1
|
Tanaka K, Lan JCW, Kondo A, Hasunuma T. Metabolic engineering and cultivation strategies for efficient production of fucoxanthin and related carotenoids. Appl Microbiol Biotechnol 2025; 109:57. [PMID: 40035874 PMCID: PMC11880063 DOI: 10.1007/s00253-025-13441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/06/2025]
Abstract
Fucoxanthin, a bioactive carotenoid derived from algae, has attracted considerable attention for its applications in health, cosmetics, and nutrition. Advances in metabolic engineering, such as the overexpression of pathway-specific enzymes and enhancement of precursor availability, have shown promising results in improving production efficiency. However, despite its high value, the biosynthetic pathway of fucoxanthin remains only partially elucidated, posing significant challenges for metabolic engineering efforts. Recent studies have identified previously unknown enzymes and regulatory elements within the pathway, providing opportunities for further productivity enhancements through targeted metabolic modifications. Additionally, adaptive evolution, mutagenesis-driven strain development, and optimized cultivation conditions have demonstrated significant potential to boost fucoxanthin yields. This review consolidates the latest insights into the biosynthetic pathway of fucoxanthin and highlights metabolic engineering strategies aimed at enhancing the production of fucoxanthin and related carotenoids, offering approaches to design high-yielding strains. Furthermore, recent advancements in random mutagenesis and cultivation technology are discussed. By integrating these developments, more economically viable and environmentally sustainable fucoxanthin production systems can be achieved. KEY POINTS : • Insights into fucoxanthin biosynthesis enable targeted metabolic engineering. • ALE and cultivation strategies complement metabolic engineering efforts. • Balanced push-pull-block strategies improve fucoxanthin production efficiency.
Collapse
Affiliation(s)
- Kenya Tanaka
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - John Chi-Wei Lan
- Biorefinery and Bioprocessing Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan, 320, Taiwan
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chungli, Taoyuan, 320, Taiwan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chungli, Taoyuan, 320, Taiwan.
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
2
|
Cui H, Zhu X, Yu X, Li S, Wang K, Wei L, Li R, Qin S. Advancements of astaxanthin production in Haematococcus pluvialis: Update insight and way forward. Biotechnol Adv 2025; 79:108519. [PMID: 39800086 DOI: 10.1016/j.biotechadv.2025.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/12/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The global market demand for natural astaxanthin (AXT) is growing rapidly owing to its potential human health benefits and diverse industry applications, driven by its safety, unique structure, and special function. Currently, the alga Haematococcus pluvialis (alternative name H. lacustris) has been considered as one of the best large-scale producers of natural AXT. However, the industry's further development faces two main challenges: the limited cultivation areas due to light-dependent AXT accumulation and the low AXT yield coupled with high production costs resulting from complex, time-consuming upstream biomass culture and downstream AXT extraction processes. Therefore, it is urgently to develop novel strategies to improve the AXT production in H. pluvialis to meet industrial demands, which makes its commercialization cost-effective. Although several strategies related to screening excellent target strains, optimizing culture condition for high biomass yield, elucidating the AXT biosynthetic pathway, and exploiting effective inducers for high AXT content have been applied to enhance the AXT production in H. pluvialis, there are still some unsolved and easily ignored perspectives. In this review, firstly, we summarize the structure and function of natural AXT focus on those from the algal H. pluvialis. Secondly, the latest findings regarding the AXT biosynthetic pathway including spatiotemporal specificity, transport, esterification, and storage are updated. Thirdly, we systematically assess enhancement strategies on AXT yield. Fourthly, the regulation mechanisms of AXT accumulation under various stresses are discussed. Finally, the integrated and systematic solutions for improving AXT production are proposed. This review not only fills the existing gap about the AXT accumulation, but also points the way forward for AXT production in H. pluvialis.
Collapse
Affiliation(s)
- Hongli Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Xiaoli Zhu
- College of Food and Bioengineering, Yantai Institute of Technology, Yantai 264003, Shandong, China
| | - Xiao Yu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Siming Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Kang Wang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Le Wei
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| |
Collapse
|
3
|
Huang JJ, Xie Q, Lin S, Xu W, Cheung PCK. Microalgae-derived astaxanthin: bioactivities, biotechnological approaches and industrial technologies for its production. Crit Rev Food Sci Nutr 2025:1-35. [PMID: 39992396 DOI: 10.1080/10408398.2025.2468863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Microalgae are rich sources of astaxanthin well recognized for their potent bioactivities such as antioxidant, anti-cancer, and anti-inflammatory activities. Recent interests focused on the bioactivities of microalgae-derived astaxanthin on treating or preventing cancers mediated by their antioxidant and anti-inflammatory properties. This is due to the special structural configuration of microalgae-derived astaxanthin in terms of unsaturation (conjugated double bonds), stereochemical isomerism (3S,3'S optical isomer) and esterification (monoester), which display more potent bioactivities, compared with those from the other natural sources such as yeasts and higher plants, as well as synthetic astaxanthin. This review focuses on the recent advances on the bioactivities of microalgae-derived astaxanthin in association with cancers and immune diseases, with emphasis on their potential applications as natural antioxidants. Various well-developed biotechnological approaches for inducing astaxanthin production from microalgal culture, along with the proven and emerging industrial technologies to commercialize astaxanthin products in a large-scale manner, are also critically reviewed. These would facilitate the manufacture of bioactive microalgae-derived astaxanthin products to be applied in the food and pharmaceutical industries as salutary nutraceuticals.
Collapse
Affiliation(s)
- Jim Junhui Huang
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R, People's Republic of China
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Qun Xie
- Guangzhou Pharmaceutical Vocational School, Guangzhou, Guangdong Province, People's Republic of China
| | - Shaoling Lin
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R, People's Republic of China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, People's Republic of China
| | - Wenwen Xu
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R, People's Republic of China
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Peter Chi Keung Cheung
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R, People's Republic of China
| |
Collapse
|
4
|
Kleiner FH, Oh JJ, Aubin-Tam ME. Solving Challenges in Microalgae-Based Living Materials. ACS Synth Biol 2025; 14:307-315. [PMID: 39980378 PMCID: PMC11852197 DOI: 10.1021/acssynbio.4c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Indexed: 02/22/2025]
Abstract
Engineered living materials (ELMs) integrate aspects of material science and biology into a unique platform, leading to materials and devices with features of life. Among those, ELMs containing microalgae have received increased attention due to the many benefits photosynthetic organisms provide. Due to their relatively recent occurrence, photosynthetic ELMs still face many challenges related to reliability, lifetime, scalability, and more, often based on the complicated crosstalk of cellular, material-based, and environmental variables in time. This Viewpoint aims to summarize potential avenues for improving ELMs, beginning with an emphasis on understanding the cell's perspective and the potential stresses imposed on them due to recurring flaws in many current ELMs. Potential solutions and their ease of implementation will be discussed, ranging from choice of organism, adjustments to the ELM design, to various genetic modification tools, so as to achieve ELMs with longer lifetime and improved functionality.
Collapse
Affiliation(s)
- Friedrich Hans Kleiner
- Department of Bionanoscience, Kavli
Institute of Nanoscience, Delft University
of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Jeong-Joo Oh
- Department of Bionanoscience, Kavli
Institute of Nanoscience, Delft University
of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Marie-Eve Aubin-Tam
- Department of Bionanoscience, Kavli
Institute of Nanoscience, Delft University
of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
5
|
Aditi, Bhardwaj R, Yadav A, Swapnil P, Meena M. Characterization of microalgal β-carotene and astaxanthin: exploring their health-promoting properties under the effect of salinity and light intensity. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:18. [PMID: 39953577 PMCID: PMC11829443 DOI: 10.1186/s13068-025-02612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
Microalgae are promising sources of valuable carotenoids like β-carotene and astaxanthin with numerous health benefits. This review summarizes recent studies on producing these carotenoids in microalgae under different salinity and light-intensity conditions, which are key factors influencing their biosynthesis. The carotenoid biosynthesis pathways in microalgae, involving the methylerythritol phosphate pathway in chloroplasts, are described in detail. The effects of high salinity and light stress on stimulating astaxanthin accumulation in species like Haematococcus pluvialis and Chromochloris zofingiensis and their synergistic impact are discussed. Similarly, the review covers how high light and salinity induce β-carotene production in Dunaliella salina and other microalgae. The diverse health-promoting properties of astaxanthin and β-carotene, such as their antioxidant, antiinflammatory, and anticancer activities, are highlighted. Strategies to improve carotenoid yields in microalgae through environmental stresses, two-stage cultivation, genetic engineering, and metabolic engineering approaches are evaluated. Overall, this review highlights advancements in β-carotene and astaxanthin production reporting the different microalgal capability to produce carotenoids under different stress level like 31.5% increase in β-carotene accumulation in Dunaliella salina and astaxanthin productivity reaching 18.1 mg/L/day in Haematococcus lacustris. It also explores novel biotechnological strategies, including CRISPR-Cas9, for enhancing carotenoid yield.
