1
|
Silberman Y, Hajnal A. Diet, diet access, and metabolic physiology as critically understudied factors in rodent models of alcohol intake: A commentary on Emous et al. (2025). ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025. [PMID: 40251985 DOI: 10.1111/acer.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/31/2025] [Indexed: 04/21/2025]
Affiliation(s)
- Yuval Silberman
- Neuroscience and Experimental Therapeutics, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Andras Hajnal
- Neuroscience and Experimental Therapeutics, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
2
|
Genchi VA, Cignarelli A, Sansone A, Yannas D, Dalla Valentina L, Renda Livraghi D, Spaggiari G, Santi D. Understanding the Role of Alcohol in Metabolic Dysfunction and Male Infertility. Metabolites 2024; 14:626. [PMID: 39590862 PMCID: PMC11596383 DOI: 10.3390/metabo14110626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Purpose: Over the past 40-50 years, demographic shifts and the obesity epidemic have coincided with significant changes in lifestyle habits, including a rise in excessive alcohol consumption. This increase in alcohol intake is a major public health concern due to its far-reaching effects on human health, particularly on metabolic processes and male reproductive function. This narrative review focuses on the role of alcohol consumption in altering metabolism and impairing testicular function, emphasizing the potential damage associated with both acute and chronic alcohol intake. Conclusion: Chronic alcohol consumption has been shown to disrupt liver function, impair lipid metabolism, and dysregulate blood glucose levels, contributing to the development of obesity, metabolic syndrome, and related systemic diseases. In terms of male reproductive health, alcohol can significantly affect testicular function by lowering testosterone levels, reducing sperm quality, and impairing overall fertility. The extent of these effects varies, depending on the frequency, duration, and intensity of alcohol use, with chronic and abusive consumption posing greater risks. The complexity of alcohol's impact is further compounded by individual variability and the interaction with other lifestyle factors such as diet, stress, and physical activity. Despite growing concern, research on alcohol's effects remains inconclusive, with significant discrepancies across studies regarding the definition and reporting of alcohol consumption. These inconsistencies highlight the need for more rigorous, methodologically sound research to better understand how alcohol consumption influences metabolic and reproductive health. Ultimately, a clearer understanding is essential for developing targeted public health interventions, particularly in light of rising alcohol use, demographic changes, and the ongoing obesity crisis.
Collapse
Affiliation(s)
- Valentina Annamaria Genchi
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Angelo Cignarelli
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Andrea Sansone
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Tower E South, Room E 413, Via Montpellier 1, 00133 Rome, Italy
| | - Dimitri Yannas
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Tower E South, Room E 413, Via Montpellier 1, 00133 Rome, Italy
| | - Leonardo Dalla Valentina
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy (D.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy
| | - Daniele Renda Livraghi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy (D.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy
| | - Giorgia Spaggiari
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy
| | - Daniele Santi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy (D.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy
| |
Collapse
|
3
|
Aranäs C, Blid Sköldheden S, Jerlhag E. Antismoking agents do not contribute synergistically to semaglutide's ability to reduce alcohol intake in rats. Front Pharmacol 2023; 14:1180512. [PMID: 37719854 PMCID: PMC10500129 DOI: 10.3389/fphar.2023.1180512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Preclinical studies have identified glucagon-like peptide-1 receptor (GLP-1R) agonists, and the antismoking agents varenicline and bupropion as tentative agents for treatment of alcohol use disorder (AUD). Combining different medications is a recent approach that has gained attention regarding heterogenous and difficult-to-treat diseases, like AUD. Successfully, this approach has been tested for the combination of varenicline and bupropion as it prevents relapse to alcohol drinking in rats. However, studies assessing the effects of the combination of semaglutide, an FDA-approved GLP-1R agonist for diabetes type II, and varenicline or bupropion to reduce alcohol intake in male and female rats remains to be conducted. Another approach to influence treatment outcome is to combine a medication with feeding interventions like high fat diet (HFD). While HFD reduces alcohol intake, the ability of the combination of HFD and semaglutide to alter alcohol drinking is unknown and thus the subject for a pilot study. Therefore, three intermittent alcohol drinking experiments were conducted to elucidate the effectiveness of these treatment combinations. We show that semaglutide, bupropion or HFD reduces alcohol intake in male as well as female rats. While various studies reveal beneficial effects of combinatorial pharmacotherapies for the treatment of AUD, we herein do not report any additive effects on alcohol intake by adding either varenicline or bupropion to semaglutide treatment. Neither does HFD exposure alter the ability of semaglutide to reduce alcohol intake. Although no additive effects by the combinatorial treatments are found, these findings collectively provide insight into possible monotherapeutical treatments for AUD.
