1
|
Cui Y, Feng D, Xie M, Zhang Y, Wang D. Phosphate-coupled high-carbon ferromanganese particles synergistically regulate co-composting of seaweed and corn starch residue: Improving nitrogen cycling and accelerating humification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125352. [PMID: 40233612 DOI: 10.1016/j.jenvman.2025.125352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/27/2025] [Accepted: 04/10/2025] [Indexed: 04/17/2025]
Abstract
A substantial amount of seaweed waste, rich in plant-stimulating properties, holds great potential for composting. However, without proper catalysts or additives, composting and humification are slow and inefficient, causing carbon and nitrogen losses. This study explores a novel approach to enhance composting efficacy by coupling phosphate with high-carbon ferromanganese particles (HCFMP). The results indicate that the phosphate-HCFMP coupling promotes humus precursor transformation, as evidenced by dynamic changes in reducing sugars, amino acids, and polyphenols. Additionally, ultraviolet characteristic parameters and Parallel Factor (PARAFAC) analysis show that the coupled treatment improves both the rate and degree of humification. By the end of composting, this treatment exhibited the highest HA/FA (4.38), with the HA/FA on day 21 surpassing other treatments on day 35. While the phosphate-only group achieved a relatively high degree of humification, the process was slower and accompanied by substantial NH3 volatilization. The HCFMP-only group reduced NH3 emissions, but the oxidative performance of HCFMP was enhanced under lower pH conditions, reducing organic matter participation in humus formation. Compared to phosphate alone, the coupled treatment reduced NH3 emissions by 48.6% and increased nitrate content by 12%. Further analysis suggests that the enhancement mechanisms may include: (1) phosphate stimulating humus precursor production; (2) HCFMP mainly acting as a catalyst under higher pH to promote precursor polymerization; and (3) HCFMP's acidic sites adsorbing NH3/NH4+ and facilitating nitrification. In conclusion, coupling HCFMP with phosphate enhances composting efficacy, and the resulting products, with plant-stimulating properties, offer a feasible solution for sustainable green agriculture development.
Collapse
Affiliation(s)
- Yinjie Cui
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China.
| | - Dawei Feng
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Min Xie
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Yuxue Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Derui Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
2
|
Bogolitsyn K, Parshina A, Novoselov N, Muravyev A, Abramova E, Khviuzov S, Shestakov S, Kozhevnikov A. Physicochemical aspects of hydrogel preparation from algal cellulose. Int J Biol Macromol 2025; 310:143499. [PMID: 40286955 DOI: 10.1016/j.ijbiomac.2025.143499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/27/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Brown algae represent a valuable and promising source of cellulosic materials due to their high productivity and widespread, low cultivation cost and ease of processing, attributable to the absence of lignin. The aforementioned advantages are accompanied by the unique properties of algal cellulose (low degree of polymerization and an Iα-type crystal cell structure) due to the peculiarities of biosynthesis. These properties render algae superior to higher plants in terms of producing pure, mesoporous cellulosic materials, e.g. gels. The aim of this study is to first time evaluate the hydration capacity of algal cellulose and nanocellulose during hydrogel formation. Employing FTIR spectroscopy, calorimetry, and nuclear magnetic resonance relaxometry, we explored the interaction of algal cellulose and nanocellulose with water. Nanocellulose has a higher content of free water owing to its developed mesoporous structure. The interaction between cellulose and water is exothermic, liberating heat at 7.2-29.2 J/g d.w. The high moisture retention capacity (37 g/g), coupled with the small size of nanocrystals, facilitates the formation of a stable homogeneous algal nanocellulose hydrogel, which remains stable over extended storage periods. This resultant hydrogel has promising applications in biomedical material production, including wound dressings, anti-adhesive films, and abdominal surgery gels.
Collapse
Affiliation(s)
- Konstantin Bogolitsyn
- Northern (Arctic) Federal University named after M.V. Lomonosov, Arkhangelsk, Russian Federation; N.P. Laverov Federal Center for Integrated Arctic Research Ural Branch of Russian Academy of Sciences, Arkhangelsk, Russian Federation
| | - Anastasia Parshina
- Northern (Arctic) Federal University named after M.V. Lomonosov, Arkhangelsk, Russian Federation; Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute» - Institute of Macromolecular Compounds, Saint-Petersburg, Russian Federation.
