1
|
Cui H, Zhu X, Yu X, Li S, Wang K, Wei L, Li R, Qin S. Advancements of astaxanthin production in Haematococcus pluvialis: Update insight and way forward. Biotechnol Adv 2025; 79:108519. [PMID: 39800086 DOI: 10.1016/j.biotechadv.2025.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/12/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The global market demand for natural astaxanthin (AXT) is growing rapidly owing to its potential human health benefits and diverse industry applications, driven by its safety, unique structure, and special function. Currently, the alga Haematococcus pluvialis (alternative name H. lacustris) has been considered as one of the best large-scale producers of natural AXT. However, the industry's further development faces two main challenges: the limited cultivation areas due to light-dependent AXT accumulation and the low AXT yield coupled with high production costs resulting from complex, time-consuming upstream biomass culture and downstream AXT extraction processes. Therefore, it is urgently to develop novel strategies to improve the AXT production in H. pluvialis to meet industrial demands, which makes its commercialization cost-effective. Although several strategies related to screening excellent target strains, optimizing culture condition for high biomass yield, elucidating the AXT biosynthetic pathway, and exploiting effective inducers for high AXT content have been applied to enhance the AXT production in H. pluvialis, there are still some unsolved and easily ignored perspectives. In this review, firstly, we summarize the structure and function of natural AXT focus on those from the algal H. pluvialis. Secondly, the latest findings regarding the AXT biosynthetic pathway including spatiotemporal specificity, transport, esterification, and storage are updated. Thirdly, we systematically assess enhancement strategies on AXT yield. Fourthly, the regulation mechanisms of AXT accumulation under various stresses are discussed. Finally, the integrated and systematic solutions for improving AXT production are proposed. This review not only fills the existing gap about the AXT accumulation, but also points the way forward for AXT production in H. pluvialis.
Collapse
Affiliation(s)
- Hongli Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Xiaoli Zhu
- College of Food and Bioengineering, Yantai Institute of Technology, Yantai 264003, Shandong, China
| | - Xiao Yu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Siming Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Kang Wang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Le Wei
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| |
Collapse
|
2
|
He Y, Liu J, Hu C, Wang Y, Ma L, Guo Y. Dicyanopyridine derivatives: One-pot preparation, ACQ-to-AIE transformation, light-conversion quality and photostability. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124227. [PMID: 38608557 DOI: 10.1016/j.saa.2024.124227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Low cost and strong fluorescence emission are two important guarantees for luminogens used as light conversion agents. By one-pot multicomponent approach and inexpensive starting materials, three dicyanopyridine (DP) derivatives named as DCP (2-amino-6-methoxy-4-phenylpyridine-3,5-dicarbonitrile), DCO (2-amino-6-methoxy-4-(4-methoxyphenyl) pyridine-3,5-dicarbonitrile) and DCC (2-amino-4-(4-cyanophenyl)-6-methoxypyridine-3,5-dicarbonitrile) were designed and synthesized. Meanwhile, the ACQ-to-AIE transformation was successfully realized by altering substituent groups rather than traditional rotor-stator theory. Based on crystal analysis and theoretical calculations, the ACQ-to-AIE transformation is attributed to the tunable stacking modes and intermolecular weak interactions. Owing to matched fluorescence emission, low lost, high yield, and AIE activity, DCC is used as light conversion agents and doped in EVA matrix. The light conversion quality confirms that DCC can not only convert ultraviolet light, but also significantly improve the transmittance of 25 %/40 % EVA, whose photosynthetic photon flux density at 400-500 nm and 600-700 nm increased to 30.67 %/30.21 % and 25.37 %/37.82 % of the blank film, respectively. After 20 h of UV irradiation (365 nm, 40 W), the fluorescence intensities of DCC films can maintain 92 % of the initial values, indicating good photostability in the doping films. This work not only provides an excellent and low-cost light conversion agent, but also has important significance for ACQ-to-AIE transformation of luminogens.