Collapse
Affiliation(s)
| | | | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Müller SG, Jardim NS, Zeni G, Nogueira CW. (m-CF 3-PhSe) 2 counteracts metabolic disturbances and hypothalamic inflammation in a lifestyle rodent model. Food Chem Toxicol 2023; 176:113750. [PMID: 37023972 DOI: 10.1016/j.fct.2023.113750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/01/2023] [Accepted: 03/26/2023] [Indexed: 04/08/2023]
Abstract
An unhealthy lifestyle is associated with metabolic disorders and neuroinflammation. In this study, the efficacy of m-trifluoromethyl-diphenyl diselenide [(m-CF3-PhSe)2] against lifestyle model-related metabolic disturbances and hypothalamic inflammation in young mice was investigated. From postnatal day 25 (PND25) to 66, male Swiss mice were subjected to a lifestyle model, an energy-dense diet (20:20% lard: corn syrup) and sporadic ethanol (3x/week). Ethanol was administrated intragastrically (i.g., 2g/kg) to mice from PND45 to 60. From PND60 to 66, mice received (m-CF3-PhSe)2 (5mg/kg/day; i.g). (m-CF3-PhSe)2 reduced relative abdominal adipose tissue weight, hyperglycemia, and dyslipidemia in mice exposed to the lifestyle-induced model. (m-CF3-PhSe)2 normalized hepatic cholesterol and triglyceride levels, and the activity of G-6-Pase increased in lifestyle-exposed mice. (m-CF3-PhSe)2 was effective in modulating hepatic glycogen levels, citrate synthase and hexokinase activities, protein levels of GLUT-2, p-IRS/IRS, p-AKT/AKT, redox homeostasis, and inflammatory profile of mice exposed to a lifestyle model. (m-CF3-PhSe)2 counteracted hypothalamic inflammation and the ghrelin receptor levels in mice exposed to the lifestyle model. (m-CF3-PhSe)2 reversed the decreased levels of GLUT-3, p-IRS/IRS, and the leptin receptor in the hypothalamus of lifestyle-exposed mice. In conclusion, (m-CF3-PhSe)2 counteracted metabolic disturbances and hypothalamic inflammation in young mice exposed to a lifestyle model.
Collapse
Affiliation(s)
- Sabrina G Müller
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Natália S Jardim
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil.
