1
|
Fan W, Lv B, Jiao Y, Deng X, Fang C, Xing B. Preparation and application of composite magnetic flocculants for wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124626. [PMID: 39983575 DOI: 10.1016/j.jenvman.2025.124626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/26/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Wastewater treatment plays a vital role in protecting natural environments. Among the various wastewater treatment methods, flocculation achieves effective wastewater treatment, owing to its high efficiency, convenience, and cost-effectiveness. Compared to traditional flocculants, Composite magnetic flocculants have attracted significant attention due to their distinctive "core-shell" structure, magnetic flocculation mechanism and high efficiency recovery. This promotes sustainable development in wastewater treatment, highlighting the significant prospects for its application and potential advancement. This review begins by discussing the raw materials and treatment methods of composite magnetic flocculants and presenting common materials and associated preparation techniques. By combining the advantages of organic and inorganic components, disparate raw materials give flocculants different properties and flocculation efficiency. Through the comprehensive analysis of the flocculation mechanism, the flocculation efficiency of various wastewater treatment targets was elucidated, and the exceptional performance in overcoming steric hindrance was introduced. Subsequently, recycling approaches were summarized to determine the advantages and disadvantages in terms of recovery efficiency, operational difficulty, and impact on particle structure. Based on the current developmental status, this review provides a prospective outlook on future exploration trends in composite magnetic flocculants, valuable references, and theoretical foundations for related research and engineering practices.
Collapse
Affiliation(s)
- Wen Fan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China; National Key Laboratory of Green Development of Coking Coal Resources, Pingdingshan, 467000, China
| | - Bo Lv
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China; National Key Laboratory of Green Development of Coking Coal Resources, Pingdingshan, 467000, China; Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Yutong Jiao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Xiaowei Deng
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China; National Key Laboratory of Green Development of Coking Coal Resources, Pingdingshan, 467000, China; Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Chaojun Fang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China; National Key Laboratory of Green Development of Coking Coal Resources, Pingdingshan, 467000, China
| | - Baolin Xing
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China; Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Henan Polytechnic University, Jiaozuo, 454000, China
| |
Collapse
|
2
|
Zhao Y, Fan Q, Liu Y, Wang S, Guo X, Guo L, Zhu M, Wang X. Preparation and Application of Amino-Terminated Hyperbranched Magnetic Composites in High-Turbidity Water Treatment. Molecules 2023; 28:6787. [PMID: 37836630 PMCID: PMC10574061 DOI: 10.3390/molecules28196787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
In order to separate the colloidal in high-turbidity water, a kind of magnetic composite (Fe3O4/HBPN) was prepared via the functional assembly of Fe3O4 and an amino-terminal hyperbranched polymer (HBPN). The physical and chemical characteristics of Fe3O4@HBPN were investigated by different means. The Fourier Transform infrared spectroscopy (FTIR) spectra showed that the characteristic absorption peaks positioned at 1110 cm-1, 1468 cm-1, 1570 cm-1 and 1641 cm-1 were ascribed to C-N, H-N-C, N-H and C=O bonds, respectively. The shape and size of Fe3O4/HBPN showed a different and uneven distribution; the particles clumped together and were coated with an oil-like film. Energy-dispersive spectroscopy (EDS) displayed that the main elements of Fe3O4/HBPN were C, N, O, and Fe. The superparamagnetic properties and good magnetic response were revealed by vibrating sample magnetometer (VSM) analysis. The characteristic diffraction peaks of Fe3O4/HBPN were observed at 2θ = 30.01 (220), 35.70 (311), 43.01 (400), 56.82 (511), and 62.32 (440), which indicated that the intrinsic phase of magnetite remained. The zeta potential measurement indicated that the surface charge of Fe3O4/HBPN was positive in the pH range 4-10. The mass loss of Fe3O4/HBPN in thermogravimetric analysis (TGA) proved thermal decomposition. The -C-NH2 or -C-NH perssad of HBPN were linked and loaded with Fe3O4 particles by the N-O bonds. When the Fe3O4/HBPN dosage was 2.5 mg/L, pH = 4-5, the kaolin concentration of 1.0 g/L and the magnetic field of 3800 G were the preferred reaction conditions. In addition, a removal efficiency of at least 86% was reached for the actual water treatment. Fe3O4/HBPN was recycled after the first application and reused five times. The recycling efficiency and removal efficiency both showed no significant difference five times (p > 0.05), and the values were between 84.8% and 86.9%.