Collapse
Affiliation(s)
- Yanjin He
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Function Materia, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Jiaqi Liu
- Tianjin International Center for Nanoparticles and Nanosystem, Tianjin University, Tianjin 300072, China
| | - Chenwei Hu
- Tianjin International Center for Nanoparticles and Nanosystem, Tianjin University, Tianjin 300072, China
| | - Yongtao Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Function Materia, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Lei Ma
- Tianjin International Center for Nanoparticles and Nanosystem, Tianjin University, Tianjin 300072, China.
| | - Yanjun Guo
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Function Materia, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
3
|
Hu G, Li X, Yang J, Yuan Q, Yang S, Fu W, Zhang X, Li Y, Shen Z, Jiang J. Effects of Photoperiod and Light Quality on Germination and Growth of Camellia sinensis 'HuangKui'. PLANTS (BASEL, SWITZERLAND) 2024; 13:1782. [PMID: 38999624 PMCID: PMC11244327 DOI: 10.3390/plants13131782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
Light, as a critical environmental factor, plays a pivotal role in photosynthesis, ultimately influencing the timing of bud flush in tea plants. However, the synergistic effects of different photoperiods and light qualities on the timing of bud flush in the albino tea cultivar 'HuangKui' (later germination variety) remain unknown. Thus, the objective of this study was to investigate the effects of different photoperiods (12L/12D, 14L/10D, 16L/8D, and 18L/6D, where L = the number of daylight hours and D = the number of hours of darkness) and ratios of red (R) to blue (B) light (R/B 1:1, R/B 1:2, R/B 1:3, and R/B 2:1) on the germination and growth of the albino tea variety 'HuangKui'. In our study, we examined how different photoperiods and red light and blue light affected tea germination and growth by investigating the timing of bud flush, photosynthesis, chlorophyll content, and growth indicators. First, our study showed that 'HuangKui' germinated 4 days, 2 days, and 1 day earlier under the 16L/8D photoperiod at the one bud and one leaf period compared with plants cultivated under the 12L/12D, 14L/10D, and 18L/6D photoperiods under light simulating the solar spectrum. Also, the growth of 'HuangKui' was maximumly promoted under the 16L/8D photoperiod treatment. Additionally, the earliest germination of 'HuangKui' was observed for the 16L/8D photoperiod under the R/B 2:1 (red/blue) treatment compared with the other treatments. Moreover, the greatest plant height, length of the new shoots, and new leaf areas were detected in the albino tea variety 'HuangKui' under R/B 2:1. Moreover, the contents of auxin (indole acetic acid, IAA) and trans-zeatin (tZ) under R/B 2:1 were significantly higher than those under the R/B 1:1 and control treatments with the 16L/8D photoperiod. Additionally, the auxin-related expression levels of CsIAA13, CsGH3.1, CsAUX1, and CsARF2 under the R/B 2:1 treatment were significantly higher than those in the control. The expression of CsARR-B, a positive regulator of cytokinin-related genes, was significantly higher under the R/B 2:1 treatment than under the control treatment, while the opposite result was found for the expression of the negative regulator CsARR-A. Therefore, the R/B 2:1 treatment with the 16L/8D photoperiod was an appropriate means of timing the bud flush for the albino tea variety 'HuangKui', which may be related to IAA or tZ signal transduction. In conclusion, our research offers a novel lighting strategy that promotes the germination and growth of albino tea cultivars.
Collapse
Affiliation(s)
- Gan Hu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xingchen Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Junlong Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Qingqing Yuan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Shijun Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Wenjun Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xianchen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Zhougao Shen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jiayue Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
4
|
Ren H, Zhu G, Ni J, Shen M, Show PL, Sun FF. Enhanced photoautotrophic growth of Chlorella vulgaris in starch wastewater through photo-regulation strategy. CHEMOSPHERE 2022; 307:135533. [PMID: 35787884 DOI: 10.1016/j.chemosphere.2022.135533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/07/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Microalgae biomass production with starch wastewater (SW) is a promising approach to realize waste recovery and cost reduction due to the inherent copious nutrients and nontoxic compounds in SW. However, the application of this technique is significantly hindered by low biomass production on account of the poor photosynthetic efficiency of microalgae. In this regard, we proposed a photo-regulation strategy characterized by the adjusting of numbers of light/dark (L/D) cycles, and compositions of light wavelength, which was proved to be an effective method for stimulating intracellular photo electron transfer and enhancing photosynthetic efficiency, to boost microalgae biomass accumulation. Additionally, responses of the microalgae photo-biochemical conversion, and the wastewater treatment performance at various number of L/D cycles and light wavelengths were discussed. The experimental results indicated that the biomass production increased when the L/D period was increased from 2 h:2 h-12 h:12 h. When the L/D period was 2 h:2 h, the biomass production reached a maximum value of 1.28 g L-1, which was 19.6% higher than that of the control group when the L/D period was 12 h:12 h. Furthermore, with respect to microalgae growth under monochromatic light, the maximum biomass concentration (1.25 g L-1) and lipid content (32.2%) of Chlorella were achieved under blue light; whereas, the minimum values were attained under red light (1.05 g L-1 and 19.3%, respectively). When the red light and blue light were mixed and supplied, the microalgae biomass productivity was higher than that under white light, and the highest lipid productivity was 109.0 mg-1 L-1 d under a blue: red ratio of 2:1. Moreover, gas chromatography analysis demonstrated that the methyl in the range of C16-C18 in the system was higher than 70%. Fatty acid methyl esters (FAMEs) containing palmitic acid (C16:0) and oleic acid (C18:1) are beneficial for production of biodiesel, and the quality of fatty acid methyl ester used in biodiesel production can be improved using microalgae cultured under the mixed wavelengths of blue and red. Finally, Chlorella was cultured in PBR and reached the peak concentration of 2.45 g L-1 by semi-continuous process with the HRT regulation.
