1
|
Jebali A, Kaur H, Martinez H, Getto S, Gleasner C, Echenique-Subiabre I, Gerber J, Holguin FFO, Nalley J, O'Kelly CJ, Shurin JB, Starkenburg SR, Corcoran AA. Two years of outdoor cultivation in alternate climates produces little divergence in the productivity of Nannochloropsis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 981:179587. [PMID: 40328070 DOI: 10.1016/j.scitotenv.2025.179587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/15/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025]
Abstract
Local environmental conditions may act as driving forces of natural selection and lead to trait divergence through time in outdoor microalgae cultures. In addition, microalgae phenotypes expressed outdoors may be modulated by other organisms, including pests and associated microbial communities. The present work builds on the long-term cultivation of a Nanochloropsis strain, across four geographically distinct field sites. The strain showed enhanced productivity at a site in California and decreased productivity at a site in New Mexico. The goal of the present work was to determine if those trait differences, among others, were the result of natural selection and evolution, phenotypic plasticity, or changes due to the influence of local microbiomes. To accomplish this goal, we coupled an outdoor common garden experiment in which cultivars from all four sites were grown at a single site in New Mexico with analyses of the algal microbiome. Our work revealed no differences in biomass productivity or biomass composition across strains in a common garden, suggesting that the parent strain exhibits high phenotypic plasticity, allowing growth across a wide range of climatic conditions. With respect to the microbiome, community composition and richness differed across cultivation system scales, parent and replicate ponds, and with and without pest management - but not greatly within the common garden. Our findings suggest that Nannochloropsis plasticity was driving the variation in phenotypic productivity responses to site-specific conditions and disturbances. This study helps in understanding the phenotypic changes and microbial community dynamics over years of cultivation.
Collapse
Affiliation(s)
- Ahlem Jebali
- New Mexico Consortium, 4200 W. Jemez Rd, Los Alamos, NM 87544, United States of America.
| | - Harmanpreet Kaur
- New Mexico State University, 1175 Horseshoe Dr., Las Cruces, NM 88003, United States of America
| | - Heather Martinez
- New Mexico Consortium, 4200 W. Jemez Rd, Los Alamos, NM 87544, United States of America
| | - Stephanie Getto
- New Mexico State University, 1175 Horseshoe Dr., Las Cruces, NM 88003, United States of America
| | - Cheryl Gleasner
- Los Alamos National Laboratory, Bikini Atoll Rd. SM-30, Los Alamos, NM 87545, United States of America
| | - Isidora Echenique-Subiabre
- University of California San Diego, 9500 Gilman Dr., Dept 0116, La Jolla, CA 92093, United States of America
| | - Julia Gerber
- Cyanotech Corporation, 73-4460 Queen Kaahumanu Highway, Kailua Kona, HI 96740, United States of America
| | - F F Omar Holguin
- New Mexico State University, 1175 Horseshoe Dr., Las Cruces, NM 88003, United States of America
| | - Jakob Nalley
- Qualitas Health, 421 E. Imperial St, Imperial, TX 79743, United States of America
| | - Charles J O'Kelly
- Cyanotech Corporation, 73-4460 Queen Kaahumanu Highway, Kailua Kona, HI 96740, United States of America
| | - Jonathan B Shurin
- University of California San Diego, 9500 Gilman Dr., Dept 0116, La Jolla, CA 92093, United States of America
| | - Shawn R Starkenburg
- Los Alamos National Laboratory, Bikini Atoll Rd. SM-30, Los Alamos, NM 87545, United States of America
| | - Alina A Corcoran
- New Mexico Consortium, 4200 W. Jemez Rd, Los Alamos, NM 87544, United States of America; New Mexico State University, 1175 Horseshoe Dr., Las Cruces, NM 88003, United States of America
| |
Collapse
|
2
|
Miebach J, Green D, Strittmatter M, Mallinger C, Le Garrec L, Zhang QY, Foucault P, Kunz C, Gachon CMM. Importance, structure, cultivability, and resilience of the bacterial microbiota during infection of laboratory-grown Haematococcus spp. by the blastocladialean pathogen Paraphysoderma sedebokerense: evidence for a domesticated microbiota and its potential for biocontrol. FEMS Microbiol Ecol 2025; 101:fiaf011. [PMID: 39832809 PMCID: PMC11797010 DOI: 10.1093/femsec/fiaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/18/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025] Open
Abstract