| |
Collapse
|
5
|
Colom-Rocha C, Bis-Humbert C, García-Fuster MJ. Evaluating signs of hippocampal neurotoxicity induced by a revisited paradigm of voluntary ethanol consumption in adult male and female Sprague-Dawley rats. Pharmacol Rep 2023; 75:320-330. [PMID: 36807777 DOI: 10.1007/s43440-023-00464-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Binge alcohol drinking is considered a prominent risk factor for the development of alcohol-use disorders, and could be model in rodents through the standard two-bottle preference choice test. The goal was to recreate an intermittent use of alcohol during 3 consecutive days each week to ascertain its potential impact on hippocampal neurotoxicity (neurogenesis and other neuroplasticity markers), and including sex as a biological variable, given the well-known sex differences in alcohol consumption. METHODS Ethanol access was granted to adult Sprague-Dawley rats for 3 consecutive days per week, followed by 4 days of withdrawal, during 6 weeks, mimicking the most common pattern of intake in people, drinking over the weekends in an intensive manner. Hippocampal samples were collected to evaluate signs of neurotoxicity. RESULTS Female rats consumed significantly more ethanol than males, although intake did not escalate over time. Ethanol preference levels remained below 40% over time and did not differ between sexes. Moderate signs of ethanol neurotoxicity were observed in hippocampus at the level of decreased neuronal progenitors (NeuroD + cells), and these effects were independent of sex. No other signs of neurotoxicity were induced by ethanol voluntary consumption when measured through several key cell fate markers (i.e., FADD, Cyt c, Cdk5, NF-L) by western blot analysis. CONCLUSIONS Overall, the present results suggest that even though we modeled a situation where no escalation in ethanol intake occurred across time, mild signs of neurotoxicity emerged, suggesting that even the use of ethanol during adulthood in a recreational way could lead to certain brain harm.
Collapse
Affiliation(s)
- Carles Colom-Rocha
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa Km 7.5, 07122, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Cristian Bis-Humbert
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa Km 7.5, 07122, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,Psychobiology of Drug Addiction, Neurocentre Magendie, INSERM U1215, Bordeaux, France
| | - M Julia García-Fuster
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa Km 7.5, 07122, Palma, Spain. .,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| |
Collapse
|
6
|
Keller BN, Randall PA, Arnold AC, Browning KN, Silberman Y. Ethanol inhibits pancreatic projecting neurons in the dorsal motor nucleus of the vagus. Brain Res Bull 2022; 189:121-129. [PMID: 35998791 PMCID: PMC11753193 DOI: 10.1016/j.brainresbull.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
Alcohol use disorder (AUD) is a rapidly growing concern in the United States. Current trending escalations of alcohol use are associated with a concurrent rise in alcohol-related end-organ damage, increasing risk for further diseases. Alcohol-related end-organ damage can be driven by autonomic nervous system dysfunction, however studies on alcohol effects on autonomic control of end-organ function are lacking. Alcohol intake has been shown to reduce insulin secretions from the pancreas. Pancreatic insulin release is controlled in part by preganglionic parasympathetic motor neurons residing in the dorsal motor nucleus of the vagus (DMV) that project to the pancreas. How these neurons are affected by alcohol exposure has not been directly examined. Here we investigated the effects of acute ethanol (EtOH) application on DMV pancreatic-projecting neurons with whole-cell patch-clamp electrophysiology. We found that bath application of EtOH (50 mM) for greater than 30 min significantly enhanced the frequency of spontaneous inhibitory post synaptic current (sIPSC) events of DMV pancreatic-projecting neurons suggesting a presynaptic mechanism of EtOH to increase GABAergic transmission. Thirty-minute EtOH application also decreased action potential firing of these neurons. Pretreatment of DMV slices with 20 μM fluoxetine, a selective serotonin reuptake inhibitor, also increased GABAergic transmission and decreased action potential firing of these DMV neurons while occluding any further effects of EtOH application, suggesting a critical role for serotonin in mediating EtOH effects in the DMV. Ultimately, decreased DMV motor output may lead to alterations in pancreatic secretions. Further studies are needed to fully understand EtOH's influence on DMV neurons as well as the consequences of changes in parasympathetic output to the pancreas.
