1
|
Pearl AJ, Maddern XJ, Pinares-Garcia P, Ursich LT, Anversa RG, Shesham A, Brown RM, Reed FM, Giardino WJ, Lawrence AJ, Walker LC. Midbrain ghrelin receptor signalling regulates binge drinking in a sex specific manner. Nat Commun 2025; 16:2568. [PMID: 40089486 PMCID: PMC11910522 DOI: 10.1038/s41467-025-57880-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
Risky drinking rates are rising, particularly in women, yet sex as a biological variable has only recently gained traction. The centrally projecting Edinger-Westphal (EWcp) nucleus has emerged as a key regulator of alcohol consumption. Here we found that EWcppeptidergic cells reduce binge drinking specifically in female mice. We show this effect is mediated by the ghrelin receptor (GHSR), with EWcppeptidergic inhibition blocking ghrelin-induced drinking and Ghsr knockdown in EWcppeptidergic, but not EWcpglutamatergic or ventral tegmental area cells, reducing binge drinking in females, independent of circulating sex hormones. Female mice showed higher EWcp Ghsr expression, and EWcppeptidergic neurons were more sensitive to ghrelin. Moreover, intra-EWcp delivery of GHSR inverse agonist and antagonist reduced binge drinking, suggesting direct actions of ghrelin. These findings highlight the EWcp as a critical mediator of excessive alcohol consumption via GHSR in female mice, offering insights into the ghrelin system's role in alcohol consumption.
Collapse
Affiliation(s)
- Amy J Pearl
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
| | - Xavier J Maddern
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Paulo Pinares-Garcia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
| | - Lauren T Ursich
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Roberta G Anversa
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Arnav Shesham
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Felicia M Reed
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| | - William J Giardino
- Dept. of Psychiatry and Behavioural Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
2
|
Medrano M, Allaoui W, Haddad RES, Makrini-Maleville L, Valjent E, Smolders I, Kormos V, Gaszner B, De Bundel D. Neuromedin U Neurons in the Edinger-Westphal Nucleus Respond to Alcohol Without Interfering with the Urocortin 1 Response. Neurochem Res 2024; 49:3277-3296. [PMID: 39266897 PMCID: PMC11502588 DOI: 10.1007/s11064-024-04238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
The Edinger-Westphal nucleus (EW) is a midbrain nucleus composed of a preganglionic, cholinergic subpopulation and a densely clustered peptidergic subpopulation (EWcp). The EWcp is one of the few brain regions that show consistent induction of FOS following voluntary alcohol intake. Previous results in rodents point to urocortin 1 (UCN1) as one of the peptides most involved in the control of ethanol intake and preference. Notably, the functions described for UCN1, such as reward processing, stress coping or the regulation of feeding behavior are similar to those described for the neuropeptide neuromedin U (NMU). Interestingly, NMU has been recently associated with the modulation of alcohol-related behaviors. However, little is known about the expression and functionality of NMU neurons in alcohol-responsive areas. In this study, we used the recently developed Nmu-Cre knock-in mouse model to examine the expression of NMU in the subaqueductal paramedian zone comprising the EWcp. We delved into the characterization and co-expression of NMU with other markers already described in the EWcp. Moreover, using FOS as a marker of neuronal activity, we tested whether NMU neurons were sensitive to acute alcohol administration. Overall, we provided novel insights on NMU expression and functionality in the EW region. We showed the presence of NMU within a subpopulation of UCN1 neurons in the EWcp and demonstrated that this partial co-expression does not interfere with the responsivity of UCN1-containing cells to alcohol. Moreover, we proposed that the UCN1 content in these neurons may be influenced by sex.