Industrial production of the unicellular green alga Haematococcus lacustris is compromised by outbreaks of the fungal pathogen Paraphysoderma sedebokerense (Blastocladiomycota). Here, using axenic algal and fungal cultures and antibiotic treatments, we show that the bacterial microbiota of H. lacustris is necessary for the infection by P. sedebokerense and that its modulation affects the outcome of the interaction. We combined metagenomics and laboratory cultivation to investigate the diversity of the bacterial microbiota associated to three Haematococcus species and monitor its change upon P. sedebokerense infection. We unveil three types of distinct, reduced bacterial communities, which likely correspond to keystone taxa in the natural Haematococcus spp. microbiota. Remarkably, the taxonomic composition and functionality of these communities remained stable during infection. The major bacterial taxa identified in this study have been cultivated by us or others, paving the way to developing synthetic communities to experimentally explore interactions within this tripartite system. We discuss our results in the light of emerging evidence concerning the structuring and domestication of plant and animal microbiota, thus providing novel experimental tools and a new conceptual framework necessary to enable the engineering of Haematococcus spp. microbiota toward the biocontrol of P. sedebokerense.
Collapse
Affiliation(s)
- Jeanne Miebach
- Faculté des Sciences et Ingénierie, Sorbonne Université, UFR 927, 75005 Paris, France
- MCAM (Molécules de Communication et Adaptation des Micro-organismes) UMR 7245 – Muséum National d'Histoire Naturelle, CNRS, 43 rue Buffon, 75005 Paris, France
| | - David Green
- Scottish Association for Marine Science, Oban PA37 1QA, United Kingdom
| | | | - Claire Mallinger
- MCAM (Molécules de Communication et Adaptation des Micro-organismes) UMR 7245 – Muséum National d'Histoire Naturelle, CNRS, 43 rue Buffon, 75005 Paris, France
| | - Lucie Le Garrec
- MCAM (Molécules de Communication et Adaptation des Micro-organismes) UMR 7245 – Muséum National d'Histoire Naturelle, CNRS, 43 rue Buffon, 75005 Paris, France
| | - Qian Yi Zhang
- Scottish Association for Marine Science, Oban PA37 1QA, United Kingdom
| | - Pierre Foucault
- MCAM (Molécules de Communication et Adaptation des Micro-organismes) UMR 7245 – Muséum National d'Histoire Naturelle, CNRS, 43 rue Buffon, 75005 Paris, France
- UMR7618 iEES-Paris, Sorbonne Université, 75005 Paris, France
| | - Caroline Kunz
- Faculté des Sciences et Ingénierie, Sorbonne Université, UFR 927, 75005 Paris, France
- MCAM (Molécules de Communication et Adaptation des Micro-organismes) UMR 7245 – Muséum National d'Histoire Naturelle, CNRS, 43 rue Buffon, 75005 Paris, France
| | - Claire M M Gachon
- MCAM (Molécules de Communication et Adaptation des Micro-organismes) UMR 7245 – Muséum National d'Histoire Naturelle, CNRS, 43 rue Buffon, 75005 Paris, France
- Scottish Association for Marine Science, Oban PA37 1QA, United Kingdom
| |
Collapse
|
3
|
Fisher CL, Loehde-Woolard HC, Lane PD, Mageeney CM, Lane TW. Discovery of antimicrobial activity in chemical extracts derived from unexplored algal-bacterial culture systems and isolates. Sci Rep 2024; 14:31710. [PMID: 39738328 PMCID: PMC11685872 DOI: 10.1038/s41598-024-82056-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025] Open
Abstract
Global health is affected by viral, bacterial, and fungal infections that cause chronic and often fatal diseases. Identifying novel antimicrobials through innovative methods that are active against human pathogens will create a new, necessary pipeline for chemical discovery and therapeutic development. Our goal was to determine whether algal production systems represent fertile ground for discovery of antibiotics and antifungals. To this end, we collected high-biomass algal-bacterial samples from outdoor mass cultivation systems, 18-L outdoor algal open cultures mesocosms, and non-axenic laboratory samples. We also cultivated 33 marine bacterial isolates for chemical extraction. Ultimately, we filtered, concentrated, extracted, and screened 77 chemically-complex mixtures using a conventional agar-based microbial growth inhibition assay against three microbes: Escherichia coli, Bacillus subtilis, and Candida albicans. We discovered that 23 of our chemical extracts (almost one-third of the chemical samples tested) exhibited some degree of growth inhibition toward B. subtilis and/or C. albicans. Our work here demonstrates the feasibility and potential of isolating bioactive natural products from high-biomass algal-bacterial samples from algal mass cultivation systems.
