1
|
Yang G, Li M, Zhang J, Zhou J, Cheah WY, Abdullah R, Ling TC. Evaluation of cultivation conditions in hydrogel systems to enhance Chlorella vulgaris growth. Int Microbiol 2025:10.1007/s10123-025-00670-7. [PMID: 40338463 DOI: 10.1007/s10123-025-00670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/19/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025]
Abstract
Microalgae have gained significant attention as sustainable alternatives to traditional agriculture and energy resources. The cultivation efficiency of microalgae within hydrogel systems presents a promising avenue for spatially efficient bio-production. However, the optimum cultivation conditions of hydrogel cultivation systems have not been elucidated. This study focused on evaluating the hydrogel-based cultivation of Chlorella vulgaris in symbiosis with Bacillus Strain Salmah Ismail (SI) 139SI. It investigated the impact of hydrogel concentration, pH, light exposure, and system thickness on the growth and chlorophyll production of the algae. Our findings highlighted that, in coculture, a 7% (w/v) hydrogel concentration, pH of 7.4, a 12-h light/dark cycle at a hydrogel concentration of 7% but continuous light exposure under 5% hydrogel concentration, and a system thickness of 10 mm have provided the most favorable environmental conditions for the proliferation and chlorophyll production of C. vulgaris. These conditions significantly enhanced the biomass yields, suggesting that tailored hydrogel environments can substantially improve microalgae productivity.
Collapse
Affiliation(s)
- Guangtao Yang
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mingyang Li
- Centre for Ionics, Department of Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jinglin Zhang
- Graduate School of Life Sciences and Health, Faculté Des Sciences, Université Paris-Saclay, 91400, Orsay, France
| | - Jindao Zhou
- Faculty of Computer Science & Information Technology, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wai Yan Cheah
- Centre for Research in Development, Social and Environment (SEEDS) Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Rosazlin Abdullah
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Liang P, Wang H, Hu X, Elshobary M, Cui Y, Zou B, Zhu F, Schagerl M, El-Sheekh M, Huo S. Impact of the NH4+/NO3− ratio on growth of oil-rich filamentous microalgae Tribonema minus in simulated nitrogen-rich wastewater. JOURNAL OF WATER PROCESS ENGINEERING 2024; 68:106378. [DOI: 10.1016/j.jwpe.2024.106378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
|
3
|
Guo X, Ren J, Zhou X, Zhang M, Lei C, Chai R, Zhang L, Lu D. Strategies to improve the efficiency and quality of mutant breeding using heavy-ion beam irradiation. Crit Rev Biotechnol 2024; 44:735-752. [PMID: 37455421 DOI: 10.1080/07388551.2023.2226339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 04/15/2023] [Indexed: 07/18/2023]
Abstract
Heavy-ion beam irradiation (HIBI) is useful for generating new germplasm in plants and microorganisms due to its ability to induce high mutagenesis rate, broad mutagenesis spectrum, and excellent stability of mutants. However, due to the random mutagenesis and associated mutant breeding modalities, it is imperative to improve HIBI-based mutant breeding efficiency and quality. This review discusses and summarizes the findings of existing theoretical and technical studies and presents a set of tandem strategies to enable efficient and high-quality HIBI-based mutant breeding practices. These strategies: adjust the mutation-inducing techniques, regulate cellular response states, formulate high-throughput screening schemes, and apply the generated superior genetic elements to genetic engineering approaches, thereby, improving the implications and expanding the scope of HIBI-based mutant breeding. These strategies aim to improve the mutagenesis rate, screening efficiency, and utilization of positive mutations. Here, we propose a model based on the integration of these strategies that would leverage the advantages of HIBI while compensating for its present shortcomings. Owing to the unique advantages of HIBI in creating high-quality genetic resources, we believe this review will contribute toward improving HIBI-based breeding.