Collapse
Affiliation(s)
- Bailey N Keller
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Patrick A Randall
- Department of Anesthesiology, Penn State College of Medicine, Hershey, PA, USA; Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Yuval Silberman
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
7
|
Coker CR, White M, Singal A, Bingaman SS, Paul A, Arnold AC, Silberman Y. Minocycline Reduces Hypothalamic Microglia Activation and Improves Metabolic Dysfunction in High Fat Diet-Induced Obese Mice. Front Physiol 2022; 13:933706. [PMID: 35784876 PMCID: PMC9244633 DOI: 10.3389/fphys.2022.933706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/27/2022] [Indexed: 01/27/2023] Open
Abstract
Obesity is associated with insulin resistance, glucose intolerance, inflammation, and altered neuronal activity in brain regions controlling metabolic functions including food intake, energy expenditure, and glucose homeostasis, such as the hypothalamus. In this study, we tested the hypothesis that inhibiting inflammation with minocycline could reduce adverse metabolic consequences associated with high-fat diet (HFD)-induced obesity in mice and sought to determine if metabolic improvements were associated with reduced hypothalamic microglia activity. Male C57Bl/6J mice were placed on 60% HFD for 12 weeks, with minocycline (40 mg/kg, p.o.) or normal tap water given during the last 6 weeks of diet. Age-matched mice maintained on control diet were used as an additional comparator group. Metabolic function was assessed during the last week of treatment. Ramified (resting) and non-ramified (active) microglia were quantified in the hypothalamus following immunohistochemical staining of ionized calcium-binding adaptor 1 (Iba-1) and further assessed by RNAseq. In HFD fed mice, minocycline attenuated body mass and adiposity without altering food intake suggesting enhanced energy expenditure. Minocycline also attenuated hyperinsulinemia and improved insulin sensitivity in HFD mice. Increased microglial activation and autophagy gene network changes were observed in the paraventricular nucleus (PVN) of the hypothalamus of HFD mice, which was prevented by minocycline treatment. Contrary to PVN findings, there were no significant effects of either HFD or minocycline on microglia activation in the hypothalamic arcuate nucleus or central amygdala. Together, these findings suggest that minocycline improves HFD-induced weight gain and insulin resistance in part by reducing inflammatory processes in the PVN, a key hypothalamic region regulating metabolic function.
Collapse
Affiliation(s)
- Caitlin R. Coker
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC, United States
| | - Melissa White
- Department of Comparative Medicine, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Aneesh Singal
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Sarah S. Bingaman
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Anirban Paul
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Amy C. Arnold
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Yuval Silberman
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
8
|
Schonfeld M, O’Neil M, Villar MT, Artigues A, Averilla J, Gunewardena S, Weinman SA, Tikhanovich I. A Western diet with alcohol in drinking water recapitulates features of alcohol-associated liver disease in mice. Alcohol Clin Exp Res 2021; 45:1980-1993. [PMID: 34523155 PMCID: PMC9006178 DOI: 10.1111/acer.14700] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mouse models of alcohol-associated liver disease vary greatly in their ease of implementation and the pathology they produce. Effects range from steatosis and mild inflammation with the Lieber-DeCarli liquid diet to severe inflammation, fibrosis, and pyroptosis seen with the Tsukamoto-French intragastric feeding model. Implementation of all of these models is limited by the labor-intensive nature of the protocols and the specialized skills necessary for successful intragastric feeding. We thus sought to develop a new model to reproduce features of alcohol-induced inflammation and fibrosis with minimal operational requirements. METHODS Over a 16-week period, mice were fed ad libitum with a pelleted high-fat Western diet (WD; 40% calories from fat) and alcohol added to the drinking water. We found the optimal alcohol consumption to be that at which the alcohol concentration was 20% for 4 days and 10% for 3 days per week. Control mice received WD pellets with water alone. RESULTS Alcohol consumption was 18 to 20 g/kg/day in males and 20 to 22 g/kg/day in females. Mice in the alcohol groups developed elevated serum transaminase levels after 12 weeks in males and 10 weeks in females. At 16 weeks, both males and females developed liver inflammation, steatosis, and pericellular fibrosis. Control mice on WD without alcohol had mild steatosis only. Alcohol-fed mice showed reduced HNF4α mRNA and protein expression. HNF4α is a master regulator of hepatocyte differentiation, down-regulation of which is a known driver of hepatocellular failure in alcoholic hepatitis. CONCLUSION A simple-to-administer, 16-week WD alcohol model recapitulates the inflammatory, fibrotic, and gene expression aspects of human alcohol-associated steatohepatitis.