| | - Nikolai Novoselov
- Saint Petersburg State University of Industrial Technologies and Design, Saint-Petersburg, Russian Federation
| | - Anton Muravyev
- Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute» - Institute of Macromolecular Compounds, Saint-Petersburg, Russian Federation; Saint Petersburg State University of Industrial Technologies and Design, Saint-Petersburg, Russian Federation
| | - Elena Abramova
- Saint Petersburg State University of Industrial Technologies and Design, Saint-Petersburg, Russian Federation
| | - Sergey Khviuzov
- N.P. Laverov Federal Center for Integrated Arctic Research Ural Branch of Russian Academy of Sciences, Arkhangelsk, Russian Federation
| | - Semyon Shestakov
- Northern (Arctic) Federal University named after M.V. Lomonosov, Arkhangelsk, Russian Federation
| | - Alexander Kozhevnikov
- Northern (Arctic) Federal University named after M.V. Lomonosov, Arkhangelsk, Russian Federation
| |
Collapse
|
3
|
Mohapatra A, Trivedi S, Tejpal CS, Aware MJ, Vaswani S, Prajapati VJ, Kolte AP, Malik PK, Sahoo A, Ravishankar CN, Bhatta R. Effect of Two Selected Levels of Padina gymnospora Biowaste and Enteric Methane Emission, Nutrient Digestibility, and Rumen Metagenome in Growing Sheep. Microorganisms 2025; 13:780. [PMID: 40284617 PMCID: PMC12029469 DOI: 10.3390/microorganisms13040780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/19/2025] [Accepted: 03/22/2025] [Indexed: 04/29/2025] Open
Abstract
A study was conducted on growing sheep to investigate the effect of two selected levels of biowaste of Padina gymnospora on feed intake, digestibility, daily enteric methane (CH4) emission, growth performance, and rumen metagenome. We randomly divided the 18 growing male sheep into three groups of six animals each. The animals were fed on a basal diet comprising finger millet straw (Eleusine coracana) and a concentrate mixture in a 35:65 ratio. The sheep in the control group (C) were offered a concentrate mixture without waste, whereas the wheat bran in the concentrate mixture in test group I (A2) and test group II (A5) was replaced (w/w) with the biowaste of Padina gymnospora at a level of 3.07 and 7.69%, respectively. The biowaste of Padina gymnospora at the above levels in concentrate constituted 2 and 5% of the diet. A significant decrease of 28.4% in daily enteric CH4 emission (g/d) was reported in the A5 group, whereas the difference in daily enteric CH4 emission between the C and A2 & A2 and A5 groups did not prove significant. The inclusion of Padina gymnospora biowaste did not affect the nutrient intake and digestibility among the groups. The inclusion of Padina gymnospora biowaste in the A5 group resulted in a significant reduction (p = 0.0012) in daily CH4 emissions compared with group C; however, no significant differences were observed in daily CH4 emissions between groups C-A2 (p = 0.0793) and A2-A5 (p = 0.3269). Likewise, the adjustment of data to CH4 emissions per 100 g of organic matter intake indicated a substantial decrease in the A5 group relative to C. The energy loss in CH4 as a percentage of GE relative to group C decreased significantly (-23.4%) in the A5 group; however, this reduction was not associated with an increase in productivity, as almost similar average daily gain (p = 0.827) was observed in the groups. The replacement of wheat bran with the biowaste of Padina gymnospora significantly decreased the numbers of total protozoa and holotrichs in the A5 group. Irrespective of the group, the Bacteroidota was the single largest phylum in the rumen metagenome, representing >60% of the microbiota. However, the abundance of Bacteroidota was similar among the groups. The methanogenic phyla Euryarchaeota was the 5th most abundant; however, it constituted only 3.14% of the metagenome. The abundance of Desulfovibrio was significantly higher in the A5 group as compared with the control. In conclusion, the significant increase in the abundance of sulfate-reducing bacteria and reduction in protozoal numbers led to a significant reduction in CH4 emissions with the incorporation of biowaste of Padina gymnospora at a 5% level of the diet.
Collapse
Affiliation(s)
- Archit Mohapatra
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India; (A.M.); (S.T.); (V.J.P.); (A.P.K.); (A.S.)
- School of Sciences, JAIN (Deemed-to-Be-University), Bangalore 560027, India
| | - Shraddha Trivedi
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India; (A.M.); (S.T.); (V.J.P.); (A.P.K.); (A.S.)
| | | | | | - Shalini Vaswani
- Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, Mathura 281001, India;
| | - Vedant Jayeshkumar Prajapati
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India; (A.M.); (S.T.); (V.J.P.); (A.P.K.); (A.S.)
| | - Atul Purshottam Kolte
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India; (A.M.); (S.T.); (V.J.P.); (A.P.K.); (A.S.)
| | - Pradeep Kumar Malik
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India; (A.M.); (S.T.); (V.J.P.); (A.P.K.); (A.S.)