Collapse
Affiliation(s)
- Aditi
- School of Basic Sciences, Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Rupesh Bhardwaj
- School of Basic Sciences, Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Ankush Yadav
- School of Basic Sciences, Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Prashant Swapnil
- School of Basic Sciences, Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| |
Collapse
|
6
|
El-Fakharany EM, Saleh AK, El-Maradny YA, El-Sayed MH, Alali I, Alsirhani AM, Alalawy AI, Alhawiti AS, Alatawi IS, Mazi W, El-Gendi H. Comprehensive insight into recent algal enzymes production and purification advances: Toward effective commercial applications: A review. Int J Biol Macromol 2024; 283:137783. [PMID: 39557238 DOI: 10.1016/j.ijbiomac.2024.137783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Algal enzymes are essential catalysts in numerous biological reactions and industrial processes owing to their adaptability and potency. The marketing of algal enzymes has recently risen due to various reasons, including the cost-efficient manner of their cultivation in photobioreactors, the eco-friendly production of high biomass contents, sources of novel enzymes that used in many sectors (biofuel and bioremediation applications), sustainability, and more renewability. Oxidoreductases and hydrolytic enzymes are among the important applied algal enzymes in industrial applications, with annually growing demand. These algal enzymes have opened up new avenues for significant health advantages in reducing and treating oxidative stress, cardiovascular illness, tumors, microbial infections, and viral outbreaks. Despite their promising uses, commercial applications of algal enzymes face many difficulties, such as stability, toxicity, and lower data availability on specific and adequate catalytic mechanisms. Therefore, this review focuses on the algal enzyme types, their uses and advantages over other microbial enzymes, downstream and upstream processing, their commercial and marketing, and their challenges. With the constant development of novel enzymes and their uses, enzyme technology provides exciting options for several industrial sectors.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt; Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt; Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex, 21648, Alexandria.
| | - Ahmed K Saleh
- Cellulose and Paper Department, National Research Centre, El-Tahrir St., Dokki 12622, Giza, Egypt
| | - Yousra A El-Maradny
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
| | - Mohamed H El-Sayed
- Department of Biology, College of Sciences and Arts-Rafha, Northern Border University, Arar, Saudi Arabia
| | - Ibtisam Alali
- Department of Chemistry, College of Science, Jouf University, P.O. BOX 2014, Sakaka, Saudi Arabia
| | - Alaa Muqbil Alsirhani
- Department of Chemistry, College of Science, Jouf University, P.O. BOX 2014, Sakaka, Saudi Arabia
| | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Aliyah S Alhawiti
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ibrahim Saleem Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Wafa Mazi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt
| |
Collapse
|
7
|
Vatanpour V, Salimi Khaligh S, Sertgumec S, Ceylan-Perver G, Yuksekdag A, Yavuzturk Gul B, Altinbas M, Koyuncu I. A review on algal biomass dewatering and recovery of microalgal-based valuable products with different membrane technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123182. [PMID: 39504662 DOI: 10.1016/j.jenvman.2024.123182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/07/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Efficient microalgae harvesting and dewatering are critical processes for a range of applications, including the production of raw materials, nutritional supplements, pharmaceuticals, sustainable biofuels, and wastewater treatment. The optimization of these processes poses significant challenges due to the need for high efficiency and sustainability while managing costs and energy consumption. This review comprehensively addresses these challenges by focusing on the development and application of various membrane filtration technologies specifically designed for the effective harvesting and dewatering of algal biomass. Membrane filtration has emerged as a predominant method due to its ability to handle large volumes of microalgae with relatively low energy requirements. This review systematically examines the different membrane-based technologies and their effectiveness in recovering valuable components from algal biomass, such as lipids, proteins, and carbohydrates. The discussion begins with an overview of the physical characteristics of microalgae and their cultivation conditions, which are critical for understanding how these factors influence the performance of membrane filtration processes. Key aspects such as the features of algal cells, the presence of algal organic matter, and transparent exopolymer particles are explored in detail. The review also delves into various strategies for improving membrane antifouling properties, which are essential for maintaining the efficiency and longevity of the filtration systems. In addition, the advantages and disadvantages of different membrane techniques are reviewed, highlighting their respective performance in separating microalgae and dewatering. Finally, the review offers insights into future research directions and technological advancements that could further enhance the efficiency and sustainability of microalgae processing. This comprehensive evaluation aims to provide a thorough understanding of current membrane technologies, their applications, and the ongoing developments necessary to overcome existing limitations and improve overall process performance.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| | - Soodeh Salimi Khaligh
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Simge Sertgumec
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Gamze Ceylan-Perver
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ayse Yuksekdag
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Bahar Yavuzturk Gul
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Mahmut Altinbas
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
8
|
Zhao W, Zhu J, Yang S, Liu J, Sun Z, Sun H. Microalgal metabolic engineering facilitates precision nutrition and dietary regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175460. [PMID: 39137841 DOI: 10.1016/j.scitotenv.2024.175460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/27/2024] [Accepted: 08/10/2024] [Indexed: 08/15/2024]
Abstract
Microalgae have gained considerable attention as promising candidates for precision nutrition and dietary regulation due to their versatile metabolic capabilities. This review innovatively applies system metabolic engineering to utilize microalgae for precision nutrition and sustainable diets, encompassing the construction of microalgal cell factories, cell cultivation and practical application of microalgae. Manipulating the metabolic pathways and key metabolites of microalgae through multi-omics analysis and employing advanced metabolic engineering strategies, including ZFNs, TALENs, and the CRISPR/Cas system, enhances the production of valuable bioactive compounds, such as omega-3 fatty acids, antioxidants, and essential amino acids. This work begins by providing an overview of the metabolic diversity of microalgae and their ability to thrive in diverse environmental conditions. It then delves into the principles and strategies of metabolic engineering, emphasizing the genetic modifications employed to optimize microalgal strains for enhanced nutritional content. Enhancing PSY, BKT, and CHYB benefits carotenoid synthesis, whereas boosting ACCase, fatty acid desaturases, and elongases promotes polyunsaturated fatty acid production. Here, advancements in synthetic biology, evolutionary biology and machine learning are discussed, offering insights into the precision and efficiency of metabolic pathway manipulation. Also, this review highlights the potential impact of microalgal precision nutrition on human health and aquaculture. The optimized microalgal strains could serve as sustainable and cost-effective sources of nutrition for both human consumption and aquaculture feed, addressing the growing demand for functional foods and environmentally friendly feed alternatives. The tailored microalgal strains are anticipated to play a crucial role in meeting the nutritional needs of diverse populations and contributing to sustainable food production systems.
Collapse
Affiliation(s)
- Weiyang Zhao
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Jiale Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; Shanghai Ocean University, Shanghai 201306, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Zheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China.
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
9
|
Naz T, Saeed T, Ullah S, Nazir Y, Assefa M, Liu Q, Fan Z, Mohamed H, Song Y. Metabolic engineering of Mucor circinelloides to improve astaxanthin production. World J Microbiol Biotechnol 2024; 40:374. [PMID: 39487367 DOI: 10.1007/s11274-024-04181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Astaxanthin is a bioactive natural pigment with antioxidant properties. It has extensive applications within the industrial sector as well as in human and animal health. Mucor circinelloides is a zygomycete fungus that accumulates β-carotene as the main carotenoid compound. M. circinelloides is a well-known model organism among Mucorales for studying carotenogenesis in fungi, which makes it a promising candidate for the biotechnological production of carotenoids. In this study, β-carotene hydroxylase (crtR-B) and ketolase (bkt) genes (codon-optimized) were coexpressed from Haematococcus pluvialis in M. circinelloides using two potent promoters gpd1 and zrt1 respectively to generate an astaxanthin-producing biofactory. Following 72 h of cultivation, the recombinant M. circinelloides Mc-57 obtained in this study produced 135 ± 8 µg/g of astaxanthin. This is the highest reported amount in M. circinelloides to date. The mRNA levels of crtR-B and bkt in Mc-57 were assayed using RT-qPCR. These levels showed a 5.7-fold increase at 72 h and a 5.5-fold increase at 24 h, respectively, compared to the control strain. This demonstrated the successful overexpression of both genes, which correlated with the production of astaxanthin in the Mc-57. Moreover, the addition of glutamate (2 g/L) and mevalonate (15 mM) resulted in an increase in astaxanthin production in the recombinant strain. The results showed that the combined addition of these metabolic precursors resulted in 281 ± 20 µg/g of astaxanthin, which is 2.08-fold higher than the control medium (135 ± 8 µg/g). The addition of metabolic precursors also positively impacted the biomass growth of Mc-57, reaching 11.2 ± 0.57 g/L compared to 9.1 ± 0.23 g/L (control medium). The study successfully addressed the challenge of balancing the accumulation of astaxanthin with biomass growth, which has been regarded as common bottleneck in the metabolic engineering of microbial cells. The development of a recombinant fungal strain of M. circinelloides not only increased astaxanthin content. Additionally, it provided a foundation for further improvement of the biotechnological production of astaxanthin in M. circinelloides.
Collapse
Affiliation(s)
- Tahira Naz
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Tariq Saeed
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
- Department of Diet and Nutritional Sciences, Ibadat International University, Islamabad, 45750, Pakistan
| | - Samee Ullah
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
- Faculty of Allied Health Sciences, University Institute of Food Science and Technology, The University of Lahore, Lahore, 54000, Pakistan
| | - Yusuf Nazir
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Malaysia
| | - Molalign Assefa
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Qing Liu
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Zhaosen Fan
- Shandong Benon Biological Technology Co., Ltd, Jinan, 250000, China
| | - Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China.
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt.