Collapse
Affiliation(s)
- Michael Schonfeld
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, U.S.A
| | - Maura O’Neil
- Department of Pathology, University of Kansas Medical Center, Kansas City, KS 66160, U.S.A
- Liver Center, University of Kansas Medical Center, Kansas City, KS 66160, U.S.A
| | - Maria T Villar
- Department of Biochemistry, University of Kansas Medical Center, Kansas City, KS 66160, U.S.A
| | - Antonio Artigues
- Department of Biochemistry, University of Kansas Medical Center, Kansas City, KS 66160, U.S.A
| | - Janice Averilla
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, U.S.A
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, U.S.A
| | - Steven A. Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, U.S.A
- Liver Center, University of Kansas Medical Center, Kansas City, KS 66160, U.S.A
- Kansas City VA Medical Center, Kansas City, MO, USA
| | - Irina Tikhanovich
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, U.S.A
- Liver Center, University of Kansas Medical Center, Kansas City, KS 66160, U.S.A
| |
Collapse
|
9
|
Pairing Binge Drinking and a High-Fat Diet in Adolescence Modulates the Inflammatory Effects of Subsequent Alcohol Consumption in Mice. Int J Mol Sci 2021; 22:ijms22105279. [PMID: 34067897 PMCID: PMC8157004 DOI: 10.3390/ijms22105279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/08/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Alcohol binge drinking (BD) and poor nutritional habits are two frequent behaviors among many adolescents that alter gut microbiota in a pro-inflammatory direction. Dysbiotic changes in the gut microbiome are observed after alcohol and high-fat diet (HFD) consumption, even before obesity onset. In this study, we investigate the neuroinflammatory response of adolescent BD when combined with a continuous or intermittent HFD and its effects on adult ethanol consumption by using a self-administration (SA) paradigm in mice. The inflammatory biomarkers IL-6 and CX3CL1 were measured in the striatum 24 h after BD, 3 weeks later and after the ethanol (EtOH) SA. Adolescent BD increased alcohol consumption in the oral SA and caused a greater motivation to seek the substance. Likewise, mice with intermittent access to HFD exhibited higher EtOH consumption, while the opposite effect was found in mice with continuous HFD access. Biochemical analyses showed that after BD and three weeks later, striatal levels of IL-6 and CX3CL1 were increased. In addition, in saline-treated mice, CX3CL1 was increased after continuous access to HFD. After oral SA procedure, striatal IL-6 was increased only in animals exposed to BD and HFD. In addition, striatal CX3CL1 levels were increased in all BD- and HFD-exposed groups. Overall, our findings show that adolescent BD and intermittent HFD increase adult alcohol intake and point to neuroinflammation as an important mechanism modulating this interaction.
Collapse
|
10
|
Skinner RC, Hagaman JA. The interplay of Western diet and binge drinking on the onset, progression, and outlook of liver disease. Nutr Rev 2021; 80:503-512. [PMID: 33969426 DOI: 10.1093/nutrit/nuab031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease and alcoholic liver disease, the two most prevalent liver diseases worldwide, share a common pathology but have largely been considered disparate diseases. Liver diseases are widely underestimated, but their prevalence is increasing worldwide. The Western diet (high-fat, high-sugar) and binge drinking (rapid consumption of alcohol in a short period of time) are two highly prevalent features of standard life in the United States, and both are linked to the development and progression of liver disease. Yet, few studies have been conducted to elucidate their potential interactions. Data shows binge drinking is on the rise in several age groups, and poor dietary trends continue to be prevalent. This review serves to summarize the sparse findings on the hepatic consequences of the combination of binge drinking and consuming a Western diet, while also drawing conclusions on potential future impacts. The data suggest the potential for a looming liver disease epidemic, indicating that more research on its progression as well as its prevention is needed on this critical topic.
