1
|
Cardoso Alves S, Díaz-Ruiz E, Lisboa B, Sharma M, Mussatto SI, Thakur VK, Kalaskar DM, Gupta VK, Chandel AK. Microbial meat: A sustainable vegan protein source produced from agri-waste to feed the world. Food Res Int 2023; 166:112596. [PMID: 36914347 DOI: 10.1016/j.foodres.2023.112596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
In the modern world, animal and plant protein may not meet the sustainability criteria due to their high need for arable land and potable water consumption, among other practices. Considering the growing population and food shortage, finding alternative protein sources for human consumption is an urgent issue that needs to be solved, especially in developing countries. In this context, microbial bioconversion of valuable materials in nutritious microbial cells represent a sustainable alternative to the food chain. Microbial protein, also known as single-cell protein (SCP), consist of algae biomass, fungi or bacteria that are currently used as food source for both humans and animals. Besides contributing as a sustainable source of protein to feed the world, producing SCP, is important to reduce waste disposal problems and production costs meeting the sustainable development goals. However, for microbial protein as feed or food to become an important and sustainable alternative, addressing the challenges of raising awareness and achieving wider public regulatory acceptance is real and must be addressed with care and convenience. In this work, we critically reviewed the potential technologies for microbial protein production, its benefits, safety, and limitations associated with its uses, and perspectives for broader large-scale implementation. We argue that the information documented in this manuscript will assist in developing microbial meat as a major protein source for the vegan world.
Collapse
Affiliation(s)
- Samara Cardoso Alves
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo 12.602.810, Brazil
| | - Erick Díaz-Ruiz
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo 12.602.810, Brazil
| | - Bruna Lisboa
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo 12.602.810, Brazil
| | - Minaxi Sharma
- Haute Ecole Provinciale de Hainaut- Condorcet, 7800 ATH, Belgium
| | - Solange I Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens Lyngby, Denmark
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Deepak M Kalaskar
- UCL Institute of orthopedics and Musculoskeletal Sciences (IOMS), Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital-NHS Trust, Stanmore, Middlesex HA7 4LP, UK.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, UK; Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India.
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo 12.602.810, Brazil.
| |
Collapse
|
2
|
Yamada R, Yokota M, Matsumoto T, Hankamer B, Ogino H. Promoting cell growth and characterizing partial symbiotic relationships in the co-cultivation of green alga Chlamydomonas reinhardtii and Escherichia coli. Biotechnol J 2023; 18:e2200099. [PMID: 36479591 DOI: 10.1002/biot.202200099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND By co-culturing selected microalgae and heterotrophic microorganisms, the growth rate of microalgae can be improved even under atmospheric conditions with a low CO2 concentration. However, the detailed mechanism of improvement of proliferative capacity by co-culture has not been elucidated. In this study, we investigated changes in the proliferative capacity of the green alga Chlamydomonas reinhardtii by co-culturing with Escherichia coli. MAIN METHODS AND MAJOR RESULTS In the co-culture, the number of C. reinhardtii cells reached 2.22 × 1010 cell/L on day 14 of culture. This was about 1.9 times the number of cells (1.16 × 1010 cell/L) on day 14 compared to C. reinhardtii cells in monoculture. The starch content per cell in the co-culture of C. reinhardtii and E. coli on the 14th day (2.09 × 10-11 g/cell) was 1.3 times higher than that in the C. reinhardtii monoculture (1.59 × 10-11 g/cell), and the starch content per culture medium improved 2.5 times with co-cultivation. By analyzing the gene transcription profiles and key media components, we clarified that E. coli produced CO2 from the organic carbon in the medium and the organic carbon produced by photosynthesis of C. reinhardtii, and this CO2 likely enhanced the growth of C. reinhardtii. CONCLUSIONS Consequently, E. coli plays a key role in promoting the growth of C. reinhardtii as well as the accumulation of starch which is a valuable intermediate for the production of a range of useful chemicals from CO2 .