Collapse
Affiliation(s)
- Xiaopeng Guo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Junle Ren
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cairong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ran Chai
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Lingxi Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Satoh K, Hoshino W, Hase Y, Kitamura S, Hayashi H, Furuta M, Oono Y. Lethal and mutagenic effects of different LET radiations on Bacillus subtilis spores. Mutat Res 2023; 827:111835. [PMID: 37562181 DOI: 10.1016/j.mrfmmm.2023.111835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
New, useful microorganism resources have been generated by ionizing radiation breeding technology. However, the mutagenic effects of ionizing radiation on microorganisms have not been systematically clarified. For a deeper understanding and characterization of ionizing radiation-induced mutations in microorganisms, we investigated the lethal effects of seven different linear energy transfer (LET) radiations based on the survival fraction (SF) and whole-genome sequencing analysis of the mutagenic effects of a dose resulting in an SF of around 1% in Bacillus subtilis spores. Consequently, the lower LET radiations (gamma [surface LET: 0.2 keV/µm] and 4He2+ [24 keV/µm]) showed low lethality and high mutation frequency (MF), resulting in the major induction of single-base substitutions. Whereas higher LET radiations (12C5+ [156 keV/µm] and 12C6+ [179 keV/µm]) showed high lethality and low MF, resulting in the preferential induction of deletion mutations. In addition, 12C6+ (111) ion beams likely possess characteristics of both low- and high-LET radiations simultaneously. A decrease in the relative biological effectiveness and an evaluation of the inactivation cross section indicated that 20Ne8+ (468 keV/µm) and 40Ar13+ (2214 keV/µm) ion beams had overkill effects. In conclusion, in the mutation breeding of microorganisms, it should be possible to regulate the proportions, types, and frequencies of induced mutations by selecting an ionizing radiation of an appropriate LET in accordance with the intended purpose.
Collapse
Affiliation(s)
- Katsuya Satoh
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan.
| | - Wataru Hoshino
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan; Faculty of Engineering, Maebashi Institute of Technology, 460-1 Kamisadori, Maebashi, Gunma 371-0816, Japan
| | - Yoshihiro Hase
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Satoshi Kitamura
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Hidenori Hayashi
- Faculty of Engineering, Maebashi Institute of Technology, 460-1 Kamisadori, Maebashi, Gunma 371-0816, Japan
| | - Masakazu Furuta
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yutaka Oono
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| |
Collapse
|
5
|
Restiawaty E, Marwani E, Steven S, Mega Rahayu G, Hanif F, Prakoso T. Cultivation of Chlorella vulgaris in mediums with varying nitrogen sources and concentrations to induce the lipid yield. Chem Ind 2023. [DOI: 10.1080/00194506.2022.2164525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Elvi Restiawaty
- Department of Bioenergy Engineering and Chemurgy, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia
- Biosciences and Biotechnology Research Center, Institut Teknologi Bandung, Bandung, Indonesia
| | - Erly Marwani
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Soen Steven
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Gabriela Mega Rahayu
- Department of Bioenergy Engineering and Chemurgy, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Fadhilah Hanif
- Department of Bioenergy Engineering and Chemurgy, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Tirto Prakoso
- Department of Bioenergy Engineering and Chemurgy, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|
6
|
Oyama T, Kato Y, Hidese R, Matsuda M, Matsutani M, Watanabe S, Kondo A, Hasunuma T. Development of a stable semi-continuous lipid production system of an oleaginous Chlamydomonas sp. mutant using multi-omics profiling. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:95. [PMID: 36114515 PMCID: PMC9482161 DOI: 10.1186/s13068-022-02196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
Abstract
Background Microalgal lipid production has attracted global attention in next-generation biofuel research. Nitrogen starvation, which drastically suppresses cell growth, is a common and strong trigger for lipid accumulation in microalgae. We previously developed a mutant Chlamydomonas sp. KAC1801, which can accumulate lipids irrespective of the presence or absence of nitrates. This study aimed to develop a feasible strategy for stable and continuous lipid production through semi-continuous culture of KAC1801. Results KAC1801 continuously accumulated > 20% lipid throughout the subculture (five generations) when inoculated with a dry cell weight of 0.8–0.9 g L−1 and cultured in a medium containing 18.7 mM nitrate, whereas the parent strain KOR1 accumulated only 9% lipid. Under these conditions, KAC1801 continuously produced biomass and consumed nitrates. Lipid productivity of 116.9 mg L−1 day−1 was achieved by semi-continuous cultivation of KAC1801, which was 2.3-fold higher than that of KOR1 (50.5 mg L−1 day−1). Metabolome and transcriptome analyses revealed a depression in photosynthesis and activation of nitrogen assimilation in KAC1801, which are the typical phenotypes of microalgae under nitrogen starvation. Conclusions By optimizing nitrate supply and cell density, a one-step cultivation system for Chlamydomonas sp. KAC1801 under nitrate-replete conditions was successfully developed. KAC1801 achieved a lipid productivity comparable to previously reported levels under nitrogen-limiting conditions. In the culture system of this study, metabolome and transcriptome analyses revealed a nitrogen starvation-like response in KAC1801. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02196-w.
Collapse
|