| | - Artabandhu Sahoo
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India; (A.M.); (S.T.); (V.J.P.); (A.P.K.); (A.S.)
| | | | | |
Collapse
|
4
|
McGurrin A, Suchintita Das R, Soro AB, Maguire J, Flórez Fernández N, Dominguez H, Torres MD, Tiwari BK, Garcia-Vaquero M. Antimicrobial Activities of Polysaccharide-Rich Extracts from the Irish Seaweed Alaria esculenta, Generated Using Green and Conventional Extraction Technologies, Against Foodborne Pathogens. Mar Drugs 2025; 23:46. [PMID: 39852548 PMCID: PMC11767211 DOI: 10.3390/md23010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/30/2025] Open
Abstract
A rise in antimicrobial resistance coupled with consumer preferences towards natural preservatives has resulted in increased research towards investigating antimicrobial compounds from natural sources such as macroalgae (seaweeds), which contain antioxidant, antimicrobial, and anticancer compounds. This study investigates the antimicrobial activity of compounds produced by the Irish seaweed Alaria esculenta against Escherichia coli and Listeria innocua, bacterial species which are relevant for food safety. Microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), ultrasound-microwave-assisted extraction (UMAE), and conventional extraction technologies (maceration) were applied to generate extracts from A. esculenta, followed by their preliminary chemical composition (total phenolic content, total protein content, total soluble sugars) and antimicrobial activity (with minimum inhibitory concentration determined by broth microdilution methods), examining also the molecular weight distribution (via high performance size exclusion chromatography) and oligosaccharide fraction composition (via high-performance liquid chromatography) of the polysaccharides, as they were the predominant compounds in these extracts, aiming to elucidate structure-function relationships. The chemical composition of the extracts demonstrated that they were high in total soluble sugars, with the highest total sugars being seen from the extract prepared with UAE, having 32.68 mg glucose equivalents/100 mg dried extract. Extracts had antimicrobial activity against E. coli and featured minimum inhibitory concentration (MIC) values of 6.25 mg/mL (in the case of the extract prepared with UAE) and 12.5 mg/mL (in the case of the extracts prepared with MAE, UMAE, and conventional maceration). No antimicrobial activity was seen by any extracts against L. innocua. An analysis of molar mass distribution of A. esculenta extracts showed high heterogeneity, with high-molecular-weight areas possibly indicating the presence of fucoidan. The FTIR spectra also indicated the presence of fucoidan as well as alginate, both of which are commonly found in brown seaweeds. These results indicate the potential of antimicrobials from seaweeds extracted using green technologies.
Collapse
Affiliation(s)
- Ailbhe McGurrin
- Section of Food and Nutrition, School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (A.M.); (R.S.D.)
- TEAGASC, Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland;
| | - Rahel Suchintita Das
- Section of Food and Nutrition, School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (A.M.); (R.S.D.)
- TEAGASC, Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland;
| | - Arturo B. Soro
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, University of Barcelona, 08921 Barcelona, Spain;
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), University of Barcelona, 08921 Barcelona, Spain
| | - Julie Maguire
- Bantry Marine Research Station Ltd., Gearhies, Bantry, P75 AX07 Co. Cork, Ireland;
| | - Noelia Flórez Fernández
- Grupo de Biomasa y Desarrollo Sostenible, Departamento de Ingeniería Química, Facultad de Ciencias, Universidade de Vigo, 32004 Ourense, Spain; (N.F.F.); (H.D.); (M.D.T.)
| | - Herminia Dominguez
- Grupo de Biomasa y Desarrollo Sostenible, Departamento de Ingeniería Química, Facultad de Ciencias, Universidade de Vigo, 32004 Ourense, Spain; (N.F.F.); (H.D.); (M.D.T.)
| | - Maria Dolores Torres
- Grupo de Biomasa y Desarrollo Sostenible, Departamento de Ingeniería Química, Facultad de Ciencias, Universidade de Vigo, 32004 Ourense, Spain; (N.F.F.); (H.D.); (M.D.T.)
| | | | - Marco Garcia-Vaquero
- Section of Food and Nutrition, School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (A.M.); (R.S.D.)
