1
|
Miller IR, Bui H, Wood JB, Fields MW, Gerlach R. Understanding phycosomal dynamics to improve industrial microalgae cultivation. Trends Biotechnol 2024; 42:680-698. [PMID: 38184438 DOI: 10.1016/j.tibtech.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/08/2024]
Abstract
Algal-bacterial interactions are ubiquitous in both natural and industrial systems, and the characterization of these interactions has been reinvigorated by potential applications in biosystem productivity. Different growth conditions can be used for operational functions, such as the use of low-quality water or high pH/alkalinity, and the altered operating conditions likely constrain microbial community structure and function in unique ways. However, research is necessary to better understand whether consortia can be designed to improve the productivity, processing, and sustainability of industrial-scale cultivations through different controls that can constrain microbial interactions for maximal light-driven outputs. The review highlights current knowledge and gaps for relevant operating conditions, as well as suggestions for near-term and longer-term improvements for large-scale cultivation and polyculture engineering.
Collapse
Affiliation(s)
- Isaac R Miller
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA; Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Huyen Bui
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Jessica B Wood
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA; Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Matthew W Fields
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA; Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA; Department of Civil Engineering, Montana State University, Bozeman, MT, USA; Energy Research Institute, Montana State University, Bozeman, MT, USA.
| | - Robin Gerlach
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA; Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA; Energy Research Institute, Montana State University, Bozeman, MT, USA; Department of Biological and Chemical Engineering, Bozeman, MT, USA
| |
Collapse
|
2
|
Altimari P, Di Caprio F, Brasiello A, Pagnanelli F. Production of microalgae biomass in a two-stage continuous bioreactor: control of microalgae-bacteria competition by spatial uncoupling of nitrogen and organic carbon feeding. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
3
|
Wang H, Liu Z, Cui D, Liu Y, Yang L, Chen H, Qiu G, Geng Y, Xiong Z, Shao P, Luo X. A pilot scale study on the treatment of rare earth tailings (REEs) wastewater with low C/N ratio using microalgae photobioreactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116973. [PMID: 36525735 DOI: 10.1016/j.jenvman.2022.116973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Microalgae appear to be a promising and ecologically safe way for nutrients removal from rare earth tailings (REEs) wastewater with CO2 fixation and added benefits of resource recovery and recycling. In this study, a pilot scale (50 L) co-flocculating microalgae photobioreactor (Ma-PBR) as constructed and operated for 140 days to treat REEs wastewater with low C/N ratio of 0.51-0.56. The removal rate of ammonia nitrogen (NH4+-N) reached 88.04% and the effluent residual concentration was as low as 9.91 mg/L that have met the Emission Standards of Pollutants from Rare Earths Industry (GB 26451-2011). Timely supplementation of trace elements was necessary to maintain the activity of microalgae and then prolonged the operation time. The dominant phyla in co-flocculating microalgae was Chlorophyta, the relative abundance of which was higher than 80%. Tetradesmus belonging to Chlorophyceae was the dominant genus with relative abundance of 80.35%. The results provided a practical support for the scaling-up of Ma-PBR to treat REEs wastewater.
Collapse
Affiliation(s)
- Haiyu Wang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Zhuochao Liu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Dan Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Yuanqi Liu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China.
| | | | - Genping Qiu
- Eco-advance co., led, Jiangxi, 341000, PR China
| | - Yanni Geng
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Zhensheng Xiong
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| |
Collapse
|
4
|
Altimari P, Brasiello A, Di Caprio F, Pagnanelli F. Production of microalgae biomass in a continuous stirred bioreactor: Analysis of microalgae-bacteria competition mediated by nitrogen and organic carbon. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Bentahar J, Deschênes J. Influence of sweet whey permeate utilization on
Tetradesmus obliquus
growth and β‐galactosidase production. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jihed Bentahar
- Département de mathématiques, d'informatique et de génie, Collectif de recherche appliquée aux bioprocédés et à la chimie de l'environnement (CRABE) Université du Québec à Rimouski Rimouski Québec Canada
| | - Jean‐Sébastien Deschênes
- Département de mathématiques, d'informatique et de génie, Collectif de recherche appliquée aux bioprocédés et à la chimie de l'environnement (CRABE) Université du Québec à Rimouski Rimouski Québec Canada
| |
Collapse
|
6
|
Bioprocess Strategy of Haematococcus lacustris for Biomass and Astaxanthin Production Keys to Commercialization: Perspective and Future Direction. FERMENTATION 2022. [DOI: 10.3390/fermentation8040179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Haematococcus lacustris (formerly called Haematococcus pluvialis) is regarded as the most promising microalgae for the production of natural astaxanthin, which is secondary metabolism used as a dietary supplement, also for cosmetic applications, due to its high anti-oxidant activity. Astaxanthin has a wide range of biological activities and high economic potential, and currently dominates the market in its synthetic form. Furthermore, because of the difficulty of bioprocess and the high cost of cultivation, astaxanthin extracted from this microalga is still expensive due to its low biomass and pigment productivities. Large-scale biomass production in biotechnological production necessitates the processing of a large number of cultures as well as the use of both indoor and outdoor systems, such as open pond raceway systems and photo-bioreactors (PBR). The photo-bioreactors systems are suitable for mass production because growth conditions can be controlled, and the risk of contamination can be reduced to a certain extent and under specific culture parameters. This review discusses current technologies being developed to improve cultivation and operation efficiency and profitability, as well as the effect of parameter factors associated with H. lacustris cultivation on biomass and astaxanthin bioproduction, and even strategies for increasing bioproduction and market potential for H. lacustris astaxanthin.