Collapse
Affiliation(s)
- Yuan Zhao
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Qianlong Fan
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Yinhua Liu
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Shuwen Wang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Xudong Guo
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Liujia Guo
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Mengcheng Zhu
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Xuan Wang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China
| |
Collapse
|
3
|
Zhao Y, Liu Y, Xu H, Fan Q, Zhu C, Liu J, Zhu M, Wang X, Niu A. Preparation and Application of Magnetic Composites Using Controllable Assembly for Use in Water Treatment: A Review. Molecules 2023; 28:5799. [PMID: 37570769 PMCID: PMC10421488 DOI: 10.3390/molecules28155799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The use of magnetic composites in wastewater treatment has become widespread due to their high flocculating characteristics and ferromagnetism. This review provides an analysis and summary of the preparation and application of magnetic composites through controllable assembly for use in wastewater treatment. The applications of magnetic composites include the treatment of dye wastewater, heavy metal wastewater, microalgae suspensions, and oily wastewater. Additionally, the recycling and regeneration of magnetic composites have been investigated. In the future, further research could be focused on improving the assembly and regeneration stability of magnetic composites, such as utilizing polymers with a multibranched structure. Additionally, it would be beneficial to explore the recycling and regeneration properties of these composites.
Collapse
Affiliation(s)
- Yuan Zhao
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Yinhua Liu
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Hang Xu
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Qianlong Fan
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Chunyou Zhu
- Bureau of Hydrology and Water Resources, Pearl River Water Resources Commission of Ministry of Water Resources, Guangzhou 510611, China
| | - Junhui Liu
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Mengcheng Zhu
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Xuan Wang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Anqi Niu
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China
| |
Collapse
|
4
|
Liu C, Jiang X, Wang X, Wang Q, Li L, Zhang F, Liang W. Magnetic polyphenol nanocomposite of Fe 3O 4/SiO 2/PP for Cd(II) adsorption from aqueous solution. ENVIRONMENTAL TECHNOLOGY 2022; 43:935-948. [PMID: 32799630 DOI: 10.1080/09593330.2020.1811394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
In order to solve the water solubility and difficult re-use of plant polyphenol (PP) in Cd(II) adsorption, PP was immobilized on the surface of magnetic material in this study. A core-shell nanocomposite Fe3O4/SiO2/PP (∼18 nm) was synthesized with 3-8 nm SiO2 and 2-5 nm PP. TGA analysis revealed the PP coating amount was 2.39%. VSM detection suggested that saturation magnetization of Fe3O4/SiO2/PP was 45.94 emu/g. The adsorption equilibrium was reached in 2 h and the adsorption kinetics followed a pseudo-second-order model. The adsorption data fitted well to a Langmuir isotherm, achieving a 98.6% of Cd(II) removal at 0.6 g, pH 7.0, 298 K and 160 rpm. The adsorption capacity of Cd(II) on Fe3O4/SiO2/PP highly depended on the pH. The adsorption capacity increased as the initial solution pH was increased in the range of 3.0-8.0. The adsorbed Cd(II) on Fe3O4/SiO2/PP could be effectively desorbed by 0.1 mol/L of HNO3 and the Fe3O4/SiO2/PP still maintained a stable adsorption capacity after five cycles. The adsorption mechanism of Cd(II) on Fe3O4/SiO2/PP is mainly dependent on complexation and electrostatic adsorption from the FTIR and XPS analyses. This study provided a new way for PP to remove Cd(II) from aqueous solution.
Collapse
Affiliation(s)
- Chuang Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, People's Republic of China
| | - Xiaoxue Jiang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, People's Republic of China
| | - Xiaoyu Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, People's Republic of China
| | - Qian Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, People's Republic of China
| | - Lanxin Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, People's Republic of China
| | - Fugang Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, People's Republic of China
| | - Wenyan Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
5
|
de Lima Barizão AC, de Oliveira JP, Gonçalves RF, Cassini ST. Nanomagnetic approach applied to microalgae biomass harvesting: advances, gaps, and perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44795-44811. [PMID: 34244940 DOI: 10.1007/s11356-021-15260-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Microalgae biomass is a versatile option for a myriad of purposes, as it does not require farmable land for cultivation and due of its high CO2 fixation efficiency during growth. However, biomass harvesting is considered a bottleneck in the process because of its high cost. Magnetic harvesting is a promising method on account of its low cost, high harvesting speed, and efficiency, which can be used to improve the results of other harvesting methods. Here, we present the state of the art of the magnetic harvesting method. Detailed approaches involving different nanomaterials are described, including types, route of synthesis, and functionalization, variables that interfere with harvesting, and recycling methods of nanoparticles and medium. In addition to discussing the overall perspectives of the method, we provide a guideline for future research.