Collapse
Affiliation(s)
- Ryosuke Yamada
- Department of Chemical Engineering, Osaka Prefecture University, Sakai, Osaka, Japan.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Moe Yokota
- Department of Chemical Engineering, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Takuya Matsumoto
- Department of Chemical Engineering, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Ben Hankamer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Prefecture University, Sakai, Osaka, Japan
| |
Collapse
|
3
|
Masi A, Leonelli F, Scognamiglio V, Gasperuzzo G, Antonacci A, Terzidis MA. Chlamydomonas reinhardtii: A Factory of Nutraceutical and Food Supplements for Human Health. Molecules 2023; 28:molecules28031185. [PMID: 36770853 PMCID: PMC9921279 DOI: 10.3390/molecules28031185] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Chlamydomonas reinhardtii (C. reinhardtii) is one of the most well-studied microalgae organisms that revealed important information for the photosynthetic and metabolic processes of plants and eukaryotes. Numerous extensive studies have also underpinned its great potential as a biochemical factory, capable of producing various highly desired molecules with a direct impact on human health and longevity. Polysaccharides, lipids, functional proteins, pigments, hormones, vaccines, and antibodies are among the valuable biomolecules that are produced spontaneously or under well-defined conditions by C. reinhardtii and can be directly linked to human nutrition and diet. The aim of this review is to highlight the recent advances in the field focusing on the most relevant applications related to the production of important biomolecules for human health that are also linked with human nutrition and diet. The limitations and challenges are critically discussed along with the potential future applications of C. reinhardtii biomass and processed products in the field of nutraceuticals and food supplements. The increasing need for high-value and low-cost biomolecules produced in an environmentally and economy sustainable manner also underline the important role of C. reinhardtii.
Collapse
Affiliation(s)
- Annalisa Masi
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
| | - Francesca Leonelli
- Department of Chemistry, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Viviana Scognamiglio
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
| | - Giulia Gasperuzzo
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
| | - Amina Antonacci
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
- Correspondence: (A.A.); (M.A.T.); Tel.: +39-0690675597 (A.A.); +30-2310013224 (M.A.T.)
| | - Michael A. Terzidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece
- Correspondence: (A.A.); (M.A.T.); Tel.: +39-0690675597 (A.A.); +30-2310013224 (M.A.T.)
| |
Collapse
|
4
|
Ren X, Liu Y, Fan C, Hong H, Wu W, Zhang W, Wang Y. Production, Processing, and Protection of Microalgal n-3 PUFA-Rich Oil. Foods 2022; 11:foods11091215. [PMID: 35563938 PMCID: PMC9101592 DOI: 10.3390/foods11091215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Microalgae have been increasingly considered as a sustainable “biofactory” with huge potentials to fill up the current and future shortages of food and nutrition. They have become an economically and technologically viable solution to produce a great diversity of high-value bioactive compounds, including n-3 polyunsaturated fatty acids (PUFA). The n-3 PUFA, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), possess an array of biological activities and positively affect a number of diseases, including cardiovascular and neurodegenerative disorders. As such, the global market of n-3 PUFA has been increasing at a fast pace in the past two decades. Nowadays, the supply of n-3 PUFA is facing serious challenges as a result of global warming and maximal/over marine fisheries catches. Although increasing rapidly in recent years, aquaculture as an alternative source of n-3 PUFA appears insufficient to meet the fast increase in consumption and market demand. Therefore, the cultivation of microalgae stands out as a potential solution to meet the shortages of the n-3 PUFA market and provides unique fatty acids for the special groups of the population. This review focuses on the biosynthesis pathways and recombinant engineering approaches that can be used to enhance the production of n-3 PUFA, the impact of environmental conditions in heterotrophic cultivation on n-3 PUFA production, and the technologies that have been applied in the food industry to extract and purify oil in microalgae and protect n-3 PUFA from oxidation.