| |
Collapse
|
5
|
Cabrera-Villamizar L, Campano C, López-Rubio A, Fabra MJ, Prieto MA. Tailoring the structural and physicochemical properties of rice straw cellulose-based cryogels by cell-mediated polyhydroxyalkanoate deposition. Carbohydr Polym 2024; 346:122604. [PMID: 39245490 DOI: 10.1016/j.carbpol.2024.122604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
This study presents a novel biotechnological approach for creating water vapor-resistant cryogels with improved integrity. Rice straw cellulose was transformed into nanofibrils through TEMPO-mediated oxidation and high-pressure homogenization. The resulting cryogels remained firm even when immersed in aqueous media, whose pores were used by live cell to deposit polyhydroxyalkanoate (PHA) particles inside them. This novel method allowed the compatibilization of PHA within the cellulosic fibers. As a consequence, the water sorption capacity was decreased by up to 6 times having just 4 % of PHA compared to untreated cryogels, preserving the cryogel density and elasticity. Additionally, this technique can be adapted to various bacterial strains and PHA types, allowing for further optimization. It was demonstrated that the amount and type of PHA (medium chain length and small chain length-PHA) used affects the properties for the cryogels, especially the water vapor sorption behavior and the compressive strength. Compared to traditional coating methods, this cell-mediated approach not only allows to distribute PHA on the surface of the cryogel, but also ensures polymer penetration throughout the cryogel due to bacterial self-movement. This study opens doors for creating cryogels with tunable water vapor sorption and other additional functionalities through the use of specialized PHA variants.
Collapse
Affiliation(s)
- Laura Cabrera-Villamizar
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, Carrer del Catedràtic Agustín Escardino Benlloch, 7, 46980, Valencia, Spain.
| | - Cristina Campano
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast), CSIC, Madrid 28006, Spain; Polymer Biotechnology Group, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB), CSIC, C. Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - Amparo López-Rubio
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, Carrer del Catedràtic Agustín Escardino Benlloch, 7, 46980, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast), CSIC, Madrid 28006, Spain.
| | - María José Fabra
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, Carrer del Catedràtic Agustín Escardino Benlloch, 7, 46980, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast), CSIC, Madrid 28006, Spain.
| | - M Auxiliadora Prieto
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast), CSIC, Madrid 28006, Spain; Polymer Biotechnology Group, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB), CSIC, C. Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| |
Collapse
|
6
|
Templonuevo RM, Lee KH, Oh SM, Zhao Y, Chun J. Bioactive Compounds of Sea Mustard ( Undaria pinnatifida) Waste Affected by Drying Methods. Foods 2024; 13:3815. [PMID: 39682887 DOI: 10.3390/foods13233815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Sea mustard (Undaria pinnatifida) is a brown macroalga extensively cultivated and consumed in South Korea. However, the high volume of seaweed production in the country results in substantial waste generation. To mitigate this issue, the bioactive compounds of sea mustard waste parts (sporophyll, root, and stem) were assessed under different drying conditions (freeze, oven, and microwave drying) to evaluate their potential as functional ingredients. The sporophyll contained the highest levels of total chlorophyll (540.38 μg/g), fucoxanthin (165.87 μg/g), flavonoids (5.47 μg QE/g), phytomenadione (332.59 μg/100 g), and cobalamin (5.92 μg/100 g). In contrast, the root exhibited the highest antioxidant activities (DPPH: 1582.37 μg GAE/g; ABTS: 0.93 mg AAE/g), total polyphenol (2718.81 μg GAE/g) and phlorotannin (4298.22 μg PGE/g) contents. Freeze drying achieved the best retention rates for most bioactive compounds, except for fucoxanthin, which was highest in microwave-dried samples. These results demonstrate the potential of sea mustard waste as a valuable source of bioactive compounds, with the retention of these compounds being influenced by drying methods, depending on the specific part of the seaweed.