Collapse
Affiliation(s)
- Mireia Medrano
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Wissal Allaoui
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Ra'fat Ehab Salim Haddad
- Medical School, Research Group for Mood Disorders, Department of Anatomy and Centre for Neuroscience, University of Pécs, Szigeti út 12, 7624, Pécs, Hungary
| | | | - Emmanuel Valjent
- IGF, Université de Montpellier, CNRS, Inserm, Montpellier, France
| | - Ilse Smolders
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Viktória Kormos
- Medical School, Department of Pharmacology and Pharmacotherapy, University of Pécs, Szigeti út 12, 7624, Pécs, Hungary
| | - Balázs Gaszner
- Medical School, Research Group for Mood Disorders, Department of Anatomy and Centre for Neuroscience, University of Pécs, Szigeti út 12, 7624, Pécs, Hungary.
| | - Dimitri De Bundel
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
3
|
Li J, Ryabinin AE. Oxytocin Receptors in the Mouse Centrally-projecting Edinger-Westphal Nucleus and their Potential Functional Significance for Thermoregulation. Neuroscience 2022; 498:93-104. [PMID: 35803493 PMCID: PMC9420781 DOI: 10.1016/j.neuroscience.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/08/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
The centrally-projecting Edinger-Westphal nucleus (EWcp) has been shown to contribute to regulation of multiple functions, including responses to stress and fear, attention, food consumption, addiction, body temperature and maternal behaviors. However, receptors involved in regulation of these behaviors through EWcp remain poorly characterized. On the other hand, the oxytocin peptide (OXT) is also known to regulate a substantial number of physiological responses and behaviors. Here we show that mRNA encoding OXT receptors (Oxtr) is expressed in EWcp of male and female C57BL/6J mice. These receptors are present on urocortin 1 (Ucn) mRNA-containing neurons and, to a lesser extent, on neurons in EWcp expressing the vesicular glutamate transporter 2 (Vglut2) mRNA of EWcp. Using RNAscope in situ hybridization, we show that neurons containing Ucn and Vglut2 mRNAs are two intermingled, but independent subpopulations in EWcp and characterize their relationship with other populations of neurons in the vicinity of this nucleus. Using immunohistochemistry, we show that intraperitoneal (IP) administration of OXT can induce FOS in Oxtr-containing neurons, suggesting that these receptors on EWcp neurons are functional. A follow up study showed that injection of OXT (2.3 or 7.7 mg/kg, IP) is accompanied by a decrease in body temperature. Since EWcp is known to be involved in regulation of body temperature, we hypothesize that OXT's effects on body temperature could be mediated through the EWcp. The contribution of OXTR in EWcp to regulation of various functions of EWcp and OXT needs to be deciphered.
Collapse
Affiliation(s)
- Ju Li
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
4
|
Zuniga A, Smith ML, Caruso M, Ryabinin AE. Vesicular glutamate transporter 2-containing neurons of the centrally-projecting Edinger-Westphal nucleus regulate alcohol drinking and body temperature. Neuropharmacology 2021; 200:108795. [PMID: 34555367 DOI: 10.1016/j.neuropharm.2021.108795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/28/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022]
Abstract
Previous studies in rodents have repeatedly demonstrated that the centrally-projecting Edinger-Westphal nucleus (EWcp) is highly sensitive to alcohol and is also involved in regulating alcohol intake and body temperature. Historically, the EWcp has been known as the main site of Urocortin 1 (Ucn1) expression, a corticotropin-releasing factor-related peptide, in the brain. However, the EWcp also contains other populations of neurons, including neurons that express the vesicular glutamate transporter 2 (Vglut2). Here we transduced the EWcp with adeno-associated viruses (AAVs) encoding Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to test the role of the EWcp in alcohol drinking and in the regulation of body temperature. Activation of the EWcp with excitatory DREADDs inhibited alcohol intake in a 2-bottle choice procedure in male C57BL/6J mice, whereas inhibition of the EWcp with DREADDs had no effect. Surprisingly, analysis of DREADD expression indicated Ucn1-containing neurons of the EWcp did not express DREADDs. In contrast, AAVs transduced non-Ucn1-containing EWcp neurons. Subsequent experiments showed that the inhibitory effect of EWcp activation on alcohol intake was also present in male Ucn1 KO mice, suggesting that a Ucn1-devoid population of EWcp regulates alcohol intake. A final set of chemogenetic experiments showed that activation of Vglut2-expressing EWcp neurons inhibited alcohol intake and induced hypothermia in male and female mice. These studies expand on previous literature by indicating that a glutamatergic, Ucn1-devoid subpopulation of the EWcp regulates alcohol consumption and body temperature.
