1
|
Cadar E, Popescu A, Dragan AML, Pesterau AM, Pascale C, Anuta V, Prasacu I, Velescu BS, Tomescu CL, Bogdan-Andreescu CF, Sirbu R, Ionescu AM. Bioactive Compounds of Marine Algae and Their Potential Health and Nutraceutical Applications: A Review. Mar Drugs 2025; 23:152. [PMID: 40278274 PMCID: PMC12029074 DOI: 10.3390/md23040152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
Currently, marine algae are still an under-exploited natural bioresource of bioactive compounds. Seaweeds represent a sustainable source for obtaining bioactive compounds that can be useful for the fabrication of new active products with biomedical benefits and applications as biomedicinals and nutraceuticals. The objective of this review is to highlight scientific papers that identify biocompounds from marine macroalgae and emphasize their benefits. The method used was data analysis to systematize information to identify biocompounds and their various benefits in pharmaceuticals, cosmetics, and nutraceuticals. The research results demonstrate the multiple uses of seaweeds. As pharmaceuticals, seaweeds are rich sources of bioactive compounds like polysaccharides, protein compounds, pigments, and polyphenols, which have demonstrated various pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, antiviral, anticoagulant, and potentially anticarcinogenic effects. Seaweed has gained recognition as a functional food and offers a unique set of compounds that promote body health, including vitamins, minerals, and antioxidants. In conclusion, the importance of this review is to expand the possibilities for utilizing natural resources by broadening the areas of research for human health and marine nutraceuticals.
Collapse
Affiliation(s)
- Emin Cadar
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Corp C, 900470 Constanta, Romania; (E.C.); (A.P.)
| | - Antoanela Popescu
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Corp C, 900470 Constanta, Romania; (E.C.); (A.P.)
| | - Ana-Maria-Laura Dragan
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.)
| | - Ana-Maria Pesterau
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.)
| | - Carolina Pascale
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.)
| | - Valentina Anuta
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020021 Bucharest, Romania; (V.A.); (I.P.); (B.S.V.)
| | - Irina Prasacu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020021 Bucharest, Romania; (V.A.); (I.P.); (B.S.V.)
| | - Bruno Stefan Velescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020021 Bucharest, Romania; (V.A.); (I.P.); (B.S.V.)
| | - Cezar Laurentiu Tomescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Corp B, 900470 Constanta, Romania; (C.L.T.); (A.-M.I.)
- “Sf. Ap. Andrei” County Clinical Emergency Hospital, Tomis Bvd., No. 145, 900591 Constanta, Romania
| | | | - Rodica Sirbu
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.)
| | - Ana-Maria Ionescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Corp B, 900470 Constanta, Romania; (C.L.T.); (A.-M.I.)
- Clinical Hospital C F Constanta, 1 Mai Bvd., No. 3–5, 900123 Constanta, Romania
| |
Collapse
|
2
|
Muñoz-Losada K, Da Costa KM, Muñoz-Castiblanco T, Mejía-Giraldo JC, Previato JO, Mendonça-Previato L, Puertas-Mejía MÁ. Glycolipids from Sargassum filipendula, a Natural Alternative for Overcoming ABC Transporter-Mediated MDR in Cancer. Chem Biodivers 2023; 20:e202301058. [PMID: 37747792 DOI: 10.1002/cbdv.202301058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Chemotherapy is a widely used strategy to treat cancer, a disease that causes millions of deaths each year. However, its efficacy is reduced by the overexpression of ABC transporters, which are proteins that expel the drugs used in chemotherapy and involved in the multidrug resistance (MDR). Glycolipids have been identified as potential inhibitors of ABC transporters. Algae of the genus Sargassum contain high levels of glycolipids, making them a promising therapeutic alternative against the MDR phenotype. Sargassum filipendula glycolipids were obtained by exhaustive maceration with chloroform/methanol, purified by column and thin layer chromatography, and then characterized by FTIR, NMR, and LC-MS. Cell viability by PI labeling and inhibition of ABC transporters were analyzed by flow cytometry. Assessment of resistance reversal was determined by MTT assay. Ten sulfoquinovosylglycerol-type compounds were found, and six of them are reported for the first time. In particular, moiety 4 (GL-4) showed strong and moderate inhibitory activity against ABCC1 and ABCB1 transporters respectively. Treatment of GL-4 in combination with the antineoplastic drug vincristine sensitized Lucena-1 cell model to drug and reversed the MDR phenotype. This is the first report of glycolipids isolated from S. filipendula capable of inhibiting ABC transporters and thus overcoming acquired drug resistance.