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
10
|
Cagney MH, O'Neill EC. Strategies for producing high value small molecules in microalgae. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108942. [PMID: 39024780 DOI: 10.1016/j.plaphy.2024.108942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/11/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Eukaryotic microalgae are a diverse group of organisms that can be used for the sustainable production of a wide range of high value compounds, including lipids, flavours and dyes, bioplastics, and cosmetics. Optimising total biomass production often does not lead to optimal product yield and more sophisticated biphasic growth strategies are needed, introducing specific stresses to induce product synthesis. Genetic tools have been used to increase yields of natural products or to introduce new pathways to algae, and wider deployment of these tools offers promising routes for commercial production of high value compounds utilising minimal inputs.
Collapse
Affiliation(s)
- Michael H Cagney
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ellis C O'Neill
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
11
|
Acheampong A, Li L, Elsherbiny SM, Wu Y, Swallah MS, Bondzie-Quaye P, Huang Q. A crosswalk on the genetic and conventional strategies for enhancing astaxanthin production in Haematococcus pluvialis. Crit Rev Biotechnol 2024; 44:1018-1039. [PMID: 37778751 DOI: 10.1080/07388551.2023.2240009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 10/03/2023]
Abstract
Astaxanthin is a naturally occurring xanthophyll with powerful: antioxidant, antitumor, and antibacterial properties that are widely employed in food, feed, medicinal and nutraceutical industries. Currently, chemical synthesis dominates the world's astaxanthin market, but the increasing demand for natural products is shifting the market for natural astaxanthin. Haematococcus pluvialis (H. pluvialis) is the factory source of natural astaxanthin when grown in optimal conditions. Currently, various strategies for the production of astaxanthin have been proposed or are being developed in order to meet its market demand. This up-to-date review scrutinized the current approaches or strategies that aim to increase astaxanthin yield from H. pluvialis. We have emphasized the genetic and environmental parameters that increase astaxanthin yield. We also looked at the transcriptomic dynamics caused by environmental factors (phytohormones induction, light, salt, temperature, and nutrient starvation) on astaxanthin synthesizing genes and other metabolic changes. Genetic engineering and culture optimization (environmental factors) are effective approaches to producing more astaxanthin for commercial purposes. Genetic engineering, in particular, is accurate, specific, potent, and safer than conventional random mutagenesis approaches. New technologies, such as CRISPR-Cas9 coupled with omics and emerging computational tools, may be the principal strategies in the future to attain strains that can produce more astaxanthin. This review provides accessible data on the strategies to increase astaxanthin accumulation natively. Also, this review can be a starting point for new scholars interested in H. pluvialis research.
Collapse
Affiliation(s)
- Adolf Acheampong
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Lamei Li
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Shereen M Elsherbiny
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Yahui Wu
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Mohammed Sharif Swallah
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Precious Bondzie-Quaye
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| |
Collapse
|
12
|
Hou Y, Guo Z, Liu Z, Yan S, Cui M, Chen F, Wang W, Yu L, Zhao L. Enhancement of astaxanthin accumulation via energy reassignment by removing the flagella of Haematococcus pluvialis. BIORESOUR BIOPROCESS 2024; 11:78. [PMID: 39095685 PMCID: PMC11296984 DOI: 10.1186/s40643-024-00789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/13/2024] [Indexed: 08/04/2024] Open
Abstract
Astaxanthin biosynthesis in Haematococcus pluvialis is driven by energy. However, the effect of the flagella-mediated energy-consuming movement process on astaxanthin accumulation has not been well studied. In this study, the profiles of astaxanthin and NADPH contents in combination with the photosynthetic parameters with or without flagella enabled by pH shock were characterized. The results demonstrated that there was no significant alteration in cell morphology, with the exception of the loss of flagella observed in the pH shock treatment group. In contrast, the astaxanthin content in the flagella removal groups was 62.9%, 62.8% and 91.1% higher than that of the control at 4, 8 and 12 h, respectively. Simultaneously, the increased Y(II) and decreased Y(NO) suggest that cells lacking the flagellar movement process may allocate more energy towards astaxanthin biosynthesis. This finding was verified by NADPH analysis, which revealed higher levels in flagella removal cells. These results provide preliminary insights into the underlying mechanism of astaxanthin accumulation enabled by energy reassignment in movement-lacking cells.
Collapse
Affiliation(s)
- Yuyong Hou
- College of Life Science, North China University of Science and Technology, Tangshan, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhile Guo
- College of Life Science, North China University of Science and Technology, Tangshan, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhiyong Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Suihao Yan
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Meijie Cui
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Fangjian Chen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Weijie Wang
- College of Life Science, North China University of Science and Technology, Tangshan, China.
| | - Longjiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Lei Zhao
- College of Life Science, North China University of Science and Technology, Tangshan, China.
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Kayani SI, -Rahman SU, Shen Q, Cui Y, Liu W, Hu X, Zhu F, Huo S. Molecular approaches to enhance astaxanthin biosynthesis; future outlook: engineering of transcription factors in Haematococcus pluvialis. Crit Rev Biotechnol 2024; 44:514-529. [PMID: 37380353 DOI: 10.1080/07388551.2023.2208284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/02/2023] [Accepted: 03/10/2023] [Indexed: 06/30/2023]
Abstract
Microalgae are the preferred species for producing astaxanthin because they pose a low toxicity risk than chemical synthesis. Astaxanthin has multiple health benefits and is being used in: medicines, nutraceuticals, cosmetics, and functional foods. Haematococcus pluvialis is a model microalga for astaxanthin biosynthesis; however, its natural astaxanthin content is low. Therefore, it is necessary to develop methods to improve the biosynthesis of astaxanthin to meet industrial demands, making its commercialization cost-effective. Several strategies related to cultivation conditions are employed to enhance the biosynthesis of astaxanthin in H. pluvialis. However, the mechanism of its regulation by transcription factors is unknown. For the first time, this study critically reviewed the studies on identifying transcription factors, progress in H. pluvialis genetic transformation, and use of phytohormones that increase the gene expression related to astaxanthin biosynthesis. In addition, we propose future approaches, including (i) Cloning and characterization of transcription factors, (ii) Transcriptional engineering through overexpression of positive regulators or downregulation/silencing of negative regulators, (iii) Gene editing for enrichment or deletion of transcription factors binding sites, (iv) Hormonal modulation of transcription factors. This review provides considerable knowledge about the molecular regulation of astaxanthin biosynthesis and the existing research gap. Besides, it provides the basis for transcription factors mediated metabolic engineering of astaxanthin biosynthesis in H. pluvialis.
Collapse
Affiliation(s)
- Sadaf-Ilyas Kayani
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Saeed-Ur -Rahman
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Wei Liu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xinjuan Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Mutale-Joan C, El Arroussi H. Biotechnological strategies overcoming limitations to H. pluvialis-derived astaxanthin production and Morocco's potential. Crit Rev Food Sci Nutr 2023; 65:1404-1419. [PMID: 38145395 DOI: 10.1080/10408398.2023.2294163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Haematococcus pluvialis is the richest source of natural astaxanthin, but the production of H. pluvialis-derived astaxanthin is usually limited by its slow cell proliferation and astaxanthin accumulation. Efforts to enhance biomass productivity, astaxanthin accumulation, and extraction are ongoing. This review highlights different approaches that have previously been studied in microalgal species for enhanced biomass productivity, as well as optimized methods for astaxanthin accumulation and extraction, and how these methods could be combined to bypass the challenges limiting natural astaxanthin production, particularly in H. pluvialis, at all stages (biomass production, and astaxanthin accumulation and extraction). Biotechnological approaches, such as overexpressing low CO2 inducible genes, utilizing complementary carbon sources, CRISPR-Cas9 bioengineering, and the use of active compounds, for biomass productivity are outlined. Direct astaxanthin extraction from H. pluvialis zoospores and Morocco's potential for microalgal-based astaxanthin production are equally discussed. This review emphasizes the need to engineer an optimized H. pluvialis-derived astaxanthin production system combining two or more of these strategies for increased growth, and astaxanthin productivity, to compete in the larger, lower-priced market in aquaculture and nutraceutical sectors.
Collapse
Affiliation(s)
- Chanda Mutale-Joan
- Algal Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation & Research (MASCIR), Rabat, Morocco
| | - Hicham El Arroussi
- Algal Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation & Research (MASCIR), Rabat, Morocco
- AgroBioSciences (AgBS) program, Mohammed VI Polytechnic University, Benguerir, Morocco
| |
Collapse
|
15
|
Cao K, Cui Y, Sun F, Zhang H, Fan J, Ge B, Cao Y, Wang X, Zhu X, Wei Z, Yao Q, Ma J, Wang Y, Meng C, Gao Z. Metabolic engineering and synthetic biology strategies for producing high-value natural pigments in Microalgae. Biotechnol Adv 2023; 68:108236. [PMID: 37586543 DOI: 10.1016/j.biotechadv.2023.108236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/16/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Microalgae are microorganisms capable of producing bioactive compounds using photosynthesis. Microalgae contain a variety of high value-added natural pigments such as carotenoids, phycobilins, and chlorophylls. These pigments play an important role in many areas such as food, pharmaceuticals, and cosmetics. Natural pigments have a health value that is unmatched by synthetic pigments. However, the current commercial production of natural pigments from microalgae is not able to meet the growing market demand. The use of metabolic engineering and synthetic biological strategies to improve the production performance of microalgal cell factories is essential to promote the large-scale production of high-value pigments from microalgae. This paper reviews the health and economic values, the applications, and the synthesis pathways of microalgal pigments. Overall, this review aims to highlight the latest research progress in metabolic engineering and synthetic biology in constructing engineered strains of microalgae with high-value pigments and the application of CRISPR technology and multi-omics in this context. Finally, we conclude with a discussion on the bottlenecks and challenges of microalgal pigment production and their future development prospects.