Collapse
Affiliation(s)
- Carolyn L Fisher
- Physical and Life Science Directorate, Bioscience & BioTechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
| | - Hailey C Loehde-Woolard
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Pamela D Lane
- Systems Biology, Sandia National Laboratories, P. O. Box 969, Livermore, CA, 94551-0969, USA
| | - Catherine M Mageeney
- Biotechnology and Bioengineering, Sandia National Laboratories, P. O. Box 969, Livermore, CA, 94551-0969, USA
| | - Todd W Lane
- Bioresource and Environmental Security, Sandia National Laboratories, P. O. Box 969, Livermore, CA, 94551-0969, USA
| |
Collapse
|
4
|
Humphrey B, Mackenzie M, Lobitz M, Schambach JY, Lasley G, Kolker S, Ricken B, Bennett H, Williams KP, Smallwood CR, Cahill J. Biotic countermeasures that rescue Nannochloropsis gaditana from a Bacillus safensis infection. Front Microbiol 2023; 14:1271836. [PMID: 37920264 PMCID: PMC10618357 DOI: 10.3389/fmicb.2023.1271836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/15/2023] [Indexed: 11/04/2023] Open
Abstract
The natural assemblage of a symbiotic bacterial microbiome (bacteriome) with microalgae in marine ecosystems is now being investigated as a means to increase algal productivity for industry. When algae are grown in open pond settings, biological contamination causes an estimated 30% loss of the algal crop. Therefore, new crop protection strategies that do not disrupt the native algal bacteriome are needed to produce reliable, high-yield algal biomass. Bacteriophages offer an unexplored solution to treat bacterial pathogenicity in algal cultures because they can eliminate a single species without affecting the bacteriome. To address this, we identified a highly virulent pathogen of the microalga Nannochloropsis gaditana, the bacterium Bacillus safensis, and demonstrated rescue of the microalgae from the pathogen using phage. 16S rRNA amplicon sequencing showed that phage treatment did not alter the composition of the bacteriome. It is widely suspected that the algal bacteriome could play a protective role against bacterial pathogens. To test this, we compared the susceptibility of a bacteriome-attenuated N. gaditana culture challenged with B. safensis to a N. gaditana culture carrying a growth-promoting bacteriome. We showed that the loss of the bacteriome increased the susceptibility of N. gaditana to the pathogen. Transplanting the microalgal bacteriome to the bacteriome-attenuated culture reconstituted the protective effect of the bacteriome. Finally, the success of phage treatment was dependent on the presence of beneficial bacteriome. This study introduces two synergistic countermeasures against bacterial pathogenicity in algal cultures and a tractable model for studying interactions between microalgae, phages, pathogens, and the algae microbiome.