Collapse
Affiliation(s)
- Rea Mae Templonuevo
- Department of Food Science and Technology, Sunchon National University, Suncheon 57922, Jeonnam, Republic of Korea
- College of Fisheries, Central Luzon State University, Science City of Muñoz 3120, Nueva Ecija, Philippines
| | - Kang-Hee Lee
- Department of Food Science and Technology, Sunchon National University, Suncheon 57922, Jeonnam, Republic of Korea
| | - Seung-Min Oh
- Department of Food Science and Technology, Sunchon National University, Suncheon 57922, Jeonnam, Republic of Korea
| | - Yue Zhao
- Department of Food Science and Technology, Sunchon National University, Suncheon 57922, Jeonnam, Republic of Korea
| | - Jiyeon Chun
- Department of Food Science and Technology, Sunchon National University, Suncheon 57922, Jeonnam, Republic of Korea
- Bio-Healthcare Research and Analysis Center, Sunchon National University, Suncheon 57922, Jeonnam, Republic of Korea
- Glocal University Project Team, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea
| |
Collapse
|
7
|
Anjana K, Arunkumar K. Brown algae biomass for fucoxanthin, fucoidan and alginate; update review on structure, biosynthesis, biological activities and extraction valorisation. Int J Biol Macromol 2024; 280:135632. [PMID: 39299435 DOI: 10.1016/j.ijbiomac.2024.135632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/17/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Natural compounds promoting human health are the main focus of research nowadays. Fucoxanthin, fucoidan and alginate are such bioactive compounds that are extracted from marine brown algae. Extracting these 3 compounds through successive extraction enhances the commercial value of the brown algae biomass. There are studies on successive extraction of fucoidan and alginate but not with fucoxanthin which displays various biological bioactivities. Alginate, a polysaccharide presents 45 % in the cell wall of brown algae. Fucoidan, a sulphated polysaccharide proved showing various bioactivities. These bioproducts yield are vary depending on the species. Dictyota species recorded high fucoxanthin content of 7 %. Ascophyllum nodosum was found with high fucoidan of 16.08 % by direct extraction. Maximum alginate of 45.79 % was recorded from the brown alga Sargassum cymosum and by successive extraction 44 % was recorded from Ecklonia radiata. Fucoxanthin exits in two isomers as trans and cis forms. Based on linkage, fucoidan structure is found in 3 forms as 1,3- or 1,4- or alternating 1,3- and 1,4-linked fucose in the polysaccharide residues. Fucoidan composition varys depending on the degree of sulphation, composition of monosaccharides and location of collection. In alginate, its property relies on the mannuronic acid and guluronic acid composition. Biosynthesis of these 3 compounds is not much explored. Keeping this view which signify sequential extraction towards biomass valorisation, fucoxanthin, fucoidan and alginate extracted from the brown algae species focusing yield, extraction, characterisation, biosynthesis and biological activities were compiled and critically analysed and discussed in this review.
Collapse
Affiliation(s)
- K Anjana
- Phycoscience Lab, Department of Plant Science, Central University of Kerala, Periye 671 320, Kasaragod, Kerala, India
| | - K Arunkumar
- Phycoscience Lab, Department of Plant Science, Central University of Kerala, Periye 671 320, Kasaragod, Kerala, India.
| |
Collapse
|
8
|
Liu C, Gao J, Jiang H, Sun J, Gao X, Mao X. Value-added utilization technologies for seaweed processing waste in a circular economy: Developing a sustainable modern seaweed industry. Compr Rev Food Sci Food Saf 2024; 23:e70027. [PMID: 39379297 DOI: 10.1111/1541-4337.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024]
Abstract
The global seaweed industry annually consumes approximately 600,000 tons of dried algal biomass to produce algal hydrocolloids, yet only 15-30% of this biomass is utilized, with the remaining 70-85% discarded or released as scum or wastewater during the hydrocolloid extraction process. This residual biomass is often treated as waste and not considered for further commercial use, which contradicts the principles of sustainable development. In reality, the residual algal biomass could be employed to extract additional biochemical components, such as pigments, proteins, and cellulose, and these ingredients have important application prospects in the food sector. According to the biorefinery concept, recycling various products alongside the principal product enhances overall biomass utilization. Transitioning from traditional single-product processes to multi-product biorefineries, however, raises operating costs, presenting a significant challenge. Alternatively, developing value-added utilization technologies that target seaweed waste without altering existing processes is gaining traction among industry practitioners. Current advancements include methods such as separation and extraction of residual biomass, anaerobic digestion, thermochemical conversion, enzymatic treatment, functionalized modification of algal scum, and efficient utilization through metabolic engineering. These technologies hold promise for converting seaweed waste into alternative proteins, dietary supplements, and bioplastics for food packaging. Combining multiple technologies may offer the most effective strategy for future seaweed waste treatment. Nonetheless, most research on value-added waste utilization remains at the laboratory scale, necessitating further investigation at pilot and commercial scales.