Collapse
Affiliation(s)
- Kai Cao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Yulin Cui
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Hao Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Yujiao Cao
- School of Foreign Languages, Shandong University of Technology, Zibo 255090, China
| | - Xiaodong Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiangyu Zhu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Zuoxi Wei
- School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Qingshou Yao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jinju Ma
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yu Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Chunxiao Meng
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
16
|
Liang H, Chen H, Liu X, Wang Z, Li P, Lu S. Heterologous Production in the Synechocystis Chassis Suggests the Biosynthetic Pathway of Astaxanthin in Cyanobacteria. Antioxidants (Basel) 2023; 12:1826. [PMID: 37891905 PMCID: PMC10604110 DOI: 10.3390/antiox12101826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/24/2023] [Accepted: 10/01/2023] [Indexed: 10/29/2023] Open
Abstract
Astaxanthin is a carotenoid species with the highest antioxidant capability. Its natural resource is very rare. The biosynthesis of astaxanthin from β-carotene includes a hydroxylation step and a ketolation step, for which the corresponding enzymes have been characterized in a few species. However, the sequence of these two reactions is unclear, and may vary with different organisms. In this study, we aimed to elucidate this sequence in Synechocystis, which is an ideal cyanobacterial synthetic biology chassis. We first silenced the endogenous carotene oxygenase gene SyneCrtO to avoid its possible interference in the carotenoid metabolic network. We then introduced the β-carotene ketolase gene from Haematococcus pluvialis (HpBKT) and the CrtZ-type carotene β-hydroxylase gene from Pantoea agglomerans (PaCrtZ) to this δCrtO strain. Our pigment analysis demonstrated that both the endogenous CrtR-type carotene hydroxylase SyneCrtR and HpBKT have the preference to use β-carotene as their substrate for hydroxylation and ketolation reactions to produce zeaxanthin and canthaxanthin, respectively. However, the endogenous SyneCrtR is not able to further catalyze the 3,3'-hydroxylation of canthaxanthin to generate astaxanthin. From our results, a higher accumulation of canthaxanthin and a much lower level of astaxanthin, as confirmed using liquid chromatography-tandem mass spectrometry analysis, were detected in our transgenic BKT+/CrtZ+/δCrtO cells. Therefore, we proposed that the bottleneck for the heterologous production of astaxanthin in Synechocystis might exist at the hydroxylation step, which requires a comprehensive screening or genetic engineering for the corresponding carotene hydroxylase to enable the industrial production of astaxanthin.
Collapse
Affiliation(s)
- Hanyu Liang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Hongjuan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xinya Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zihan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Pengfu Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| |
Collapse
|
17
|
Kumar A, Nighojkar A, Varma P, Prakash NJ, Kandasubramanian B, Zimmermann K, Dixit F. Algal mediated intervention for the retrieval of emerging pollutants from aqueous media. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131568. [PMID: 37187121 DOI: 10.1016/j.jhazmat.2023.131568] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Water is a crucial elemental contributor for all sectors; however, the agricultural sector alone accounts for 70% of the world's total water withdrawal. The anthropogenic activity from various industries including agriculture, textiles, plastics, leather, and defence has resulted in the release of contaminants into water systems, resulting harm to the ecosystem and biotic community. Algae-based organic pollutant removal uses several methods, such as biosorption, bioaccumulation, biotransformation, and biodegradation. The adsorption of methylene blue by algal species Chlamydomonas sp. showed a maximum adsorption capacity of 2744.5 mg/g with 96.13% removal efficiency; on the other hand, Isochrysis galbana demonstrated a maximum of 707 µg/g nonylphenol accumulation in the cell with 77% removal efficiency indicating the potential of algal systems as efficient retrieval system for organic contaminants. This paper is a compilation of detailed information about biosorption, bioaccumulation, biotransformation, biodegradation, and their mechanism, along with the genetic alteration of algal biomass. Where the genetic engineering and mutations on algae can be advantageously utilized for the enhancement of removal efficiency without any secondary toxicity.
Collapse
Affiliation(s)
- Alok Kumar
- Sustainable and Green Technology Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Amrita Nighojkar
- Sustainable and Green Technology Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Payal Varma
- Microbiology Department, Sinhgad College of Science, Pune 411041, Maharashtra, India
| | - Niranjana Jaya Prakash
- Sustainable and Green Technology Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Sustainable and Green Technology Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India.
| | - Karl Zimmermann
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Fuhar Dixit
- Department of Civil and Environmental Engineering, University of California, Berkeley, USA
| |
Collapse
|
18
|
Amendola S, Kneip JS, Meyer F, Perozeni F, Cazzaniga S, Lauersen KJ, Ballottari M, Baier T. Metabolic Engineering for Efficient Ketocarotenoid Accumulation in the Green Microalga Chlamydomonas reinhardtii. ACS Synth Biol 2023; 12:820-831. [PMID: 36821819 DOI: 10.1021/acssynbio.2c00616] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Astaxanthin is a valuable ketocarotenoid with various pharmaceutical and nutraceutical applications. Green microalgae harbor natural capacities for pigment accumulation due to their 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. Recently, a redesigned ß-carotene ketolase (BKT) was found to enable ketocarotenoid accumulation in the model microalga Chlamydomonas reinhardtii, and transformants exhibited reduced photoinhibition under high-light. Here, a systematic screening by synthetic transgene design of carotenoid pathway enzymes and overexpression from the nuclear genome identified phytoene synthase (PSY/crtB) as a bottleneck for carotenoid accumulation in C. reinhardtii. Increased ß-carotene hydroxylase (CHYB) activity was found to be essential for engineered astaxanthin accumulation. A combined BKT, crtB, and CHYB expression strategy resulted in a volumetric astaxanthin production of 9.5 ± 0.3 mg L-1 (4.5 ± 0.1 mg g-1 CDW) in mixotrophic and 23.5 mg L-1 (1.09 mg L-1 h-1) in high cell density conditions, a 4-fold increase compared to previous reports in C. reinhardtii. This work presents a systematic investigation of bottlenecks in astaxanthin accumulation in C. reinhardtii and the phototrophic green cell factory design for competitive use in industrial biotechnology.
Collapse
Affiliation(s)
- Sofia Amendola
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Jacob S Kneip
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Florian Meyer
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Federico Perozeni
- Department of Biotechnology, University of Verona, 37129 Verona, Italy
| | - Stefano Cazzaniga
- Department of Biotechnology, University of Verona, 37129 Verona, Italy
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Matteo Ballottari
- Department of Biotechnology, University of Verona, 37129 Verona, Italy
| | - Thomas Baier
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
19
|
Zarekarizi A, Hoffmann L, Burritt DJ. The potential of manipulating light in the commercial production of carotenoids from algae. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
20
|
Gilmour DJ. Diversity of algae and their biotechnological potential. Adv Microb Physiol 2023; 82:301-321. [PMID: 36948657 DOI: 10.1016/bs.ampbs.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
This chapter will discuss the diversity of algae and show that the diversity is much greater than just obligately oxygenic photosynthetic algae and that it includes many mixotrophic and heterotrophic organisms that are more similar to the major groups of microorganisms. The photosynthetic groups are seen as part of the plant kingdom, whereas the non-photosynthetic groups are not related to plants at all. The organisation of algal groups has become complex and confusing - The chapter will address the problems within this area of eukaryotic taxonomy. The metabolic diversity of algae and the ability to genetically engineer algae are key components in developing the biotechnology of algae. As more researchers become interested in exploiting algae for a number of industrial products, it is important to understand the relationships between different groups of algae and the relationships of algae with the rest of the living world.
Collapse
|
21
|
Li X, Lan C, Li X, Hu Z, Jia B. A review on design-build-test-learn cycle to potentiate progress in isoprenoid engineering of photosynthetic microalgae. BIORESOURCE TECHNOLOGY 2022; 363:127981. [PMID: 36130687 DOI: 10.1016/j.biortech.2022.127981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Currently, the generation of isoprenoid factories in microalgae relies on two strategies: 1) enhanced production of endogenous isoprenoids; or 2) production of heterologous terpenes by metabolic engineering. Nevertheless, low titers and productivity are still a feature of isoprenoid biotechnology and need to be addressed. In this context, the mechanisms underlying isoprenoid biosynthesis in microalgae and its relationship with central carbon metabolism are reviewed. Developments in microalgal biotechnology are discussed, and a new approach of integrated "design-build-test-learn" cycle is advocated to the trends, challenges and prospects involved in isoprenoid engineering. The emerging and promising strategies and tools are discussed for microalgal engineering in the future. This review encourages a systematic engineering perspective aimed at potentiating progress in isoprenoid engineering of photosynthetic microalgae.