Collapse
Affiliation(s)
- Ana Carolina de Lima Barizão
- Department of Environmental Engineering, Federal University of Espírito Santo, Fernando Ferrari avenue, 514 - Goiabeiras, Vitória, ES, 29075-910, Brazil
| | - Jairo Pinto de Oliveira
- Department of Morphology, Federal University of Espírito Santo, Maruípe avenue, Vitória, ES, 29053-360, Brazil
| | - Ricardo Franci Gonçalves
- Department of Environmental Engineering, Federal University of Espírito Santo, Fernando Ferrari avenue, 514 - Goiabeiras, Vitória, ES, 29075-910, Brazil
| | - Sérvio Túlio Cassini
- Department of Environmental Engineering, Federal University of Espírito Santo, Fernando Ferrari avenue, 514 - Goiabeiras, Vitória, ES, 29075-910, Brazil.
| |
Collapse
|
6
|
Han SF, Jin W, Tu R, Gao SH, Zhou X. Microalgae harvesting by magnetic flocculation for biodiesel production: current status and potential. World J Microbiol Biotechnol 2020; 36:105. [PMID: 32632607 DOI: 10.1007/s11274-020-02884-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/29/2020] [Indexed: 11/25/2022]
Abstract
With the increasing demand for energy, microalgae, as one of the promising feedstocks of biodiesel, has raised great awareness. Because of its small size, similar density to water and electrical stability, harvesting methods of microalgae that have low energy consumption and that are highly efficient, easy to large-scale and environmentally friendly have become a bottleneck restricting development of the whole process. Among the numerous possible harvesting methods, magnetic flocculation has the advantages of simple operation, fast separation and energy saving and thus is considered as a promising novel harvesting method. In this review, we have summarized the updated status and application potential of magnetic flocculation, including the principle of magnetic flocculation, magnetic flocculating materials, flocculating efficiency and its effect on downstream process. The major challenges such as magnetic materials recovery, large-scale magnetic flocculation device design, and magnetic flocculation costs are also discussed.
Collapse
Affiliation(s)
- Song-Fang Han
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Wenbiao Jin
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Renjie Tu
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Shu-Hong Gao
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Xu Zhou
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| |
Collapse
|
7
|
Liu P, Wang T, Yang Z, Hong Y, Xie X, Hou Y. Effects of Fe 3O 4 nanoparticle fabrication and surface modification on Chlorella sp. harvesting efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135286. [PMID: 31791750 DOI: 10.1016/j.scitotenv.2019.135286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Harvesting is a critical step in microalgae-based biodiesel production. Oleaginous microalgae harvesting by magnetic nanomaterials has gained attention because of the advantages of higher efficiency, lower cost, and convenient operation. In the present study, Fe3O4 magnetic nanoparticles (MNPs) were fabricated using two different methods (chemical coprecipitation and thermal decomposition), modified with amino acid using three different approaches (ultrasonic, long-time mixing, and "one-step" approaches), and utilized for oleaginous microalgae Chlorella sp. HQ harvesting. The results showed that the Fe3O4 MNPs synthesized by the chemical coprecipitation method achieved superior performance when considering both harvesting efficiency and fabrication cost. For the amino-acid modification, the one-step approach outcompeted the other approaches. At a dosage of 200 mg/L, the optimized Fe3O4@Arginine MNPs could achieve a harvesting efficiency of 95% with a low cost of only 347 USD/t of harvested algal biomass. Both the amino-acid content on the NPs and the number of amino groups in the amino acid molecules played a role in improving the harvesting performance.
Collapse
Affiliation(s)
- Peirui Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, PR China; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Ting Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, PR China
| | - Ziyu Yang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, PR China.
| | - Xing Xie
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Yanglong Hou
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
8
|
Kargar Karkhah M, Kefayati H, Shariati S. Enantioselective synthesis of 3‐amino‐1‐aryl‐1 H‐benzo[ f]chromene‐2‐carbonitrile derivatives by Fe 3O 4@PS‐arginine as an efficient chiral magnetic nanocatalyst. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Hassan Kefayati
- Department of Chemistry, Rasht BranchIslamic Azad University Rasht Iran
| | - Shahab Shariati
- Department of Chemistry, Rasht BranchIslamic Azad University Rasht Iran
| |
Collapse
|
9
|
|
10
|
Ferraro G, Toranzo RM, Castiglioni DM, Lima E, Vasquez Mansilla M, Fellenz NA, Zysler RD, Pasquevich DM, Bagnato C. Zinc removal by Chlorella sp. biomass and harvesting with low cost magnetic particles. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|