Collapse
Affiliation(s)
- Kelly Muñoz-Losada
- Grupo de Investigación en Compuestos Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, 050010, Colombia
| | - Kelli Monteiro Da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-902, Brasil
| | - Tatiana Muñoz-Castiblanco
- Grupo de Investigación en Compuestos Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, 050010, Colombia
| | - Juan Camilo Mejía-Giraldo
- Grupo de Investigación en Compuestos Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, 050010, Colombia
- Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, 050010, Colombia
| | - José Osvaldo Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-902, Brasil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-902, Brasil
| | - Miguel Ángel Puertas-Mejía
- Grupo de Investigación en Compuestos Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, 050010, Colombia
| |
Collapse
|
3
|
Jaworowska A, Murtaza A. Seaweed Derived Lipids Are a Potential Anti-Inflammatory Agent: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:730. [PMID: 36613050 PMCID: PMC9819613 DOI: 10.3390/ijerph20010730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Chronic, low-grade inflammation is linked to the development of non-communicable diseases, including cancer, cardiovascular disease, obesity, insulin resistance, diabetes, and others which together contribute to more than 50% of deaths globally. Modulation of inflammatory responses may be a promising strategy, and n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA) may offer a new therapeutic option in inflammatory conditions. Seaweeds are characterised by high nutritional quality and are a good source of many bioactive compounds, including n-3 LC-PUFA. This review addresses the potential anti-inflammatory properties of seaweed derived lipids, and their immunomodulating mechanisms in order to identify the possible applications of seaweed as an anti-inflammatory functional food ingredient or dietary supplement. A few studies have evaluated the anti-inflammatory activity of seaweed lipids using crude lipid extracts, lipid fractions and isolated complex lipids from several seaweeds belonging to the Ochrophyta and Rhodophyta phyla, with only three Ulva rigida, Ulva sp. and Codium tomentosum within the Chlorophyta phylum. It was reported that seaweed derived lipids suppress inducible nitric oxide synthase and cyclooxygenase-2 expression and reduce nuclear factor κB p100 and myeloid differentiation primary response 88 protein levels leading to the downregulation of the production of several pro-inflammatory cytokines and nitric oxide. Further investigations are required to unravel the complex mechanisms underlying their preventive action against chronic inflammation and their potential use as a new functional food ingredient and/or health supplement.
Collapse
Affiliation(s)
| | - Aliza Murtaza
- School of Science, University of Greenwich, Chatham ME4 4TG, UK
| |
Collapse
|
4
|
Gowda SGB, Yifan C, Gowda D, Tsuboi Y, Chiba H, Hui SP. Analysis of Antioxidant Lipids in Five Species of Dietary Seaweeds by Liquid Chromatography/Mass Spectrometry. Antioxidants (Basel) 2022; 11:antiox11081538. [PMID: 36009257 PMCID: PMC9404842 DOI: 10.3390/antiox11081538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Seaweeds are a good source of bioactive lipids and are known for their nutritional benefits, making them a valuable food source. Despite their dietary significance and nutritional importance, there are limited reports on comprehensive lipidome analysis of lipids with antioxidant properties. Therefore, this study aimed to compare the lipid profiles of five commonly consumed Japanese dietary seaweeds using non-targeted liquid chromatography/mass spectrometry (LC/MS). A total, of 304 molecular species from four major lipid classes were detected and characterized by MS/MS analysis. Multivariate statistical analysis revealed distinct lipid molecular compositions in kombu and sea mustard compared to hijiki, mozuku, and laver seaweeds. Kombu has been shown to contain large amounts of antioxidants, such as polyunsaturated fatty acids (PUFAs), and a high health promotion index compared to other seaweeds. Hierarchical cluster correlations indicated the predominance of glycerophospholipids (GPs) and glycerolipids (GLs) in sea mustard and kombu. As a result, dietary seaweeds have great potential as antioxidants and health-promoting foods for human consumption due to their high levels of PUFA-rich GPs and GLs. Unsaturated triacylglycerols are predominant in hijiki, whereas other health-beneficial lipids, such as monogalactosyldiacylglycerol and sulfoquinovosyl diacylglycerols, are predominant in sea mustard. This study provides a detailed characterization of lipids and their comparative fingerprints in seaweeds, demonstrating the potential use of dietary seaweeds in biotechnological and industrial applications involving the development of functional food products.