Collapse
Affiliation(s)
- Xiangyu Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chengxiang Lan
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xinyi Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Bin Jia
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
22
|
Trovão M, Schüler LM, Machado A, Bombo G, Navalho S, Barros A, Pereira H, Silva J, Freitas F, Varela J. Random Mutagenesis as a Promising Tool for Microalgal Strain Improvement towards Industrial Production. Mar Drugs 2022; 20:440. [PMID: 35877733 PMCID: PMC9318807 DOI: 10.3390/md20070440] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Microalgae have become a promising novel and sustainable feedstock for meeting the rising demand for food and feed. However, microalgae-based products are currently hindered by high production costs. One major reason for this is that commonly cultivated wildtype strains do not possess the robustness and productivity required for successful industrial production. Several strain improvement technologies have been developed towards creating more stress tolerant and productive strains. While classical methods of forward genetics have been extensively used to determine gene function of randomly generated mutants, reverse genetics has been explored to generate specific mutations and target phenotypes. Site-directed mutagenesis can be accomplished by employing different gene editing tools, which enable the generation of tailor-made genotypes. Nevertheless, strategies promoting the selection of randomly generated mutants avoid the introduction of foreign genetic material. In this paper, we review different microalgal strain improvement approaches and their applications, with a primary focus on random mutagenesis. Current challenges hampering strain improvement, selection, and commercialization will be discussed. The combination of these approaches with high-throughput technologies, such as fluorescence-activated cell sorting, as tools to select the most promising mutants, will also be discussed.
Collapse
Affiliation(s)
- Mafalda Trovão
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Lisa M. Schüler
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Adriana Machado
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
| | - Gabriel Bombo
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Sofia Navalho
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Ana Barros
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
| | - Hugo Pereira
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Joana Silva
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
| | - Filomena Freitas
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - João Varela
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
23
|
Zhu X, Meng C, Sun F, Wei Z, Chen L, Chen W, Tong S, Du H, Gao J, Ren J, Li D, Gao Z. Sustainable production of astaxanthin in microorganisms: the past, present, and future. Crit Rev Food Sci Nutr 2022; 63:10239-10255. [PMID: 35694786 DOI: 10.1080/10408398.2022.2080176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Astaxanthin (3,3'-dihydroxy-4,4'-diketo-β-carotene) is a type of C40 carotenoid with remarkable antioxidant characteristics, showing significant application prospects in many fields. Traditionally, the astaxanthin is mainly obtained from chemical synthesis and natural acquisition, with both approaches having many limitations and not capable of meeting the growing market demand. In order to cope with these challenges, novel techniques, e.g., the innovative cell engineering strategies, have been developed to increase the astaxanthin production. In this review, we first elaborated the biosynthetic pathway of astaxanthin, with the key enzymes and their functions discussed in the metabolic process. Then, we summarized the conventional, non-genetic strategies to promote the production of astaxanthin, including the methods of exogenous additives, mutagenesis, and adaptive evolution. Lastly, we reviewed comprehensively the latest studies on the synthesis of astaxanthin in various recombinant microorganisms based on the concept of microbial cell factory. Furthermore, we have proposed several novel technologies for improving the astaxanthin accumulation in several model species of microorganisms.
Collapse
Affiliation(s)
- Xiangyu Zhu
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- School of Life Sciences and medicine, Shandong University of Technology, Zibo, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Chunxiao Meng
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Life Sciences and medicine, Shandong University of Technology, Zibo, China
| | - Fengjie Sun
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, USA
| | - Zuoxi Wei
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- School of Life Sciences and medicine, Shandong University of Technology, Zibo, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Limei Chen
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Wuxi Chen
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Sheng Tong
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Huanmin Du
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Jinshan Gao
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Jiali Ren
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Life Sciences and medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
24
|
Srivastava A, Kalwani M, Chakdar H, Pabbi S, Shukla P. Biosynthesis and biotechnological interventions for commercial production of microalgal pigments: A review. BIORESOURCE TECHNOLOGY 2022; 352:127071. [PMID: 35351568 DOI: 10.1016/j.biortech.2022.127071] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Microalgae are photosynthetic eukaryotes that serve as microbial cell factories for the production of useful biochemicals, including pigments. These pigments are eco-friendly alternatives to synthetic dyes and reduce environmental and health risks. They also exhibit excellent anti-oxidative properties, making them a useful commodity in the nutrition and pharmaceutical industries. Light-harvesting pigments such as chlorophylls and phycobilins, and photoprotective carotenoids are some of the most common microalgal pigments. The increasing demand for these pigments in industrial applications has prompted a need to improve their metabolic yield in microalgal cells. So far, expensive cultivation methods and sensitivity to microbial contamination remain the main obstacles to the large-scale production of these pigments. This review highlights current issues and future prospects related to the production of microalgal pigments. The review also emphasizes the use of engineering approaches such as genetic engineering, and optimization of media components and physical parameters to increase their commercial-scale production.
Collapse
Affiliation(s)
- Amit Srivastava
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Mohneesh Kalwani
- School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India; Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh 275103, India
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Pratyoosh Shukla
- School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
25
|
Grama SB, Liu Z, Li J. Emerging Trends in Genetic Engineering of Microalgae for Commercial Applications. Mar Drugs 2022; 20:285. [PMID: 35621936 PMCID: PMC9143385 DOI: 10.3390/md20050285] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Recently, microalgal biotechnology has received increasing interests in producing valuable, sustainable and environmentally friendly bioproducts. The development of economically viable production processes entails resolving certain limitations of microalgal biotechnology, and fast evolving genetic engineering technologies have emerged as new tools to overcome these limitations. This review provides a synopsis of recent progress, current trends and emerging approaches of genetic engineering of microalgae for commercial applications, including production of pharmaceutical protein, lipid, carotenoids and biohydrogen, etc. Photochemistry improvement in microalgae and CO2 sequestration by microalgae via genetic engineering were also discussed since these subjects are closely entangled with commercial production of the above mentioned products. Although genetic engineering of microalgae is proved to be very effective in boosting performance of production in laboratory conditions, only limited success was achieved to be applicable to industry so far. With genetic engineering technologies advancing rapidly and intensive investigations going on, more bioproducts are expected to be produced by genetically modified microalgae and even much more to be prospected.
Collapse
Affiliation(s)
- Samir B. Grama
- Laboratory of Natural Substances, Biomolecules and Biotechnological Applications, University of Oum El Bouaghi, Oum El Bouaghi 04000, Algeria;
| | - Zhiyuan Liu
- College of Marine Sciences, Hainan University, Haikou 570228, China;
| | - Jian Li
- College of Agricultural Sciences, Panzhihua University, Panzhihua 617000, China
| |
Collapse
|
26
|
Cutolo EA, Mandalà G, Dall’Osto L, Bassi R. Harnessing the Algal Chloroplast for Heterologous Protein Production. Microorganisms 2022; 10:743. [PMID: 35456794 PMCID: PMC9025058 DOI: 10.3390/microorganisms10040743] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Photosynthetic microbes are gaining increasing attention as heterologous hosts for the light-driven, low-cost production of high-value recombinant proteins. Recent advances in the manipulation of unicellular algal genomes offer the opportunity to establish engineered strains as safe and viable alternatives to conventional heterotrophic expression systems, including for their use in the feed, food, and biopharmaceutical industries. Due to the relatively small size of their genomes, algal chloroplasts are excellent targets for synthetic biology approaches, and are convenient subcellular sites for the compartmentalized accumulation and storage of products. Different classes of recombinant proteins, including enzymes and peptides with therapeutical applications, have been successfully expressed in the plastid of the model organism Chlamydomonas reinhardtii, and of a few other species, highlighting the emerging potential of transplastomic algal biotechnology. In this review, we provide a unified view on the state-of-the-art tools that are available to introduce protein-encoding transgenes in microalgal plastids, and discuss the main (bio)technological bottlenecks that still need to be addressed to develop robust and sustainable green cell biofactories.
Collapse
Affiliation(s)
| | | | | | - Roberto Bassi
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.A.C.); (G.M.); (L.D.)
| |
Collapse
|
27
|
Sung YJ, Sim SJ. Multifaceted strategies for economic production of microalgae Haematococcus pluvialis-derived astaxanthin via direct conversion of CO 2. BIORESOURCE TECHNOLOGY 2022; 344:126255. [PMID: 34757226 DOI: 10.1016/j.biortech.2021.126255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Owing to its strong antioxidant properties, astaxanthin has a high market price in the nutraceutical and pharmaceutical fields, and its demand is increasing. Furthermore, with an increase in the demand for green technology, astaxanthin production through direct CO2 conversion using the autotrophic green microalga Haematococcus pluvialis as a bio-platform has received much attention. Large-scale outdoor cultivation of H. pluvialis using waste CO2 sources and sunlight can secure sustainability and improve economic efficiency. However, low strain performance, reduced light utilization because of increased cell density, and inefficient transfer of gaseous CO2 into liquid culture broth hinder its large-scale commercialization of astaxanthin. Herein, we presented a multifaceted strategy, including the development of high-efficiency strains, a culture system for astaxanthin accumulation, and astaxanthin extraction from biomass, for economically producing astaxanthin from H. pluvialis through direct CO2 conversion. Future perspectives were presented by comparing and analyzing various previous studies conducted using the latest technology.