Collapse
Affiliation(s)
- R Chris Skinner
- R. C. Skinner and J. A. Hagaman are with the Division of Natural Sciences and Mathematics, University of the Ozarks, Clarksville, Arkansas, USA
| | - Joel A Hagaman
- R. C. Skinner and J. A. Hagaman are with the Division of Natural Sciences and Mathematics, University of the Ozarks, Clarksville, Arkansas, USA
| |
Collapse
|
11
|
Chen M, Sun X, Wei W, Cucarella C, Martín-Sanz P, Casado M, Pi L, Ren B, Cao Q. Hepatic COX-2 expression protects mice from an alcohol-high fat diet-induced metabolic disorder by involving protein acetylation related energy metabolism. Alcohol 2021; 92:41-52. [PMID: 33662521 PMCID: PMC8095085 DOI: 10.1016/j.alcohol.2020.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE A diet high in fat and ethanol often results in chronic metabolic disorder, hepatic steatosis, and liver inflammation. Constitutive hepatic cyclooxygenase-2 (COX-2) expression could protect from high fat-induced metabolism disturbance in a murine model. In this study, we explored the influence of hCOX-2 transgenic [TG] to high fat with ethanol-induced metabolic disorder and liver injury using a mouse animal model. METHODS 12-week-old male hepatic hCOX-2 transgenic (TG) or wild type mice (WT) were fed either a high fat and ethanol liquid diet (HF+Eth) or a regular control diet (RCD) for 5 weeks (four groups: RCD/WT, RCD/TG; HF+Eth/TG, HF+Eth/WT). We assessed metabolic biomarkers, cytokine profiles, histomorphology, and gene expression to study the impact of persistent hepatic COX-2 expression on diet-induced liver injury. RESULTS In the HF+Eth diet, constitutively hepatic human COX-2 expression protects mice from body weight gain and white adipose tissue accumulation, accompanied by improved IPGTT response, serum triglyceride/cholesterol levels, and lower levels of serum and liver inflammatory cytokines. Histologically, hCOX-2 mice showed decreased hepatic lipid droplets accumulation, decreased hepatocyte ballooning, and improved steatosis scores. Hepatic hCOX-2 overexpression enhanced AKT insulin signaling and increased fatty acid synthesis in both RCD and HF+Eth diet groups. The anti-lipogenic effect of hCOX-2 TG in the HF+Eth diet animals was mediated by increasing lipid disposal through enhanced β-oxidation via elevations in the expression of PPARα and PPARγ, and increased hepatic autophagy as assessed by the ratio of autophagy markers LC3 II/I in hepatic tissue. Various protein acetylation pathway components, including HAT, HDAC1, SIRT1, and SNAIL1, were modulated in hCOX-2 TG mice in either RCD or HF+Eth diet. CONCLUSIONS Hepatic human COX-2 expression protected mice from the metabolic disorder and liver injury induced by a high fat and ethanol diet by enhancing hepatic lipid expenditure. Epigenetic reprogramming of diverse metabolic genes might be involved in the anti-lipogenic effect of COX-2.