Collapse
Affiliation(s)
- Brittany Humphrey
- Sandia National Laboratories, Department of Molecular and Microbiology, Albuquerque, NM, United States
| | - Morgan Mackenzie
- Sandia National Laboratories, Department of Molecular and Microbiology, Albuquerque, NM, United States
| | - Mia Lobitz
- Sandia National Laboratories, Department of Molecular and Microbiology, Albuquerque, NM, United States
| | - Jenna Y. Schambach
- Sandia National Laboratories, Department of Molecular and Microbiology, Albuquerque, NM, United States
| | - Greyson Lasley
- Sandia National Laboratories, Department of Molecular and Microbiology, Albuquerque, NM, United States
| | - Stephanie Kolker
- Sandia National Laboratories, Department of Molecular and Microbiology, Albuquerque, NM, United States
| | - Bryce Ricken
- Sandia National Laboratories, Department of Molecular and Microbiology, Albuquerque, NM, United States
| | - Haley Bennett
- Sandia National Laboratories, Department of Molecular and Microbiology, Albuquerque, NM, United States
| | - Kelly P. Williams
- Sandia National Laboratories, Department of Systems Biology, Livermore, CA, United States
| | - Chuck R. Smallwood
- Sandia National Laboratories, Department of Molecular and Microbiology, Albuquerque, NM, United States
| | - Jesse Cahill
- Sandia National Laboratories, Department of Molecular and Microbiology, Albuquerque, NM, United States
| |
Collapse
|
5
|
Fisher CL, Fong MV, Lane PD, Carlson S, Lane TW. Storage and Algal Association of Bacteria That Protect Microchloropsis salina from Grazing by Brachionus plicatilis. Microorganisms 2023; 11:microorganisms11030786. [PMID: 36985359 PMCID: PMC10056100 DOI: 10.3390/microorganisms11030786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Loss of algal production from the crashes of algal mass cultivation systems represents a significant barrier to the economic production of microalgal-based biofuels. Current strategies for crash prevention can be too costly to apply broadly as prophylaxis. Bacteria are ubiquitous in microalgal mass production cultures, however few studies investigate their role and possible significance in this particular environment. Previously, we demonstrated the success of selected protective bacterial communities to save Microchloropsis salina cultures from grazing by the rotifer Brachionus plicatilis. In the current study, these protective bacterial communities were further characterized by fractionation into rotifer-associated, algal-associated, and free-floating bacterial fractions. Small subunit ribosomal RNA amplicon sequencing was used to identify the bacterial genera present in each of the fractions. Here, we show that Marinobacter, Ruegeria, and Boseongicola in algae and rotifer fractions from rotifer-infected cultures likely play key roles in protecting algae from rotifers. Several other identified taxa likely play lesser roles in protective capability. The identification of bacterial community members demonstrating protective qualities will allow for the rational design of microbial communities grown in stable co-cultures with algal production strains in mass cultivation systems. Such a system would reduce the frequency of culture crashes and represent an essentially zero-cost form of algal crop protection.
Collapse
Affiliation(s)
- Carolyn L Fisher
- Physical and Life Science Directorate, Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Michelle V Fong
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA
| | - Pamela D Lane
- Systems Biology Department, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Skylar Carlson
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA
| | - Todd W Lane
- Bioresource and Environmental Security Department, Sandia National Laboratories, Livermore, CA 94550, USA
| |
Collapse
|
6
|
Huesemann MH, Knoshaug EP, Laurens LM, Dale T, Lane TW, McGowen J. Development of integrated screening, cultivar optimization, and verification research (DISCOVR): A coordinated research-driven approach to improve microalgal productivity, composition, and culture stability for commercially viable biofuels production. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Yun HS, Kim DH, Kim JG, Kim YS, Yoon HS. The microbial communities (bacteria, algae, zooplankton, and fungi) improved biofloc technology including the nitrogen-related material cycle in Litopenaeus vannamei farms. Front Bioeng Biotechnol 2022; 10:883522. [PMID: 36507271 PMCID: PMC9727081 DOI: 10.3389/fbioe.2022.883522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Microbes are essential in biofloc technology for controlling nitrogen levels in water. The composition and function of microorganisms with biofloc systems were reported; however, data on microorganisms other than bacteria, such as algae (which are essential in the nitrogen cycle) and zooplankton (which are bacterial and algal predators), remain limited. The microbial communities (including bacteria, algae, zooplankton, and fungi) were investigated in shrimp farms using biofloc technology. Using Illumina MiSeq sequencing, the V4 region of 18S rRNA and the V3-V4 region of 16S rRNA were utilized for the analysis of the eukaryotic and prokaryotic microbial communities. As a result, it was found that the biofloc in the shrimp farm consisted of 48.73%-73.04% eukaryotic organisms and 26.96%-51.27% prokaryotic organisms. In these shrimp farms, prokaryotic microbial communities had higher specie richness and diversity than eukaryotic microbial communities. However, the eukaryotic microbial communities were more abundant than their prokaryotic counterparts, while algae and zooplankton dominated them. It was discovered that the structures of the microbial communities in the shrimp farms seemed to depend on the effects of predation by zooplankton and other related organisms. The results provided the nitrogen cycle in biofloc systems by the algal and bacterial groups in microbial communities.