Collapse
Affiliation(s)
- Young Joon Sung
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
28
|
Velmurugan A, Kodiveri Muthukaliannan G. Genetic manipulation for carotenoid production in microalgae an overview. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
29
|
Kselíková V, Singh A, Bialevich V, Čížková M, Bišová K. Improving microalgae for biotechnology - From genetics to synthetic biology - Moving forward but not there yet. Biotechnol Adv 2021; 58:107885. [PMID: 34906670 DOI: 10.1016/j.biotechadv.2021.107885] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022]
Abstract
Microalgae are a diverse group of photosynthetic organisms that can be exploited for the production of different compounds, ranging from crude biomass and biofuels to high value-added biochemicals and synthetic proteins. Traditionally, algal biotechnology relies on bioprospecting to identify new highly productive strains and more recently, on forward genetics to further enhance productivity. However, it has become clear that further improvements in algal productivity for biotechnology is impossible without combining traditional tools with the arising molecular genetics toolkit. We review recent advantages in developing high throughput screening methods, preparing genome-wide mutant libraries, and establishing genome editing techniques. We discuss how algae can be improved in terms of photosynthetic efficiency, biofuel and high value-added compound production. Finally, we critically evaluate developments over recent years and explore future potential in the field.
Collapse
Affiliation(s)
- Veronika Kselíková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Anjali Singh
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Vitali Bialevich
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Mária Čížková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Kateřina Bišová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic.
| |
Collapse
|
30
|
Hu Q, Song M, Huang D, Hu Z, Wu Y, Wang C. Haematococcus pluvialis Accumulated Lipid and Astaxanthin in a Moderate and Sustainable Way by the Self-Protection Mechanism of Salicylic Acid Under Sodium Acetate Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:763742. [PMID: 34868161 PMCID: PMC8639525 DOI: 10.3389/fpls.2021.763742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 05/03/2023]
Abstract
To elucidate the mechanism underlying increased fatty acid and astaxanthin accumulation in Haematococcus pluvialis, transcriptome analysis was performed to gain insights into the multiple defensive systems elicited by salicylic acid combined with sodium acetate (SAHS) stresses with a time course. Totally, 112,886 unigenes and 61,323 non-repeat genes were identified, and genes involved in carbon metabolism, primary and secondary metabolism, and immune system responses were identified. The results revealed that SA and NaAC provide both energy and precursors to improve cell growth of H. pluvialis and enhance carbon assimilation, astaxanthin, and fatty acids production in this microalga with an effective mechanism. Interestingly, SA was considered to play an important role in lowering transcriptional activity of the fatty acid and astaxanthin biosynthesis genes through self-protection metabolism in H. pluvialis, leading to its adaption to HS stress and finally avoiding massive cell death. Moreover, positive correlations between 15 key genes involved in astaxanthin and fatty acid biosynthesis pathways were found, revealing cooperative relation between these pathways at the transcription level. These results not only enriched our knowledge of the astaxanthin accumulation mechanism in H. pluvialis but also provided a new view on increasing astaxanthin production in H. pluvialis by a moderate and sustainable way in the future.
Collapse
Affiliation(s)
- Qunju Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Marine Resources Big Data Center of South China Sea, Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Zhanjiang, China
| | - Mingjian Song
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Danqiong Huang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yan Wu
- Instrumental Analysis Center, Shenzhen University, Shenzhen, China
| | - Chaogang Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
31
|
Smaoui S, Barkallah M, Ben Hlima H, Fendri I, Mousavi Khaneghah A, Michaud P, Abdelkafi S. Microalgae Xanthophylls: From Biosynthesis Pathway and Production Techniques to Encapsulation Development. Foods 2021; 10:2835. [PMID: 34829118 PMCID: PMC8623138 DOI: 10.3390/foods10112835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 12/28/2022] Open
Abstract
In the last 20 years, xanthophylls from microalgae have gained increased scientific and industrial interests. This review highlights the essential issues that concern this class of high value compounds. Firstly, their chemical diversity as the producer microorganisms was detailed. Then, the use of conventional and innovative extraction techniques was discussed. Upgraded knowledge on the biosynthetic pathway of the main xanthophylls produced by photosynthetic microorganisms was reviewed in depth, providing new insightful ideas, clarifying the function of these active biomolecules. In addition, the recent advances in encapsulation techniques of astaxanthin and fucoxanthin, such as spray and freeze drying, gelation, emulsification and coacervation were updated. Providing information about these topics and their applications and advances could be a help to students and young researchers who are interested in chemical and metabolic engineering, chemistry and natural products communities to approach the complex thematic of xanthophylls.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Route Sidi Mansour Km 6 B.P. 117, Sfax 3018, Tunisia;
| | - Mohamed Barkallah
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.B.); (H.B.H.)
| | - Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.B.); (H.B.H.)
| | - Imen Fendri
- Laboratoire de Biotechnologie Végétale Appliquée à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisia;
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil;
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.B.); (H.B.H.)
| |
Collapse
|
32
|
Ren Y, Deng J, Huang J, Wu Z, Yi L, Bi Y, Chen F. Using green alga Haematococcus pluvialis for astaxanthin and lipid co-production: Advances and outlook. BIORESOURCE TECHNOLOGY 2021; 340:125736. [PMID: 34426245 DOI: 10.1016/j.biortech.2021.125736] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 05/25/2023]
Abstract
Astaxanthin is one of the secondary carotenoids involved in mediating abiotic stress of microalgae. As an important antioxidant and nutraceutical compound, astaxanthin is widely applied in dietary supplements and cosmetic ingredients. However, most astaxanthin in the market is chemically synthesized, which are structurally heterogeneous and inefficient for biological uptake. Astaxanthin refinery from Haematococcus pluvialis is now a growing industrial sector. H. pluvialis can accumulate astaxanthin to ∼5% of dry weight. As productivity is a key metric to evaluate the production feasibility, understanding the biological mechanisms of astaxanthin accumulation is beneficial for further production optimization. In this review, the biosynthesis mechanism of astaxanthin and production strategies are summarized. The current research on enhancing astaxanthin accumulation and the potential joint-production of astaxanthin with lipids was also discussed. It is conceivable that with further improvement on the productivity of astaxanthin and by-products, the algal-derived astaxanthin would be more accessible to low-profit applications.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Jinquan Deng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Junchao Huang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Zhaoming Wu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Lanbo Yi
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yuge Bi
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
33
|
Mehariya S, Goswami RK, Karthikeysan OP, Verma P. Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. CHEMOSPHERE 2021; 280:130553. [PMID: 33940454 DOI: 10.1016/j.chemosphere.2021.130553] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Microalgae is a renewable bioresource with the potential to replace the conventional fossil-based industrial production of organic chemicals and pharmaceuticals. Moreover, the microalgal biomass contains carotenoids, vitamins, and other biomolecules that are widely used as food supplements. However, the microalgal biomass production, their composition variations, energy-intensive harvesting methods, optimized bio-refinery routes, and lack of techno-economic analysis are the major bottleneck for the life-sized commercialization of this nascent bio-industry. This review discusses the microalgae-derived key bioactive compounds and their applications in different sectors for human health. Furthermore, this review proposes advanced strategies to enhance the productivity of bioactive compounds and highlight the key challenges associated with a safety issue for use of microalgae biomass. It also provides a detailed global scenario and market demand of microalgal bioproducts. In conclusion, this review will provide the concept of microalgal biorefinery to produce bioactive compounds at industrial scale platform for their application in the nutraceutical and pharmaceutical sector considering their current and future market trends.
Collapse
Affiliation(s)
- Sanjeet Mehariya
- Department of Engineering, University of Campania "Luigi Vanvitelli", Real Casa Dell'Annunziata, Via Roma 29, 81031, Aversa, CE, Italy; Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - Rahul Kumar Goswami
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Obulisamy Parthiba Karthikeysan
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, USA; Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA.
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
34
|
Villaró S, Ciardi M, Morillas-España A, Sánchez-Zurano A, Acién-Fernández G, Lafarga T. Microalgae Derived Astaxanthin: Research and Consumer Trends and Industrial Use as Food. Foods 2021; 10:foods10102303. [PMID: 34681351 PMCID: PMC8534595 DOI: 10.3390/foods10102303] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Astaxanthin is a high-value carotenoid currently being produced by chemical synthesis and by extraction from the biomass of the microalga Haematococcus pluvialis. Other microalgae, such as Chlorella zofingiensis, have the potential for being used as sources of astaxanthin. The differences between the synthetic and the microalgae derived astaxanthin are notorious: not only their production and price but also their uses and bioactivity. Microalgae derived astaxanthin is being used as a pigment in food and feed or aquafeed production and also in cosmetic and pharmaceutical products. Several health-promoting properties have been attributed to astaxanthin, and these were summarized in the current review paper. Most of these properties are attributed to the high antioxidant capacity of this molecule, much higher than that of other known natural compounds. The aim of this review is to consider the main challenges and opportunities of microalgae derived products, such as astaxanthin as food. Moreover, the current study includes a bibliometric analysis that summarizes the current research trends related to astaxanthin. Moreover, the potential utilization of microalgae other than H. pluvialis as sources of astaxanthin as well as the health-promoting properties of this valuable compound will be discussed.
