryn A. Nealey
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University, Pullman, WA
| | - Cole E. Ziegler
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University, Pullman, WA
| | - Nina Kloss
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University, Pullman, WA
| | - Jessica L. Bilimoria
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University, Pullman, WA
| | - Chelsea E. Smith
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University, Pullman, WA
| | - Brendan M. Walker
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University, Pullman, WA,Graduate Program in Neuroscience, Washington State University, Pullman, WA,Alcohol and Drug Abuse Research Program, Washington State University, Pullman, WA,Translational Addiction Research Center, Washington State University, Pullman, WA,Corresponding Author: Dr. Brendan M. Walker, Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Graduate Program in Neuroscience, Alcohol and Drug Abuse Research Program, Translational Addiction Research Center, 100 Dairy Road, Mail Code: 644820, Washington State University, Pullman, WA 99164-4820, 509-335-8526 (phone), 509-335-5043 (fax),
| |
Collapse
|