Collapse
|
7
|
Di Caprio F. A fattening factor to quantify the accumulation ability of microorganisms under N-starvation. N Biotechnol 2021; 66:70-78. [PMID: 33862285 DOI: 10.1016/j.nbt.2021.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 01/04/2023]
Abstract
Many microorganisms can accumulate biomass in the form of lipids and polysaccharides, which can be used for biofuels, bioplastics, food and feed. Some innovative bioprocesses exploit the competitive advantage provided by such accumulation ability, mainly under N-starvation, to select high-accumulating strains against biological contaminants, by using uncoupled nutrient feeding. However, there is no general and easily comparable parameter available to compare biomass accumulation ability among different microbial strains, which could measure the competitive advantage. Here, a parameter termed "fattening factor" (ηx) is described to quantify such strain-specific biomass accumulation ability in bacteria, yeasts and microalgae. This parameter measures how many fold a microbial population can increase its biomass just as the result of accumulation. It is derived from considerations about the main metabolic aspects of cells' response to N-starvation, which induces variations in cell cycle, biomass production and biochemical composition. The fattening factor described here should be easily estimatable in N-starvation for every culturable microbial strain, by measuring the amount of accumulated biomass.
Collapse
Affiliation(s)
- Fabrizio Di Caprio
- Department of Chemistry, University Sapienza of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
8
|
Di Caprio F. Cultivation processes to select microorganisms with high accumulation ability. Biotechnol Adv 2021; 49:107740. [PMID: 33838283 DOI: 10.1016/j.biotechadv.2021.107740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/26/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
The microbial ability to accumulate biomolecules is fundamental for different biotechnological applications aiming at the production of biofuels, food and bioplastics. However, high accumulation is a selective advantage only under certain stressful conditions, such as nutrient depletion, characterized by lower growth rate. Conventional bioprocesses maintain an optimal and stable environment for large part of the cultivation, that doesn't reward cells for their accumulation ability, raising the risk of selection of contaminant strains with higher growth rate, but lower accumulation of products. Here in this work the physiological responses of different microorganisms (microalgae, bacteria, yeasts) under N-starvation and energy starvation are reviewed, with the aim to furnish relevant insights exploitable to develop tailored bioprocesses to select specific strains for their higher accumulation ability. Microorganism responses to starvation are reviewed focusing on cell cycle, biomass production and variations in biochemical composition. Then, the work describes different innovative bioprocess configurations exploiting uncoupled nutrient feeding strategies (feast-famine), tailored to maintain a selective pressure to reward the strains with higher accumulation ability in mixed microbial populations. Finally, the main models developed in recent studies to describe and predict microbial growth and intracellular accumulation upon N-starvation and feast-famine conditions have been reviewed.
Collapse
Affiliation(s)
- Fabrizio Di Caprio
- Department of Chemistry, University Sapienza of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
9
|
Patel AK, Singhania RR, Sim SJ, Dong CD. Recent advancements in mixotrophic bioprocessing for production of high value microalgal products. BIORESOURCE TECHNOLOGY 2021; 320:124421. [PMID: 33246239 DOI: 10.1016/j.biortech.2020.124421] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Recently, microalgal biomass has become an attractive and sustainable feedstock for renewable production of various biochemicals and biofuels. However, attaining required productivity remains a key challenge to develop industrial applications. Fortunately, mixotrophic cultivation strategy (MCS) is leading to higher productivity due to the metabolic ability of some microalgal strain to utilise both photosynthesis and organic carbon compared to phototrophic or heterotrophic processes. The potential of MCS is being explored by researchers for maximized biochemicals and biofuels production however it requires further development yet to reach commercialization stage. In this review, recent developments in the MCS bioprocess for selective value-added (carotenoids) products have been reviewed; synergistic mechanism of carbon and energy was conferred. Moreover, the metabolic regulation of microalgae under MCS for utilized carbon forms and carbon recycling was demonstrated; Additionally, the opportunities and challenges of large-scale MCS have been discussed.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, India.
| | | | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seoungbuk-gu, Seoul 02841, Republic of Korea
| | - Cheng Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| |
Collapse
|
10
|
Tejido-Nuñez Y, Aymerich E, Sancho L, Refardt D. Co-cultivation of microalgae in aquaculture water: Interactions, growth and nutrient removal efficiency at laboratory- and pilot-scale. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101940] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
|
12
|
Di Caprio F, Altimari P, Pagnanelli F. New strategies enhancing feasibility of microalgal cultivations. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/b978-0-444-64337-7.00016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
13
|
Okpozu OO, Ogbonna IO, Ikwebe J, Ogbonna JC. Phycoremediation of cassava wastewater by Desmodesmus armatus and the concomitant accumulation of lipids for biodiesel production. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Bentahar J, Doyen A, Beaulieu L, Deschênes JS. Acid whey permeate: An alternative growth medium for microalgae Tetradesmus obliquus and production of β-galactosidase. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Evidence of the production of galactooligosaccharide from whey permeate by the microalgae Tetradesmus obliquus. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Heterotrophic cultivation of T. obliquus under non-axenic conditions by uncoupled supply of nitrogen and glucose. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Vo HNP, Ngo HH, Guo W, Nguyen TMH, Liu Y, Liu Y, Nguyen DD, Chang SW. A critical review on designs and applications of microalgae-based photobioreactors for pollutants treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1549-1568. [PMID: 30360283 DOI: 10.1016/j.scitotenv.2018.09.282] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
The development of the photobioreactors (PBs) is recently noticeable as cutting-edge technology while the correlation of PBs' engineered elements such as modellings, configurations, biomass yields, operating conditions and pollutants removal efficiency still remains complex and unclear. A systematic understanding of PBs is therefore essential. This critical review study is to: (1) describe the modelling approaches and differentiate the outcomes; (2) review and update the novel technical issues of PBs' types; (3) study microalgae growth and control determined by PBs types with comparison made; (4) progress and compare the efficiencies of contaminants removal given by PBs' types and (5) identify the future perspectives of PBs. It is found that Monod model's shortcoming in internal substrate utilization is well fixed by modified Droop model. The corroborated data also remarks an array of PBs' types consisting of flat plate, column, tubular, soft-frame and hybrid configuration in which soft-frame and hybrid are the latest versions with higher flexibility, performance and smaller foot-print. Flat plate PBs is observed with biomass yield being 5 to 20 times higher than other PBs types while soft-frame and membrane PBs can also remove pharmaceutical and personal care products (PPCPs) up to 100%. Looking at an opportunity for PBs in sustainable development, the flat plate PBs are applicable in PB-based architectures and infrastructures indicating an encouraging revenue-raising potential.
Collapse
Affiliation(s)
- Hoang Nhat Phong Vo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Thi Minh Hong Nguyen
- School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 12120, Thailand
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yi Liu
- Shanghai Advanced Research Institute, Chinese Academy of Science, Zhangjiang Hi-Tech Park, Pudong, Shanghai, China
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea.
| |
Collapse
|
18
|
Wen X, Tao H, Peng X, Wang Z, Ding Y, Xu Y, Liang L, Du K, Zhang A, Liu C, Geng Y, Li Y. Sequential phototrophic-mixotrophic cultivation of oleaginous microalga Graesiella sp. WBG-1 in a 1000 m 2 open raceway pond. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:27. [PMID: 30805027 PMCID: PMC6371596 DOI: 10.1186/s13068-019-1367-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Microalgae are an important feedstock in industries. Currently, efforts are being made in the non-phototrophic cultivation of microalgae for biomass production. Studies have shown that mixotrophy is a more efficient process for producing algal biomass in comparison to phototrophic and heterotrophic cultures. However, cultivation of microalgae in pilot-scale open ponds in the presence of organic carbon substrates has not yet been developed. The problems are heterotrophic bacterial contamination and inefficient conversion of organic carbon. RESULTS Laboratory investigation was combined with outdoor cultivation to find a culture condition that favors the growth of alga, but inhibits bacteria. A window period for mixotrophic cultivation of the alga Graesiella sp. WBG-1 was identified. Using this period, a new sequential phototrophic-mixotrophic cultivation (SPMC) method that enhances algal biomass productivity and limits bacteria contamination at the same time was established for microalgae cultivation in open raceway ponds. Graesiella sp. WBG-1 maximally produced 12.5 g biomass and 4.1 g lipids m-2 day-1 in SPMC in a 1000 m2 raceway pond, which was an over 50% increase compared to phototrophic cultivation. The bacterial number in SPMC (2.97 × 105 CFU ml-1) is comparable to that of the phototrophic cultivations. CONCLUSIONS SPMC is an effective and feasible method to cultivate lipid-rich microalgae in open raceway ponds. Successful scale-up of SPMC in a commercial raceway pond (1000 m2 culture area) was demonstrated for the first time. This method is attractive for global producers of not only lipid-rich microalgae biomass, but also astaxanthin and β-carotene.