Collapse
Affiliation(s)
- Silvia Villaró
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
| | - Martina Ciardi
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
| | - Ainoa Morillas-España
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
| | - Ana Sánchez-Zurano
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
| | - Gabriel Acién-Fernández
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
| | - Tomas Lafarga
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
- Correspondence:
| |
Collapse
|
35
|
Aslam A, Bahadar A, Liaquat R, Saleem M, Waqas A, Zwawi M. Algae as an attractive source for cosmetics to counter environmental stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144905. [PMID: 33770892 DOI: 10.1016/j.scitotenv.2020.144905] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/27/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
In recent times, a considerable amount of evidence has come to light regarding the effect that air pollution has on skin conditions. The human skin is the chief protection we have against environmental harm, whether biological, chemical, or physical. The stress from these environmental factors, along with internal influences, can be a cause of skin aging and enlarged pores, thinner skin, skin laxity, wrinkles, fine lines, dryness, and a more fragile dermal layer. This knowledge has led to greater demand for skin cosmetics and a requirement for natural raw ingredients with a high degree of safety and efficiency in combating skin complications. Recent developments in green technology have made the employment of naturally occurring bioactive compounds more popular, and novel extraction methods have ensured that the use of these compounds has greater compatibility with sustainable development principles. Thus, there is a demand for investigations into efficient non-harmful naturally occurring raw ingredients; compounds derived from algae could be beneficial in this area. Algae, both macroalgae and microalgae, consists of waterborne photosynthetic organisms that are potentially valuable as they have a range of bioactive compounds in their composition. Several beneficial metabolites can be obtained from algae, such as antioxidants, carotenoids, mycosporine-like amino acids (MAA), pigments, polysaccharides, and scytonemin. Various algae strains are now widely employed in skincare products for various purposes, such as a moisturizer, anti-wrinkle agent, texture-enhancing agents, or sunscreen. This research considers the environmental stresses on human skin and how they may be mitigated using cosmetics created using algae; special attention will be paid to external factors, both generally and specifically (amongst them light exposure and pollutants).
Collapse
Affiliation(s)
- Ayesha Aslam
- US Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Ali Bahadar
- Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia.
| | - Rabia Liaquat
- US Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Muhammad Saleem
- Department of Industrial Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Adeel Waqas
- US Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Mohammed Zwawi
- Department of Mechanical Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| |
Collapse
|
36
|
Abstract
Since the 1950s, microalgae have been grown commercially in man-made cultivation units and used for biomass production as a source of food and feed supplements, pharmaceuticals, cosmetics and lately biofuels, as well as a means for wastewater treatment and mitigation of atmospheric CO2 build-up. In this work, photosynthesis and growth affecting variables—light intensity, pH, CO2/O2 exchange, nutrient supply, culture turbulence, light/dark cell cycling, biomass density and culture depth (light path)—are reviewed as concerns in microalgae mass cultures. Various photosynthesis monitoring techniques were employed to study photosynthetic performance to optimize the growth of microalgae strains in outdoor cultivation units. The most operative and reliable techniques appeared to be fast-response ones based on chlorophyll fluorescence and oxygen production monitoring, which provide analogous results.
Collapse
|
37
|
Wang K, Gao Z, Wang Y, Meng C, Li J, Qin S, Cui Y. The chloroplast genetic engineering of a unicellular green alga Chlorella vulgaris with two foreign peptides co-expression. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
38
|
Hu Q, Huang D, Li A, Hu Z, Gao Z, Yang Y, Wang C. Transcriptome-based analysis of the effects of salicylic acid and high light on lipid and astaxanthin accumulation in Haematococcus pluvialis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:82. [PMID: 33794980 PMCID: PMC8017637 DOI: 10.1186/s13068-021-01933-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/19/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND The unicellular alga Haematococcus pluvialis has achieved considerable interests for its capacity to accumulate large amounts of triacylglycerol and astaxanthin under various environmental stresses. To our knowledge, studies focusing on transcriptome research of H. pluvialis under exogenous hormones together with physical stresses are rare. In the present study, the change patterns at transcriptome level were analyzed to distinguish the multiple defensive systems of astaxanthin and fatty acid metabolism against exogenous salicylic acid and high light (SAHL) stresses. RESULTS Based on RNA-seq data, a total of 112,463 unigenes and 61,191 genes were annotated in six databases, including NR, KEGG, Swiss-Prot, PFAM, COG and GO. Analysis of differentially expressed genes (DEGs) in KEGG identified many transcripts that associated with the biosynthesis of primary and secondary metabolites, photosynthesis, and immune system responses. Furthermore, 705 unigenes predicted as putative transcription factors (TFs) were identified, and the most abundant TFs families were likely to be associated with the biosynthesis of astaxanthin and fatty acid in H. pluvialis upon exposure to SAHL stresses. Additionally, majority of the fifteen key genes involved in astaxanthin and fatty acid biosynthesis pathways presented the same expression pattern, resulting in increased accumulation of astaxanthin and fatty acids in single celled H. pluvialis, in which astaxanthin content increased from 0.56 ± 0.05 mg·L-1 at stage Control to 0.89 ± 0.12 mg·L-1 at stage SAHL_48. And positive correlations were observed among these studied genes by Pearson Correlation (PC) analysis, indicating the coordination between astaxanthin and fatty acid biosynthesis. In addition, protein-protein interaction (PPI) network analysis also demonstrated that this coordination might be at transcriptional level. CONCLUSION The results in this study provided valuable information to illustrate the molecular mechanisms of coordinate relations between astaxanthin and fatty acid biosynthesis. And salicylic acid might play a role in self-protection processes of cells, helping adaption of H. pluvialis to high light stress.
Collapse
Affiliation(s)
- Qunju Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Nanshan District, Xueyuan Road No. 1066, Shenzhen, 518060 Guangdong People’s Republic of China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 China
- College of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041 China
| | - Danqiong Huang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Nanshan District, Xueyuan Road No. 1066, Shenzhen, 518060 Guangdong People’s Republic of China
| | - Anguo Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Nanshan District, Xueyuan Road No. 1066, Shenzhen, 518060 Guangdong People’s Republic of China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Nanshan District, Xueyuan Road No. 1066, Shenzhen, 518060 Guangdong People’s Republic of China
| | - Zhengquan Gao
- College of Life Sciences, Shandong University of Technology, Zibo, 255049 China
| | - Yongli Yang
- College of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041 China
| | - Chaogang Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Nanshan District, Xueyuan Road No. 1066, Shenzhen, 518060 Guangdong People’s Republic of China
| |
Collapse
|
39
|
Cui Y, Wang K, Xu W, Wang Y, Gao Z, Cui H, Meng C, Qin S. Plastid Engineering of a Marine Alga, Nannochloropsis gaditana, for Co-Expression of Two Recombinant Peptides. JOURNAL OF PHYCOLOGY 2021; 57:569-576. [PMID: 33174215 DOI: 10.1111/jpy.13099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/16/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this study was to establish a plastid transformation system for expressing recombinant proteins in Nannochloropsis gaditana. On the basis of the sequenced plastid genome, the homologous flanking region, 16S-trnI/trnA-23S, and the endogenous regulatory fragments containing the psbA promoter, rbcL promoter, rbcL terminator, and psbA terminator were amplified from N. gaditana as elements of a plastid transformation vector. Then, the herbicide-resistant gene (bar) was used as a selectable marker, regulated by the psbA promoter and rbcL terminator. Finally, two codon-optimized antimicrobial peptide-coding genes linked by endogenous ribosome binding site (RBS) in a polycistron were inserted into the constructed vector under the regulation of the rbcL promoter and psbA terminator. After microparticle bombardment, the positive clones were detected using polymerase chain reaction (PCR), and Southern and Western blotting were used to assess the co-expression of the two antimicrobial peptides from the plastid. Nannochloropsis gaditana showed the potential to express recombinant proteins for biotechnological applications, for example, for the development of oral vaccines in aquaculture.
Collapse
Affiliation(s)
- Yulin Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Kang Wang
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Wenxin Xu
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China
| | - Yinchu Wang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhengquan Gao
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Hongli Cui
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China
| | - Chunxiao Meng
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
40
|
Mosey M, Douchi D, Knoshaug EP, Laurens LM. Methodological review of genetic engineering approaches for non-model algae. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
|
42
|
Chakdar H, Hasan M, Pabbi S, Nevalainen H, Shukla P. High-throughput proteomics and metabolomic studies guide re-engineering of metabolic pathways in eukaryotic microalgae: A review. BIORESOURCE TECHNOLOGY 2021; 321:124495. [PMID: 33307484 DOI: 10.1016/j.biortech.2020.124495] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Eukaryotic microalgae are a rich source of commercially important metabolites including lipids, pigments, sugars, amino acids and enzymes. However, their inherent genetic potential is usually not enough to support high level production of metabolites of interest. In order to move on from the traditional approach of improving product yields by modification of the cultivation conditions, understanding the metabolic pathways leading to the synthesis of the bioproducts of interest is crucial. Identification of new targets for strain engineering has been greatly facilitated by the rapid development of high-throughput sequencing and spectroscopic techniques discussed in this review. Despite the availability of high throughput analytical tools, examples of gathering and application of proteomic and metabolomic data for metabolic engineering of microalgae are few and mainly limited to lipid production. The present review highlights the application of contemporary proteomic and metabolomic techniques in eukaryotic microalgae for redesigning pathways for enhanced production of algal metabolites.