Collapse
Affiliation(s)
- Chunhui Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
| | - Jiale Gao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
| | - Hong Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, China
| | - Xin Gao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, PR China
| |
Collapse
|
9
|
Feng D, Cui Y, Zeng Y, Wang D, Zhang H, Zhang Y, Song W. Enhancing compost quality through biochar and oyster shell amendments in the co-composting of seaweed and sugar residue. CHEMOSPHERE 2024; 366:143500. [PMID: 39384133 DOI: 10.1016/j.chemosphere.2024.143500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/15/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Aquaculture and agricultural production generate substantial amounts of waste, including seaweed (which has plant-stimulating properties), oyster shells, and sugar residues. Through composting and appropriate management, these wastes have the potential to be converted into beneficial soil amendments. However, there is a lack of research exploring the potential of composting in promoting the conversion of seaweed into more stable humified forms, as well as in assessing whether composted seaweed retains its beneficial effects on plant growth. Additionally, studies on using oyster shells as additives to reduce waste pressure and comparing their effectiveness with biochar are relatively scarce. This study examines the impact of incorporating 5% corn stover biochar (T1), 10% biochar (T2), and 10% oyster shell powder (T3) on key physicochemical properties, product quality, and microbial community dynamics during the co-composting of seaweed and sugar residues. Results indicate that organic matter (OM) loss in T1 and T2 increased by 31.2% and 26.4%, respectively, compared to the control (CK). Moreover, Excitation-emission matrix (EEM) fluorescence spectroscopy revealed that humic substances in T1 and T2 surged by 434% and 423%, respectively, far exceeding the 289% increase in CK. The 10% biochar treatment also improved alginate degradation and seed germination index, due to the presence of biostimulants in seaweed and an increased abundance of Cobetia. Microbial analysis post-composting showed that T2 and T3 significantly enhanced the diversity and richness of bacterial communities. Notably, although oyster shell powder did not improve the humification degree of compost as significantly as biochar, it achieved effective weight reduction of waste (OM loss of 43.57%, far exceeding CK's 35.34%) without hindering the composting process. All four compost treatments retained the plant-stimulating effects of seaweed and facilitated alginate degradation. These results underscore the potential of biochar to enhance composting efficiency and utilize composting to process large quantities of oyster shell waste.
Collapse
Affiliation(s)
- Dawei Feng
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Yinjie Cui
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Yang Zeng
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Derui Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Hongxia Zhang
- College of Life Sciences, Yantai University, Yantai, 264005, China.
| | - Yuxue Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Wanlin Song
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
10
|
Pal N, Agarwal M. Development and characterization of eco-friendly guar gum-agar-beeswax-based active packaging film for cheese preservation. Int J Biol Macromol 2024; 277:134333. [PMID: 39094873 DOI: 10.1016/j.ijbiomac.2024.134333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/23/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
In this work, an attempt has been made to develop a novel natural polysaccharide-based composite packaging biofilm prepared through a solution casting method. The biofilm is prepared from guar gum (GG) and agar-agar (AA) beeswax (BE). The incorporation of 20 % wt./wt.glycerol BE in the blended polymer GG/AA (50:50) (GG/AA/BE20 (50:50)) film shows a reduction in water solubility (66.67 %), water vapour permeability (69.28 %) and oxygen permeability (72.23 %). Moreover, GG/AA/BE20 (50:50) shows an increment in the tensile strength and elongation of a break by 48.32 % and 26.05 %, respectively, compared to pristine GG film. The scanning electron microscopy (SEM) image reveals defects-free smooth surfaces of the film. The Fourier transform-infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) demonstrated the strong hydrogen bonding between GG, AA, and BE. The biodegradable film shows 99 % degradation within 28 days when placed in the soil. The developed film plays a crucial role in extending the shelf life of cheese, effectively maintaining its moisture content, texture, colour, and pH over a span of up to two months from the point of packaging. These results suggest that GG/AA/BE20 (50:50) composite film is a promising packaging film for cheese preservation.
Collapse
Affiliation(s)
- Neha Pal
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Madhu Agarwal
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur 302017, India.
| |
Collapse
|
11
|
El-Gendy NS, Hosny M, Ismail AR, Radwan AA, Ali BA, Ali HR, El-Salamony RA, Abdelsalam KM, Mubarak M. A Study on the Potential of Valorizing Sargassum latifolium into Biofuels and Sustainable Value-Added Products. Int J Biomater 2024; 2024:5184399. [PMID: 39410935 PMCID: PMC11479779 DOI: 10.1155/2024/5184399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 10/19/2024] Open
Abstract
To increase the limited commercial utility and lessen the negative environmental effects of the massive growth of brown macroalgae, this work illustrates the feasibility of valorizing the invasively proliferated Sargassum latifolium into different value-added products. The proximate analysis recommends its applicability as a solid biofuel with a sufficient calorific value (14.82 ± 0.5 MJ/kg). It contains 6.00 ± 0.07% N + P2O5 + K2O and 29.61 ± 0.05% organic C. Its nutritional analysis proved notable carbohydrate, ash, protein, and fiber contents with a rational amount of lipid and a considerable amount of beneficial macronutrients and micronutrients, with a low concentration of undesirable heavy metals. That recommends its application in the organic fertilizer, food, medicine, and animal fodder industries. A proposed eco-friendly sequential integrated process valorized its biomass into 77.6 ± 0.5 mg/g chlorophyll, 180 ± 0.5 mg/g carotenoids, 5.86 ± 0.5 mg/g fucoxanthin, 0.93 ± 0.5 mg/g β-carotene, 21.97 ± 0.5% (w/w) alginate, and 16.40 ± 0.5% (w/w) cellulose, with different industrial and bioprocess applications. Furthermore, Aspergillus galapagensis SBWF1, Mucor hiemalis SBWF2, and Penicillium oxalicum SBWF3 (GenBank accession numbers OR636487, OR636488, and OR636489) have been isolated from its fresh biomass. Those showed wide versatility for hydrolyzing and saccharifying its polysaccharides. A Gram-negative Stutzerimonas stutzeri SBB1(GenBank accession number OR764547) has also been isolated with good capabilities to ferment the produced pentoses, hexoses, and mannitol from the fungal saccharification, yielding 0.25 ± 0.014, 0.26 ± 0.018, and 0.37 ± 0.020 g ethanol/g algal biomass, respectively. Furthermore, in a pioneering step for valuing the suggested sequential biomass hydrolysis and bioethanol fermentation processes, the spent waste S. latifolium disposed of from the saccharification process has been valorized into C-dots with potent biocidal activity against pathogenic microorganisms.