Collapse
Affiliation(s)
- Xiaobin Wen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Huanping Tao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Xinan Peng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- Present Address: Institute of Bioengineering, Zhengzhou Normal University, Zhengzhou, 450044 China
| | - Zhongjie Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Yi Ding
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Yan Xu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Lin Liang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Kui Du
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- Present Address: Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, 610015 China
| | - Aoqi Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Caixia Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yahong Geng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Yeguang Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| |
Collapse
|
19
|
Enhanced biomass and lipid production for cultivating Chlorella pyrenoidosa in anaerobically digested starch wastewater using various carbon sources and up-scaling culture outdoors. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Arun J, Shreekanth SJ, Sahana R, Raghavi MS, Gopinath KP, Gnanaprakash D. Studies on influence of process parameters on hydrothermal catalytic liquefaction of microalgae (Chlorella vulgaris) biomass grown in wastewater. BIORESOURCE TECHNOLOGY 2017; 244:963-968. [PMID: 28847087 DOI: 10.1016/j.biortech.2017.08.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
In this study, liquefaction of Chlorella vulgaris biomass grown in photo-bioreactor using wastewater as source of nutrition was studied and influence of process parameters on the yield of bio-oil was analysed. Different biomass to water ratio (5g/200ml, 10g/200ml, 15g/200ml, and 20g/200ml) was taken and bio-oil yield at various temperatures ranging from 220 to 340°C was studied. Catalyst loading of the range 2.5-8%wt of NaOH was also studied to analyse the influence of catalyst concentration on bio-oil yield. Obtained bio-oil was characterized using Gas Chromatography Mass Spectroscopy (GC-MS) and Fourier Transform Infrared Spectroscopy (FTIR). Results showed that maximum bio-oil yield of 26.67%wt was observed at operating conditions of 300°C, 15g/200ml biomass load and 2.5%wt of NaOH at 60min holding time. Fatty acids and other high carbon compounds were detected in the bio-oil obtained through liquefaction process.
Collapse
Affiliation(s)
- Jayaseelan Arun
- Department of Chemical Engineering, SSN College of Engineering, Kalavakkam 603110, Tamil Nadu, India
| | | | - Ravishankar Sahana
- Department of Chemical Engineering, SSN College of Engineering, Kalavakkam 603110, Tamil Nadu, India
| | | | | | | |
Collapse
|
21
|
Falaise C, François C, Travers MA, Morga B, Haure J, Tremblay R, Turcotte F, Pasetto P, Gastineau R, Hardivillier Y, Leignel V, Mouget JL. Antimicrobial Compounds from Eukaryotic Microalgae against Human Pathogens and Diseases in Aquaculture. Mar Drugs 2016; 14:E159. [PMID: 27598176 PMCID: PMC5039530 DOI: 10.3390/md14090159] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/20/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022] Open
Abstract
The search for novel compounds of marine origin has increased in the last decades for their application in various areas such as pharmaceutical, human or animal nutrition, cosmetics or bioenergy. In this context of blue technology development, microalgae are of particular interest due to their immense biodiversity and their relatively simple growth needs. In this review, we discuss about the promising use of microalgae and microalgal compounds as sources of natural antibiotics against human pathogens but also about their potential to limit microbial infections in aquaculture. An alternative to conventional antibiotics is needed as the microbial resistance to these drugs is increasing in humans and animals. Furthermore, using natural antibiotics for livestock could meet the consumer demand to avoid chemicals in food, would support a sustainable aquaculture and present the advantage of being environmentally friendly. Using natural and renewable microalgal compounds is still in its early days, but considering the important research development and rapid improvement in culture, extraction and purification processes, the valorization of microalgae will surely extend in the future.