Collapse
Affiliation(s)
- Minjie Chen
- Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xicui Sun
- Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wei Wei
- Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carme Cucarella
- Instituto de Biomedicina de Valencia, IBV-CSIC, Jaume Roig 11, Valencia, 46010, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas (IIB) "Alberto Sols", CSIC-UAM, Arturo Duperier 4, Madrid, 28029, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, Madrid, 28029, Spain
| | - Marta Casado
- Instituto de Biomedicina de Valencia, IBV-CSIC, Jaume Roig 11, Valencia, 46010, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, Madrid, 28029, Spain
| | - Liya Pi
- Department of Pediatrics, College of Medicine, Gainesville, FL, USA
| | - Bin Ren
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Qi Cao
- Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Angoa-Pérez M, Kuhn DM. Evidence for Modulation of Substance Use Disorders by the Gut Microbiome: Hidden in Plain Sight. Pharmacol Rev 2021; 73:571-596. [PMID: 33597276 PMCID: PMC7896134 DOI: 10.1124/pharmrev.120.000144] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome modulates neurochemical function and behavior and has been implicated in numerous central nervous system (CNS) diseases, including developmental, neurodegenerative, and psychiatric disorders. Substance use disorders (SUDs) remain a serious threat to the public well-being, yet gut microbiome involvement in drug abuse has received very little attention. Studies of the mechanisms underlying SUDs have naturally focused on CNS reward circuits. However, a significant body of research has accumulated over the past decade that has unwittingly provided strong support for gut microbiome participation in drug reward. β-Lactam antibiotics have been employed to increase glutamate transporter expression to reverse relapse-induced release of glutamate. Sodium butyrate has been used as a histone deacetylase inhibitor to prevent drug-induced epigenetic alterations. High-fat diets have been used to alter drug reward because of the extensive overlap of the circuitry mediating them. This review article casts these approaches in a different light and makes a compelling case for gut microbiome modulation of SUDs. Few factors alter the structure and composition of the gut microbiome more than antibiotics and a high-fat diet, and butyrate is an endogenous product of bacterial fermentation. Drugs such as cocaine, alcohol, opiates, and psychostimulants also modify the gut microbiome. Therefore, their effects must be viewed on a complex background of cotreatment-induced dysbiosis. Consideration of the gut microbiome in SUDs should have the beneficial effects of expanding the understanding of SUDs and aiding in the design of new therapies based on opposing the effects of abused drugs on the host's commensal bacterial community. SIGNIFICANCE STATEMENT: Proposed mechanisms underlying substance use disorders fail to acknowledge the impact of drugs of abuse on the gut microbiome. β-Lactam antibiotics, sodium butyrate, and high-fat diets are used to modify drug seeking and reward, overlooking the notable capacity of these treatments to alter the gut microbiome. This review aims to stimulate research on substance abuse-gut microbiome interactions by illustrating how drugs of abuse share with antibiotics, sodium butyrate, and fat-laden diets the ability to modify the host microbial community.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
13
|
Coker CR, Keller BN, Arnold AC, Silberman Y. Impact of High Fat Diet and Ethanol Consumption on Neurocircuitry Regulating Emotional Processing and Metabolic Function. Front Behav Neurosci 2021; 14:601111. [PMID: 33574742 PMCID: PMC7870708 DOI: 10.3389/fnbeh.2020.601111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/28/2020] [Indexed: 01/12/2023] Open
Abstract
The prevalence of psychiatry disorders such as anxiety and depression has steadily increased in recent years in the United States. This increased risk for anxiety and depression is associated with excess weight gain, which is often due to over-consumption of western diets that are typically high in fat, as well as with binge eating disorders, which often overlap with overweight and obesity outcomes. This finding suggests that diet, particularly diets high in fat, may have important consequences on the neurocircuitry regulating emotional processing as well as metabolic functions. Depression and anxiety disorders are also often comorbid with alcohol and substance use disorders. It is well-characterized that many of the neurocircuits that become dysregulated by overconsumption of high fat foods are also involved in drug and alcohol use disorders, suggesting overlapping central dysfunction may be involved. Emerging preclinical data suggest that high fat diets may be an important contributor to increased susceptibility of binge drug and ethanol intake in animal models, suggesting diet could be an important aspect in the etiology of substance use disorders. Neuroinflammation in pivotal brain regions modulating metabolic function, food intake, and binge-like behaviors, such as the hypothalamus, mesolimbic dopamine circuits, and amygdala, may be a critical link between diet, ethanol, metabolic dysfunction, and neuropsychiatric conditions. This brief review will provide an overview of behavioral and physiological changes elicited by both diets high in fat and ethanol consumption, as well as some of their potential effects on neurocircuitry regulating emotional processing and metabolic function.
Collapse
Affiliation(s)
- Caitlin R. Coker
- Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC, United States
| | - Bailey N. Keller
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| | - Amy C. Arnold
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| | - Yuval Silberman
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|