Collapse
Affiliation(s)
- Hyun-Sik Yun
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Dong-Hyun Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Jong-Guk Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea,School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea,*Correspondence: Jong-Guk Kim, ; Young-Saeng Kim, ; Ho-Sung Yoon,
| | - Young-Saeng Kim
- Research Institute of Ulleung-do & Dok-do, Kyungpook National University, Daegu, South Korea,*Correspondence: Jong-Guk Kim, ; Young-Saeng Kim, ; Ho-Sung Yoon,
| | - Ho-Sung Yoon
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea,School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea,Advanced Bio-Resource Research Center, Kyungpook National University, Daegu, South Korea,*Correspondence: Jong-Guk Kim, ; Young-Saeng Kim, ; Ho-Sung Yoon,
| |
Collapse
|
8
|
Corcoran AA, Ohan J, Hanschen ER, Granite A, Martinez H, Holguin F, Hovde BT, Starkenburg SR. Scale-dependent enhancement of productivity and stability in xenic Nannochloropsis cultures. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Datki Z, Sinka R, Galik B, Galik-Olah Z. Particle-dependent reproduction and exogenic biopolymer secretion of protozoa co-cultured rotifers. Int J Biol Macromol 2022; 211:669-677. [PMID: 35588974 DOI: 10.1016/j.ijbiomac.2022.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/24/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
Abstract
The rotifer-specific exogenic biopolymer, named Rotimer and its related molecular processes are affected by physical and chemical factors (e.g., temperature, pH or metal ions); however, the study of biological influences (e.g., the presence protozoa) concerning the particle-dependent reproduction (egg laying) and 'biopolymer producing capacity' (BPC) of rotifers is the objective of the present work. Non-planktonic rotifer species (Philodina acuticornis, Adineta vaga, Euchlanis dilatata, and Lecane bulla) were studied in paired micrometazoa-protozoa co-cultures involving Paramecium, Diplonema, and Amoeba. These protozoa can be beneficial food sources, enhancing reproduction, or even toxic factors for the above-mentioned animals, but can also function as particle-like mechanical stimulators. Furthermore, current studies reveal that bdelloids, similarly to monogonants, produce filamentous exudate; moreover, the body of bdelloids is covered by their exudate, unlike that of monogonants, especially in the case of A. vaga. A mathematical formula was developed as an improved version of a previously published viability marker to characterize the BPC and the relative amount of produced exudate in different conditions. Rotifer species secreting biopolymers appear to be a general trait indicating a common evolutionary background (e.g., calcium- and particle dependency) of such molecules; therefore, the BPC becomes an experiential sublethal influencing marker to these micrometazoans.
Collapse
Affiliation(s)
- Zsolt Datki
- Micro-In Vivo Research Laboratory, Interdisciplinary Research, Development and Innovation Centre of Excellence, University of Szeged, Dugonics ter 13. H-6720 Szeged, Hungary.
| | - Rita Sinka
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Hungary
| | - Bence Galik
- Bioinformatics Research Group, Bioinformatics and Sequencing Core Facility, Szentagothai Research Centre, University of Pecs, Ifjusag u. 20, H-7624 Pecs, Hungary; Department of Clinical Molecular Biology, Medical University of Bialystok, ul.Jana Kilinskiego 1, 15-089 Bialystok, Poland
| | - Zita Galik-Olah
- Micro-In Vivo Research Laboratory, Interdisciplinary Research, Development and Innovation Centre of Excellence, University of Szeged, Dugonics ter 13. H-6720 Szeged, Hungary
| |
Collapse
|
10
|
Lane TW. Barriers to microalgal mass cultivation. Curr Opin Biotechnol 2021; 73:323-328. [PMID: 34710649 DOI: 10.1016/j.copbio.2021.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 12/23/2022]
Abstract
Economically successful microalgal mass cultivation is dependent on overcoming several barriers that contribute to the cost of production. The severity of these barriers is dependent on the market value of the final product. These barriers prevent the commercially viable production of algal biofuels but are also faced by any producers of any algal product. General barriers include the cost of water and limits on recycling, costs and recycling of nutrients, CO2 utilization, energy costs associated with harvesting and biomass loss due to biocontamination and pond crashes. In this paper, recent advances in overcoming these barriers are discussed.