Collapse
Affiliation(s)
- Charlotte Falaise
- FR CNRS 3473 IUML Mer-Molécules-Santé (MMS), Université du Maine, Avenue O. Messiaen, Le Mans 72085, France.
| | - Cyrille François
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et de Pathologie des Mollusques Marins, Avenue Mus de Loup, La Tremblade 17390, France.
| | - Marie-Agnès Travers
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et de Pathologie des Mollusques Marins, Avenue Mus de Loup, La Tremblade 17390, France.
| | - Benjamin Morga
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et de Pathologie des Mollusques Marins, Avenue Mus de Loup, La Tremblade 17390, France.
| | - Joël Haure
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et de Pathologie des Mollusques Marins, Avenue Mus de Loup, La Tremblade 17390, France.
| | - Réjean Tremblay
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, 310 des Ursulines, Rimouski, QC G5L 3A1, Canada.
| | - François Turcotte
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, 310 des Ursulines, Rimouski, QC G5L 3A1, Canada.
| | - Pamela Pasetto
- UMR CNRS 6283 Institut des Molécules et Matériaux du Mans (IMMM), Université du Maine, Avenue O. Messiaen, Le Mans 72085, France.
| | - Romain Gastineau
- FR CNRS 3473 IUML Mer-Molécules-Santé (MMS), Université du Maine, Avenue O. Messiaen, Le Mans 72085, France.
| | - Yann Hardivillier
- FR CNRS 3473 IUML Mer-Molécules-Santé (MMS), Université du Maine, Avenue O. Messiaen, Le Mans 72085, France.
| | - Vincent Leignel
- FR CNRS 3473 IUML Mer-Molécules-Santé (MMS), Université du Maine, Avenue O. Messiaen, Le Mans 72085, France.
| | - Jean-Luc Mouget
- FR CNRS 3473 IUML Mer-Molécules-Santé (MMS), Université du Maine, Avenue O. Messiaen, Le Mans 72085, France.
| |
Collapse
|
22
|
Boboescu IZ, Gherman VD, Lakatos G, Pap B, Bíró T, Maróti G. Surpassing the current limitations of biohydrogen production systems: The case for a novel hybrid approach. BIORESOURCE TECHNOLOGY 2016; 204:192-201. [PMID: 26790867 DOI: 10.1016/j.biortech.2015.12.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
The steadily increase of global energy requirements has brought about a general agreement on the need for novel renewable and environmentally friendly energy sources and carriers. Among the alternatives to a fossil fuel-based economy, hydrogen gas is considered a game-changer. Certain methods of hydrogen production can utilize various low-priced industrial and agricultural wastes as substrate, thus coupling organic waste treatment with renewable energy generation. Among these approaches, different biological strategies have been investigated and successfully implemented in laboratory-scale systems. Although promising, several key aspects need further investigation in order to push these technologies towards large-scale industrial implementation. Some of the major scientific and technical bottlenecks will be discussed, along with possible solutions, including a thorough exploration of novel research combining microbial dark fermentation and algal photoheterotrophic degradation systems, integrated with wastewater treatment and metabolic by-products usage.
Collapse
Affiliation(s)
- Iulian Zoltan Boboescu
- Polytechnic University of Timisoara, Victoriei Square, nr. 2, 300006 Timisoara, Romania; Hungarian Academy of Sciences, Biological Research Centre Szeged, Temesvari krt. 62, 6726 Szeged, Hungary
| | - Vasile Daniel Gherman
- Polytechnic University of Timisoara, Victoriei Square, nr. 2, 300006 Timisoara, Romania
| | - Gergely Lakatos
- Hungarian Academy of Sciences, Biological Research Centre Szeged, Temesvari krt. 62, 6726 Szeged, Hungary
| | - Bernadett Pap
- Seqomics Biotechnology Ltd., Vállalkozók útja 7, 6782 Mórahalom, Hungary
| | - Tibor Bíró
- Szent István University, Faculty of Economics, Agricultural and Health Studies, Szarvas, Hungary
| | - Gergely Maróti
- Polytechnic University of Timisoara, Victoriei Square, nr. 2, 300006 Timisoara, Romania; Hungarian Academy of Sciences, Biological Research Centre Szeged, Temesvari krt. 62, 6726 Szeged, Hungary.
| |
Collapse
|
23
|
Deschênes JS. A Bacteriostatic Control Approach for Mixotrophic Cultures of Microalgae. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.ifacol.2016.07.345] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|