Collapse
Affiliation(s)
- Nour Sh. El-Gendy
- Egyptian Petroleum Research Institute (EPRI), Nasr City, P.O. 11727, Egypt
- Center of Excellence, October University for Modern Sciences and Arts (MSA), 6th of October City, P.O. 12566, Egypt
| | - Mohamed Hosny
- Egyptian Petroleum Research Institute (EPRI), Nasr City, P.O. 11727, Egypt
| | - Abdallah R. Ismail
- Egyptian Petroleum Research Institute (EPRI), Nasr City, P.O. 11727, Egypt
| | - Ahmad A. Radwan
- National Research Centre (NRC), El-Dokki, Cairo, P.O. 12622, Egypt
| | - Basma A. Ali
- General Organization for Export and Import Control (GOEIC), Cairo, Egypt
| | - Hager R. Ali
- Egyptian Petroleum Research Institute (EPRI), Nasr City, P.O. 11727, Egypt
| | | | - Khaled M. Abdelsalam
- Marine Environment Division, National Institute of Oceanography and Fisheries NIOF, Alexandria Branch, P.O. 21519, Egypt
| | - Manal Mubarak
- Soil and Water Department, Faculty of Agriculture, Ain Shams University, Cairo, P.O. 11241, Egypt
| |
Collapse
|
12
|
Kajla P, Chaudhary V, Dewan A, Bangar SP, Ramniwas S, Rustagi S, Pandiselvam R. Seaweed-based biopolymers for food packaging: A sustainable approach for a cleaner tomorrow. Int J Biol Macromol 2024; 274:133166. [PMID: 38908645 DOI: 10.1016/j.ijbiomac.2024.133166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
With the increasing environmental and health consequences of uncontrolled plastic use, the scientific community is progressively gravitating toward biodegradable and ecofriendly packaging alternatives. Seaweed polysaccharides have attracted attention recently because of their biodegradability, nontoxicity, antioxidant properties, and superior film-forming ability. However, it has some limitations for packaging applications, such as low tensile strength, water solubility, and only modest antimicrobial properties. The incorporation of biopolymers, nanoparticles, or organic active ingredients enhances these characteristics. This review encapsulates the contemporary research landscape pivoting around the role of seaweed polysaccharides in the development of bioplastics, active packaging solutions, edible films, and protective coatings. A meticulous collation of existing literature dissects the myriad food application avenues for these marine biopolymers, emphasizing their multifaceted physical, mechanical, thermal, and functional attributes, including antimicrobial and antioxidant. A key facet of this review spotlights environmental ramifications by focusing on their biodegradability, reinforcing their potential as a beacon of sustainable innovation. This article delves into the prevalent challenges that stymie large-scale adoption and commercialization of seaweed-centric packaging, offering a comprehensive perspective on this burgeoning domain.
Collapse
Affiliation(s)
- Priyanka Kajla
- Department of Food Technology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Vandana Chaudhary
- College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India.
| | - Aastha Dewan
- Department of Food Technology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Sneh Punia Bangar
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, 29634, USA
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Sarvesh Rustagi
- School of Applied and Life sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod 671 124, Kerala, India.