Collapse
Affiliation(s)
- Xiang Ren
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| | - Yanjun Liu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Chao Fan
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Hao Hong
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wenzhong Wu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wei Zhang
- DeOxiTech Consulting, 30 Cloverfield Court, Dartmouth, NS B2W 0B3, Canada;
| | - Yanwen Wang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| |
Collapse
|
5
|
The Spermidine Synthase Gene SPD1: A Novel Auxotrophic Marker for Chlamydomonas reinhardtii Designed by Enhanced CRISPR/Cas9 Gene Editing. Cells 2022; 11:cells11050837. [PMID: 35269459 PMCID: PMC8909627 DOI: 10.3390/cells11050837] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/15/2022] [Accepted: 02/24/2022] [Indexed: 01/09/2023] Open
Abstract
Biotechnological application of the green microalga Chlamydomonas reinhardtii hinges on the availability of selectable markers for effective expression of multiple transgenes. However, biological safety concerns limit the establishment of new antibiotic resistance genes and until today, only a few auxotrophic markers exist for C. reinhardtii. The recent improvements in gene editing via CRISPR/Cas allow directed exploration of new endogenous selectable markers. Since editing frequencies remain comparably low, a Cas9-sgRNA ribonucleoprotein (RNP) delivery protocol was strategically optimized by applying nitrogen starvation to the pre-culture, which improved successful gene edits from 10% to 66% after pre-selection. Probing the essential polyamine biosynthesis pathway, the spermidine synthase gene (SPD1) is shown to be a potent selectable marker with versatile biotechnological applicability. Very low levels of spermidine (0.75 mg/L) were required to maintain normal mixotrophic and phototrophic growth in newly designed spermidine auxotrophic strains. Complementation of these strains with a synthetic SPD1 gene was achieved when the mature protein was expressed in the cytosol or targeted to the chloroplast. This work highlights the potential of new selectable markers for biotechnology as well as basic research and proposes an effective pipeline for the identification of new auxotrophies in C. reinhardtii.
Collapse
|
6
|
Lu Y, Gu X, Lin H, Melis A. Engineering microalgae: transition from empirical design to programmable cells. Crit Rev Biotechnol 2021; 41:1233-1256. [PMID: 34130561 DOI: 10.1080/07388551.2021.1917507] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Domesticated microalgae hold great promise for the sustainable provision of various bioresources for human domestic and industrial consumption. Efforts to exploit their potential are far from being fully realized due to limitations in the know-how of microalgal engineering. The associated technologies are not as well developed as those for heterotrophic microbes, cyanobacteria, and plants. However, recent studies on microalgal metabolic engineering, genome editing, and synthetic biology have immensely helped to enhance transformation efficiencies and are bringing new insights into this field. Therefore, this article, summarizes recent developments in microalgal biotechnology and examines the prospects for generating specialty and commodity products through the processes of metabolic engineering and synthetic biology. After a brief examination of empirical engineering methods and vector design, this article focuses on quantitative transformation cassette design, elaborates on target editing methods and emerging digital design of algal cellular metabolism to arrive at high yields of valuable products. These advances have enabled a transition of manners in microalgal engineering from single-gene and enzyme-based metabolic engineering to systems-level precision engineering, from cells created with genetically modified (GM) tags to that without GM tags, and ultimately from proof of concept to tangible industrial applications. Finally, future trends are proposed in microalgal engineering, aiming to establish individualized transformation systems in newly identified species for strain-specific specialty and commodity products, while developing sophisticated universal toolkits in model algal species.