Collapse
Affiliation(s)
- Siddabasave Gowda B. Gowda
- Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Sapporo 0600812, Japan
- Graduate School of Global Food Resources, Hokkaido University, Kita 9, Nishi 9, Sapporo 0600809, Japan
| | - Chen Yifan
- Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Sapporo 0600812, Japan
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Sapporo 0600812, Japan
| | - Yui Tsuboi
- Graduate School of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Sapporo 0600812, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma, Nishi-4-3-1-15, Higashi-ku, Sapporo 0070894, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Sapporo 0600812, Japan
- Correspondence: ; Tel.: +81-11-706-3693
| |
Collapse
|
5
|
Rodríguez-González I, Díaz-Reinoso B, Domínguez H. Intensification Strategies for the Extraction of Polyunsaturated Fatty Acids and Other Lipophilic Fractions From Seaweeds. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02757-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Assessment of Arabian Gulf Seaweeds from Kuwait as Sources of Nutritionally Important Polyunsaturated Fatty Acids (PUFAs). Foods 2021; 10:foods10102442. [PMID: 34681494 PMCID: PMC8536129 DOI: 10.3390/foods10102442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 02/03/2023] Open
Abstract
The fatty acid (FA) compositions of ten seaweeds representative of Chlorophyta, Rhodophyta, and Ochrophyta from Kuwait in the Arabian Gulf region were determined and are discussed in the context of their potential nutritional perspectives for seaweed valorization. All the seaweeds had higher saturated fatty acid (SFA) and lower monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA) contents than those typical of tropical environments. Palmitic, myristic, stearic, oleic, linoleic, α-linolenic, and stearidonic acids were the major FAs detected. Arachidonic, eicosapentaenoic, and docosahexaenoic acids were detected in minor amounts. Conserved fatty acid patterns revealed phylogenetic relationships among phyla, classes, and orders matching the molecular phylogenies at higher taxonomic ranks. Hierarchical clustering analyses clearly segregated different seaweeds (except Codium papillatum and Iyengaria stellata) into distinct groups based on their FA signatures. All but one species (Chondria sp.) had health-beneficial n6/n3 PUFAs (0.33:1–2.94:1) and atherogenic (0.80–2.52) and thrombogenic indices (0.61–5.17). However, low PUFA/SFA contents in most of the species (except Ulva spp.) may limit their utilization in the formulation of PUFA-rich functional foods. Ulva spp. had substantially high PUFAs with PUFA/SFA > 0.4, n6/n3 (0.33–0.66) and atherogenic (0.80–1.15) and thrombogenic indices (0.49–0.72), providing substantial potential for their utilization in food and feed applications.
Collapse
|
7
|
Lopes D, Melo T, Rey F, Costa E, Moreira AS, Abreu MH, Domingues P, Lillebø AI, Calado R, Rosário Domingues M. Insights of species-specific polar lipidome signatures of seaweeds fostering their valorization in the blue bioeconomy. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Dellatorre FG, Avaro MG, Commendatore MG, Arce L, Díaz de Vivar ME. The macroalgal ensemble of Golfo Nuevo (Patagonia, Argentina) as a potential source of valuable fatty acids for nutritional and nutraceutical purposes. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|