Collapse
Affiliation(s)
- Hongyan Ren
- School of Environment Science and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi, 214122, China.
| | - Guoqing Zhu
- School of Environment Science and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi, 214122, China
| | - Jing Ni
- School of Environment Science and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi, 214122, China
| | - Mingwei Shen
- School of Environment Science and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi, 214122, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia
| | - Fubao Fuelbiol Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
5
|
Han SI, Jeon MS, Ahn JW, Choi YE. Establishment of ultrasonic stimulation to enhance growth of Haematococcus lacustris. BIORESOURCE TECHNOLOGY 2022; 360:127525. [PMID: 35760247 DOI: 10.1016/j.biortech.2022.127525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
In this study, ultrasonication at a frequency of 40 kHz was used to shorten the sonication period and enhance the growth of Haematococcus lacustris. To confirm the optimal conditions, the effects of ultrasound output and treatment interval were examined. Under optimal conditions (20 W and 15-day cycle), the maximum cell density and chlorophyll content were 66.75 × 104 cells mL-1 and 36.54 mg g-1, respectively, which were increased by 50.00% and 39.01%, respectively, compared to the control. Transmission electron microscopy analysis showed that ultrasonication caused tiny cracks in the W4 and W6 strata but did not disrupt the inner W2 layer. Additionally, RT-qPCR analysis showed that ultrasonication upregulated both cell division and nitrogen uptake. No difference were detected in the composition or quantity of fatty acids. This study demonstrates a novel ultrasonic approach for enhancing the growth of H. lacustris.
Collapse
Affiliation(s)
- Sang-Il Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Min Seo Jeon
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Joon-Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Yoon-E Choi
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
6
|
Zhao K, Li Y, Yan H, Hu Q, Han D. Regulation of Light Spectra on Cell Division of the Unicellular Green Alga Haematococcus pluvialis: Insights from Physiological and Lipidomic Analysis. Cells 2022; 11:cells11121956. [PMID: 35741084 PMCID: PMC9221946 DOI: 10.3390/cells11121956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Commercial scale production of natural astaxanthin is currently conducted through cultivation of the green alga Haematococcus pluvialis. This study comprehensively investigated the impact of seven different light spectra on the growth, morphology and photosynthesis of H. pluvialis vegetative cells. Further, the lipidomes of vegetative H. pluvialis grown under various light spectra were qualitatively and quantitatively analyzed using liquid chromatography/mass spectrometry (LC/MS). The results showed the existence of blue light—alone or with red light—promoted cell division, while pure red light or white light enabled increased cell sizes, cellular pigment, starch and lipid contents, and biomass production. Although the photosynthetic performance of H. pluvialis measured as chlorophyll a fluorescence was not significantly affected by light spectra, the lipid profiles, particularly chloroplast membrane lipids, showed remarkable changes with light spectra. The contents of most lipid species in the blue/red light 1/2 group, which showed the fastest cell division, remained at a moderate level compared with those under other light spectra, indicating the fastest dividing cells were featured by a fine-tuned lipid profile. From biotechnical perspective, this comprehensive study can provide insights into the development of appropriate light regimes to promote the cell density or biomass of H. pluvialis mass culture.
Collapse
Affiliation(s)
- Kuo Zhao
- Center for Microalgal Biofuels and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (K.Z.); (Y.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100086, China
| | - Yanhua Li
- Center for Microalgal Biofuels and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (K.Z.); (Y.L.)
| | - Hailong Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (H.Y.); (Q.H.)
| | - Qiang Hu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (H.Y.); (Q.H.)
| | - Danxiang Han
- Center for Microalgal Biofuels and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (K.Z.); (Y.L.)
- Correspondence:
| |
Collapse
|