Collapse
Affiliation(s)
- Yandu Lu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Oceanology, Hainan University, Haikou, China.,Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Xinping Gu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Hanzhi Lin
- Institute of Marine & Environmental Technology, Center for Environmental Science, University of Maryland, College Park, MD, USA
| | - Anastasios Melis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
7
|
Srivastava RK, Akhtar N, Verma M, Imandi SB. Primary metabolites from overproducing microbial system using sustainable substrates. Biotechnol Appl Biochem 2020; 67:852-874. [PMID: 32294277 DOI: 10.1002/bab.1927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/12/2020] [Indexed: 02/06/2023]
Abstract
Primary (or secondary) metabolites are produced by animals, plants, or microbial cell systems either intracellularly or extracellularly. Production capabilities of microbial cell systems for many types of primary metabolites have been exploited at a commercial scale. But the high production cost of metabolites is a big challenge for most of the bioprocess industries and commercial production needs to be achieved. This issue can be solved to some extent by screening and developing the engineered microbial systems via reconstruction of the genome-scale metabolic model. The predicted genetic modification is applied for an increased flux in biosynthesis pathways toward the desired product. Wherein the resulting microbial strain is capable of converting a large amount of carbon substrate to the expected product with minimum by-product formation in the optimal operating conditions. Metabolic engineering efforts have also resulted in significant improvement of metabolite yields, depending on the nature of the products, microbial cell factory modification, and the types of substrate used. The objective of this review is to comprehend the state of art for the production of various primary metabolites by microbial strains system, focusing on the selection of efficient strain and genetic or pathway modifications, applied during strain engineering.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, GIT, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, India
| | - Nasim Akhtar
- Department of Biotechnology, GIT, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, India
| | - Malkhey Verma
- Departments of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, India
| | - Sarat Babu Imandi
- Department of Biotechnology, GIT, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, India
| |
Collapse
|
8
|
Torres-Tiji Y, Fields FJ, Mayfield SP. Microalgae as a future food source. Biotechnol Adv 2020; 41:107536. [PMID: 32194145 DOI: 10.1016/j.biotechadv.2020.107536] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 02/08/2023]
Abstract
One of the key challenges that we face in the 21st century is the need to feed an ever-increasing human population with increasingly limited natural resources. Even today it is estimated that roughly 1 out of 9 people in the world are undernourished, of which the most important factor is protein-energy malnutrition. By establishing microalgae as a new food and feed platform, we have the opportunity to increase the supply of these essential products to address global demands in a more efficient and environmentally sustainable way. Many types of algae are nutritionally complete foods, their yields outperform most plant crops, and there is a growing set of tools to develop improved strains of algae. Similar improvements were achieved in traditional crops through thousands of years of breeding and strain selection, whereas with the newest genetic engineering tools and advanced strain selection techniques, similar changes can be implemented in microalgae in just a few years. Here we describe different strategies that could be used to enhance the nutritional content, productivity, and organoleptic traits of algae to help drive development of this new crop. Clearly developing more efficient, sustainable, and nutritious foods and feed would be an enormous benefit for the planet, and algae represents an opportunity to develop a new crop that would complement traditional agriculture, and one that could potential result in a more efficient means to meet the world's food and feed supply.
Collapse
Affiliation(s)
- Yasin Torres-Tiji
- The California Center for Algae Biotechnology, University of California, San Diego, La Jolla, CA, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| | - Francis J Fields
- The California Center for Algae Biotechnology, University of California, San Diego, La Jolla, CA, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Stephen P Mayfield
- The California Center for Algae Biotechnology, University of California, San Diego, La Jolla, CA, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Kang NK, Kim EK, Sung MG, Kim YU, Jeong BR, Chang YK. Increased biomass and lipid production by continuous cultivation of Nannochloropsis salina transformant overexpressing a bHLH transcription factor. Biotechnol Bioeng 2019; 116:555-568. [PMID: 30536876 PMCID: PMC6590115 DOI: 10.1002/bit.26894] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/22/2018] [Accepted: 12/06/2018] [Indexed: 12/28/2022]
Abstract
Microalgae are promising feedstocks for sustainable and eco-friendly production of biomaterials, which can be improved by genetic engineering. It is also necessary to optimize the processes to produce biomaterials from engineered microalgae. We previously reported that genetic improvements of an industrial microalga Nannochloropsis salina by overexpressing a basic helix-loop-helix transcription factor (NsbHLH2). These transformants showed an improved growth and lipid production particularly during the early phase of culture under batch culture. However, they had faster uptake of nutrients, resulting in earlier starvation and reduced growth during the later stages. We attempted to optimize the growth and lipid production by growing one of the transformants in continuous culture with variable dilution rate and feed nitrogen concentration. Relative to wild-type, NsbHLH2 transformant consumed more nitrate at a high dilution rate (0.5 day -1 ), and had greater biomass production. Subsequently, nitrogen limitation at continuous cultivation led to an increased fatty acid methyl ester production by 83.6 mg l -1 day -1 . To elucidate genetic mechanisms, we identified the genes containing E-boxes, known as binding sites for bHLH transcription factors. Among these, we selected 18 genes involved in the growth and lipid metabolism, and revealed their positive contribution to the phenotypes via quantitative real-time polymerase chain reaction. These results provide proof-of-concept that NsbHLH2 can be used to produce biomass and lipids.