Collapse
Affiliation(s)
- Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, Uttar Pradesh 275103, India
| | - Mafruha Hasan
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi 110 012
| | - Helena Nevalainen
- Department of Molecular Sciences, Macquarie University, NSW 2109, Australia; Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India; School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
43
|
Kumar G, Shekh A, Jakhu S, Sharma Y, Kapoor R, Sharma TR. Bioengineering of Microalgae: Recent Advances, Perspectives, and Regulatory Challenges for Industrial Application. Front Bioeng Biotechnol 2020; 8:914. [PMID: 33014997 PMCID: PMC7494788 DOI: 10.3389/fbioe.2020.00914] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/15/2020] [Indexed: 01/14/2023] Open
Abstract
Microalgae, due to their complex metabolic capacity, are being continuously explored for nutraceuticals, pharmaceuticals, and other industrially important bioactives. However, suboptimal yield and productivity of the bioactive of interest in local and robust wild-type strains are of perennial concerns for their industrial applications. To overcome such limitations, strain improvement through genetic engineering could play a decisive role. Though the advanced tools for genetic engineering have emerged at a greater pace, they still remain underused for microalgae as compared to other microorganisms. Pertaining to this, we reviewed the progress made so far in the development of molecular tools and techniques, and their deployment for microalgae strain improvement through genetic engineering. The recent availability of genome sequences and other omics datasets form diverse microalgae species have remarkable potential to guide strategic momentum in microalgae strain improvement program. This review focuses on the recent and significant improvements in the omics resources, mutant libraries, and high throughput screening methodologies helpful to augment research in the model and non-model microalgae. Authors have also summarized the case studies on genetically engineered microalgae and highlight the opportunities and challenges that are emerging from the current progress in the application of genome-editing to facilitate microalgal strain improvement. Toward the end, the regulatory and biosafety issues in the use of genetically engineered microalgae in commercial applications are described.
Collapse
Affiliation(s)
- Gulshan Kumar
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ajam Shekh
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India
| | - Sunaina Jakhu
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Yogesh Sharma
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ritu Kapoor
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
44
|
Wang K, Cui Y, Wang Y, Gao Z, Liu T, Meng C, Qin S. Chloroplast Genetic Engineering of a Unicellular Green Alga Haematococcus pluvialis with Expression of an Antimicrobial Peptide. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:572-580. [PMID: 32535692 DOI: 10.1007/s10126-020-09978-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/14/2020] [Indexed: 05/18/2023]
Abstract
The purpose of this study was to express an antimicrobial peptide in the chloroplast to further develop the plastid engineering of H. pluvialis. Homologous targeting of the 16S-trnI/trnA-23S region and four endogenous regulatory elements, including the psbA promoter, rbcL promoter, rbcL terminator, and psbA terminator in H. pluvialis, were performed to construct a chloroplast transformation vector for H. pluvialis. The expression of codon-optimized antimicrobial peptide piscidin-4 gene (ant1) and selection marker gene (bar, biolaphos resistance gene) in the chloroplast of H. pluvialis was controlled by the rbcL promoter and psbA promoter, respectively. Upon biolistic transformation and selection with phosphinothricin, integration and expression of ant1 in the chloroplast genome were detected using polymerase chain reaction (PCR), southern blotting, and western blotting. Using this method, we successfully expressed antimicrobial peptide piscidin-4 in H. pluvialis. Hence, our results showed H. pluvialis promises as a platform for expressing recombinant proteins for biotechnological applications, which will further contribute to promoting genetic engineering improvement of this strain.
Collapse
Affiliation(s)
- Kang Wang
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, Shandong Province, China
| | - Yulin Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yinchu Wang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhengquan Gao
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, Shandong Province, China
| | - Tianzhong Liu
- Microalgal Biotechnology Group, CAS key Laboratory of Biofuels and Shandong Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and bioprocess technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Chunxiao Meng
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, Shandong Province, China.
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
45
|
Li X, Wang X, Duan C, Yi S, Gao Z, Xiao C, Agathos SN, Wang G, Li J. Biotechnological production of astaxanthin from the microalga Haematococcus pluvialis. Biotechnol Adv 2020; 43:107602. [PMID: 32711005 DOI: 10.1016/j.biotechadv.2020.107602] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 01/14/2023]
Abstract
Although biotechnologies for astaxanthin production from Haematococcus pluvialis have been developed for decades and many production facilities have been established throughout the world, the production cost is still high. This paper is to evaluate the current production processes and production facilities, to analyze the R&D strategies for process improvement, and to review the recent research advances shedding light on production cost reduction. With these efforts being made, we intent to conclude that the production cost of astaxanthin from Haematococcus might be substantially reduced to the levels comparable to that of chemical astaxanthin through further R&D and the future research might need to focus on strain selection and improvement, cultivation process optimization, innovation of cultivation methodologies, and revolution of extraction technologies.
Collapse
Affiliation(s)
- Xin Li
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, PR China
| | - Xiaoqian Wang
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, PR China
| | - Chuanlan Duan
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, PR China
| | - Shasha Yi
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, PR China
| | - Zhengquan Gao
- School of Life Sciences, Shandong University of Technology, Zibo, PR China
| | - Chaowen Xiao
- College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Spiros N Agathos
- Earth and Life Institute, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | - Jian Li
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, PR China.
| |
Collapse
|
46
|
Fayyaz M, Chew KW, Show PL, Ling TC, Ng IS, Chang JS. Genetic engineering of microalgae for enhanced biorefinery capabilities. Biotechnol Adv 2020; 43:107554. [PMID: 32437732 DOI: 10.1016/j.biotechadv.2020.107554] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
Microalgae-based bioproducts are in limelight because of their promising future, novel characteristics, the current situation of population needs, and rising prices of rapidly depleting energy resources. Algae-based products are considered as clean sustainable energy and food resources. At present, they are not commercialized due to their high production cost and low yield. In recent years, novel genome editing tools like RNAi, ZNFs, TALENs, and CRISPR/Cas9 are used to enhance the quality and quantity of the desired products. Genetic and metabolic engineering are frequently applied because of their rapid and precise results than random mutagenesis. Omic approaches help enhance biorefinery capabilities and are now in the developing stage for algae. The future is very bright for transgenic algae with increased biomass yield, carbon dioxide uptake rate, accumulating high-value compounds, reduction in cultivation, and production costs, thus reaching the goal in the global algal market and capital flow. However, microalgae are primary producers and any harmful exposure to the wild strains can affect the entire ecosystem. Therefore, strict regulation and monitoring are required to assess the potential risks before introducing genetically modified microalgae into the natural ecosystem.
Collapse
Affiliation(s)
- Mehmooda Fayyaz
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan.
| |
Collapse
|
47
|
Arévalo-Gallegos S, Varela-Rodríguez H, Lugo-Aguilar H, Siqueiros-Cendón TS, Iglesias-Figueroa BF, Espinoza-Sánchez EA, Aguado-Santacruz GA, Rascón-Cruz Q. Transient expression of a green fluorescent protein in tobacco and maize chloroplast. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
48
|
Zhao Y, Hou Y, Chai W, Liu Z, Wang X, He C, Hu Z, Chen S, Wang W, chen F. Transcriptome analysis of Haematococcus pluvialis of multiple defensive systems against nitrogen starvation. Enzyme Microb Technol 2020; 134:109487. [DOI: 10.1016/j.enzmictec.2019.109487] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/05/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
|
49
|
Vecchi V, Barera S, Bassi R, Dall’Osto L. Potential and Challenges of Improving Photosynthesis in Algae. PLANTS 2020; 9:plants9010067. [PMID: 31947868 PMCID: PMC7020468 DOI: 10.3390/plants9010067] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 11/16/2022]
Abstract
Sunlight energy largely exceeds the energy required by anthropic activities, and therefore its exploitation represents a major target in the field of renewable energies. The interest in the mass cultivation of green microalgae has grown in the last decades, as algal biomass could be employed to cover a significant portion of global energy demand. Advantages of microalgal vs. plant biomass production include higher light-use efficiency, efficient carbon capture and the valorization of marginal lands and wastewaters. Realization of this potential requires a decrease of the current production costs, which can be obtained by increasing the productivity of the most common industrial strains, by the identification of factors limiting biomass yield, and by removing bottlenecks, namely through domestication strategies aimed to fill the gap between the theoretical and real productivity of algal cultures. In particular, the light-to-biomass conversion efficiency represents one of the major constraints for achieving a significant improvement of algal cell lines. This review outlines the molecular events of photosynthesis, which regulate the conversion of light into biomass, and discusses how these can be targeted to enhance productivity through mutagenesis, strain selection or genetic engineering. This review highlights the most recent results in the manipulation of the fundamental mechanisms of algal photosynthesis, which revealed that a significant yield enhancement is feasible. Moreover, metabolic engineering of microalgae, focused upon the development of renewable fuel biorefineries, has also drawn attention and resulted in efforts for enhancing productivity of oil or isoprenoids.
Collapse
Affiliation(s)
| | | | | | - Luca Dall’Osto
- Correspondence: ; Tel.: +39-045-8027806; Fax: +39-045-8027929
| |
Collapse
|
50
|
Chen Z, Chen J, Liu J, Li L, Qin S, Huang Q. Transcriptomic and metabolic analysis of an astaxanthin-hyperproducing Haematococcus pluvialis mutant obtained by low-temperature plasma (LTP) mutagenesis under high light irradiation. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|