Collapse
Affiliation(s)
- Alfredo Zuniga
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| | - Monique L Smith
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Maya Caruso
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| |
Collapse
|
5
|
Pomrenze MB, Walker LC, Giardino WJ. Gray areas: Neuropeptide circuits linking the Edinger-Westphal and Dorsal Raphe nuclei in addiction. Neuropharmacology 2021; 198:108769. [PMID: 34481834 PMCID: PMC8484048 DOI: 10.1016/j.neuropharm.2021.108769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/16/2023]
Abstract
The circuitry of addiction comprises several neural networks including the midbrain - an expansive region critically involved in the control of motivated behaviors. Midbrain nuclei like the Edinger-Westphal (EW) and dorsal raphe (DR) contain unique populations of neurons that synthesize many understudied neuroactive molecules and are encircled by the periaqueductal gray (PAG). Despite the proximity of these special neuron classes to the ventral midbrain complex and surrounding PAG, functions of the EW and DR remain substantially underinvestigated by comparison. Spanning approximately -3.0 to -5.2 mm posterior from bregma in the mouse, these various cell groups form a continuum of neurons that we refer to collectively as the subaqueductal paramedian zone. Defining how these pathways modulate affective behavioral states presents a difficult, yet conquerable challenge for today's technological advances in neuroscience. In this review, we cover the known contributions of different neuronal subtypes of the subaqueductal paramedian zone. We catalogue these cell types based on their spatial, molecular, connectivity, and functional properties and integrate this information with the existing data on the EW and DR in addiction. We next discuss evidence that links the EW and DR anatomically and functionally, highlighting the potential contributions of an EW-DR circuit to addiction-related behaviors. Overall, we aim to derive an integrated framework that emphasizes the contributions of EW and DR nuclei to addictive states and describes how these cell groups function in individuals suffering from substance use disorders. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
Affiliation(s)
- Matthew B Pomrenze
- Dept. of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - William J Giardino
- Dept. of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA.
| |
Collapse
|
6
|
Abstract
Ecstasy use is commonly combined with ethanol consumption. While combination drug use in general is correlated with a higher risk for toxicity, the risk of the specific combination of ecstasy (3,4-methylenedioxymethamphetamine (MDMA)) and ethanol is largely unknown. Therefore, we have reviewed the literature on changes in MDMA pharmacokinetics and pharmacodynamics due to concurrent ethanol exposure in human, animal and in vitro studies. MDMA pharmacokinetics appear unaffected: the MDMA blood concentration after concurrent exposure to MDMA and ethanol was comparable to lone MDMA exposure in multiple human placebo-controlled studies. In contrast, MDMA pharmacodynamics were affected: locomotor activity increased and body temperature decreased after concurrent exposure to MDMA and ethanol compared to lone MDMA exposure. Importantly, these additional ethanol effects were consistently observed in multiple animal studies. Additional ethanol effects have also been reported on other pharmacodynamic aspects, but are inconclusive due to a low number of studies or due to inconsistent findings. These investigated pharmacodynamic aspects include monoamine brain concentrations, neurological (psychomotor function, memory, anxiety, reinforcing properties), cardiovascular, liver and endocrine effects. Although only a single or a few studies were available investigating these aspects, most studies indicated an aggravation of MDMA-induced effects upon concurrent ethanol exposure. In summary, concurrent ethanol exposure appears to increase the risk for MDMA toxicity. Increased toxicity is due to an aggravation of MDMA pharmacodynamics, while MDMA pharmacokinetics is largely unaffected. Although a significant attenuation of the MDMA-induced increase of body temperature was observed in animal studies, its relevance for human exposure remains unclear.
Collapse
Affiliation(s)
- Eefje Vercoulen
- Department of Drug Monitoring and Policy, Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, The Netherlands
| | - Laura Hondebrink
- Dutch Poisons Information Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|