Collapse
Affiliation(s)
- Nam Kyu Kang
- Advanced Biomass R&D Center, Yuseong-gu, Daejeon, Republic of Korea
| | - Eun Kyung Kim
- Advanced Biomass R&D Center, Yuseong-gu, Daejeon, Republic of Korea
| | - Min-Gyu Sung
- Department of Chemical and Biomolecular Engineering, KAIST, Yuseong-gu, Daejeon, Republic of Korea
| | - Young Uk Kim
- Advanced Biomass R&D Center, Yuseong-gu, Daejeon, Republic of Korea
| | - Byeong-Ryool Jeong
- Department of Chemical and Biomolecular Engineering, KAIST, Yuseong-gu, Daejeon, Republic of Korea
| | - Yong Keun Chang
- Advanced Biomass R&D Center, Yuseong-gu, Daejeon, Republic of Korea.,Department of Chemical and Biomolecular Engineering, KAIST, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
10
|
Benemann JR, Woertz I, Lundquist T. Autotrophic Microalgae Biomass Production: From Niche Markets to Commodities. Ind Biotechnol (New Rochelle N Y) 2018. [DOI: 10.1089/ind.2018.29118.jrb] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Ian Woertz
- MicroBio Engineering Inc., San Luis Obispo, CA
| | - Tryg Lundquist
- MicroBio Engineering Inc., San Luis Obispo, CA
- California Polytechnic State University, San Luis Obispo, CA
| |
Collapse
|
11
|
Jagadevan S, Banerjee A, Banerjee C, Guria C, Tiwari R, Baweja M, Shukla P. Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:185. [PMID: 29988523 PMCID: PMC6026345 DOI: 10.1186/s13068-018-1181-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/20/2018] [Indexed: 05/03/2023]
Abstract
In the wake of the uprising global energy crisis, microalgae have emerged as an alternate feedstock for biofuel production. In addition, microalgae bear immense potential as bio-cell factories in terms of producing key chemicals, recombinant proteins, enzymes, lipid, hydrogen and alcohol. Abstraction of such high-value products (algal biorefinery approach) facilitates to make microalgae-based renewable energy an economically viable option. Synthetic biology is an emerging field that harmoniously blends science and engineering to help design and construct novel biological systems, with an aim to achieve rationally formulated objectives. However, resources and tools used for such nuclear manipulation, construction of synthetic gene network and genome-scale reconstruction of microalgae are limited. Herein, we present recent developments in the upcoming field of microalgae employed as a model system for synthetic biology applications and highlight the importance of genome-scale reconstruction models and kinetic models, to maximize the metabolic output by understanding the intricacies of algal growth. This review also examines the role played by microalgae as biorefineries, microalgal culture conditions and various operating parameters that need to be optimized to yield biofuel that can be economically competitive with fossil fuels.
Collapse
Affiliation(s)
- Sheeja Jagadevan
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004 India
| | - Avik Banerjee
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004 India
| | - Chiranjib Banerjee
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004 India
| | - Chandan Guria
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004 India
| | - Rameshwar Tiwari
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
- Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology, Hauz-Khas, New Delhi 110016 India
| | - Mehak Baweja
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|