Collapse
Affiliation(s)
- Todd W Lane
- Bioresource and Environmental Security Department, Sandia National Laboratories, P.O. Box 969, Livermore, CA 94550, USA.
| |
Collapse
|
11
|
Ward CS, Rolison K, Li M, Rozen S, Fisher CL, Lane TW, Thelen MP, Stuart RK. Janthinobacter additions reduce rotifer grazing of microalga Microchloropsis salina in biotically complex communities. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Elalami D, Oukarroum A, Barakat A. Anaerobic digestion and agronomic applications of microalgae for its sustainable valorization. RSC Adv 2021; 11:26444-26462. [PMID: 35480019 PMCID: PMC9037636 DOI: 10.1039/d1ra04845g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022] Open
Abstract
Microalgae are considered potential candidates in biorefinery processes, and due to their biochemical properties, they can be used in the production of biofuels such as biogas, as well as for bioremediation of liquid effluents. The objective of this review is to study the current status of microalgae anaerobic digestion and agricultural uses (as bio-stimulants and biofertilizers), starting from microalgae cultivation. Indeed, the efficiency of these processes necessarily depends on the evaluation of different biotic and abiotic factors that affect the growth of microalgae. However, the adaptation and the optimization of process parameters on a large scale is also limited by energy and economic constraints. Moreover, the integration of biogas production processes with microalgae cultivation allows a nutrients and CO2 virtuous loop, thus promoting the sustainability of the process. Finally, this paper provides a general overview of biogas and biofertilizers production combination, as well as the related challenges and recommended future research perspectives to complement the gap in the literature.
Collapse
Affiliation(s)
- Doha Elalami
- AgroBioSciences, Mohammed VI Polytechnic University (UM6P) Ben Guérir Morocco
| | - Abdallah Oukarroum
- AgroBioSciences, Mohammed VI Polytechnic University (UM6P) Ben Guérir Morocco
| | - Abdellatif Barakat
- AgroBioSciences, Mohammed VI Polytechnic University (UM6P) Ben Guérir Morocco
- IATE, University of Montpellier, INRAE, Agro Institut Montpellier 34060 France
| |
Collapse
|
13
|
Chemical Profiling of Volatile Organic Compounds in the Headspace of Algal Cultures as Early Biomarkers of Algal Pond Crashes. Sci Rep 2019; 9:13866. [PMID: 31554867 PMCID: PMC6761164 DOI: 10.1038/s41598-019-50125-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/04/2019] [Indexed: 11/08/2022] Open
Abstract
Algae ponds used in industrial biomass production are susceptible to pathogen or grazer infestation, resulting in pond crashes with high economic costs. Current methods to monitor and mitigate unhealthy ponds are hindered by a lack of early indicators that precede culture crash. We used solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) to identify volatiles emitted from healthy and rotifer infested cultures of Microchloropsis salina. After 48 hours of algal growth, marine rotifers, Brachionus plicatilis, were added to the algae cultures and volatile organic compounds (VOC) were sampled from the headspace using SPME fibers. A GC-MS approach was used in an untargeted analysis of VOCs, followed by preliminary identification. The addition of B. plicatilis to healthy cultures of M. salina resulted in decreased algal cell numbers, relative to uninfected controls, and generated trans-β-ionone and β-cyclocitral, which were attributed to carotenoid degradation. The abundances of the carotenoid-derived VOCs increased with rotifer consumption of algae. Our results indicate that specific VOCs released by infected algae cultures may be early indicators for impending pond crashes, providing a useful tool to monitor algal biomass production and pond crash prevention.
Collapse
|