| |
Collapse
|
13
|
Mohapatra A, Trivedi S, Kolte AP, Tejpal CS, Elavarasan K, Vaswani S, Malik PK, Ravishankar CN, Bhatta R. Effect of Padina gymnospora biowaste inclusion on in vitro methane production, feed fermentation, and microbial diversity. Front Microbiol 2024; 15:1431131. [PMID: 39027100 PMCID: PMC11254855 DOI: 10.3389/fmicb.2024.1431131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
In vitro studies were undertaken aiming to study the methane (CH4) mitigation potential of biowaste (BW) of Padina gymnospora at the graded inclusion of 0% (C), 2% (A2), 5% (A5), and 10% (A10) of the diet composed of straw and concentrate in 40:60 ratio. The chemical composition analysis revealed that the BW contained higher crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), and ether extract (EE) than the PF (fresh seaweed, P. gymnospora). The concentration of cinnamic acid, sinapic acid, kaempferol, fisetin p-coumaric acid, ellagic acid, and luteolin in BW was 1.5-6-folds less than the PF. Inclusion of BW decreased (P < 0.0001) CH4 production by 34%, 38%, and 45% in A2, A5, and A10 treatments, respectively. A decrease (P < 0.0001) of 7.5%-8% in dry matter (DM) and organic matter (OM) digestibility was also recorded with the BW supplementation. The BW inclusion also decreased the numbers of total (P = 0.007), Entodinomorphs (P = 0.011), and Holotrichs (P = 0.004) protozoa. Metagenome data revealed the dominance of Bacteroidetes, Proteobacteria, Firmicutes, Actinobacteria, and Fibrobacter microbial phyla. At the phylum level, Euryarchaeota dominated the archaeal community, whereas Methanobrevibacter was most abundant at the genus level. It can be concluded that the inclusion of BW in straw and concentrate based diet by affecting rumen fermentation, protozoal numbers, and compositional shift in the archaeal community significantly decreased CH4 production. Utilization of biowaste of P. gymnospora as a CH4 mitigating agent will ensure its efficient utilization rather than dumping, which shall cause environmental pollution and health hazards.
Collapse
Affiliation(s)
- Archit Mohapatra
- Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology, Bengaluru, India
- School of Sciences, JAIN (Deemed-to-be-University), Bengaluru, India
| | - Shraddha Trivedi
- Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Atul P. Kolte
- Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Chaluvanahalli S. Tejpal
- Indian Council of Agricultural Research (ICAR)-Central Institute of Fisheries Technology, Kochi, India
| | - Krishnamoorthy Elavarasan
- Indian Council of Agricultural Research (ICAR)-Central Institute of Fisheries Technology, Kochi, India
| | - Shalini Vaswani
- Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, Mathura, India
| | - Pradeep Kumar Malik
- Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | | | | |
Collapse
|
14
|
Nath PC, Sharma R, Mahapatra U, Mohanta YK, Rustagi S, Sharma M, Mahajan S, Nayak PK, Sridhar K. Sustainable production of cellulosic biopolymers for enhanced smart food packaging: An up-to-date review. Int J Biol Macromol 2024; 273:133090. [PMID: 38878920 DOI: 10.1016/j.ijbiomac.2024.133090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Biodegradable and sustainable food packaging (FP) materials have gained immense global importance to reduce plastic pollution and environmental impact. Therefore, this review focused on the recent advances in biopolymers based on cellulose derivatives for FP applications. Cellulose, an abundant and renewable biopolymer, and its various derivatives, namely cellulose acetate, cellulose sulphate, nanocellulose, carboxymethyl cellulose, and methylcellulose, are explored as promising substitutes for conventional plastic in FP. These reviews focused on the production, modification processes, and properties of cellulose derivatives and highlighted their potential for their application in FP. Finally, we reviewed the effects of incorporating cellulose derivatives into film in various aspects of packaging properties, including barrier, mechanical, thermal, preservation aspects, antimicrobial, and antioxidant properties. Overall, the findings suggest that cellulose derivatives have the potential to replace conventional plastics in food packaging applications. This can contribute to reducing plastic pollution and lessening the environmental impact of food packaging materials. The review likely provides insights into the current state of research and development in this field and underscores the significance of sustainable food packaging solutions.
Collapse
Affiliation(s)
- Pinku Chandra Nath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India; Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, University of Science and Technology Meghalaya, Baridua 793101, India
| | - Ramesh Sharma
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Uttara Mahapatra
- Department of Chemical Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, University of Science and Technology Meghalaya, Baridua 793101, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun 248007, India
| | - Minaxi Sharma
- Research Center for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation (CBI), University of Nottingham Ningbo China, Ningbo 315000, China
| | - Shikha Mahajan
- Department of Food and Nutrition, Punjab Agricultural University, Ludhiana 141004, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
15
|
Savić Gajić IM, Savić IM, Ivanovska AM, Vunduk JD, Mihalj IS, Svirčev ZB. Improvement of Alginate Extraction from Brown Seaweed ( Laminaria digitata L.) and Valorization of Its Remaining Ethanolic Fraction. Mar Drugs 2024; 22:280. [PMID: 38921591 PMCID: PMC11204654 DOI: 10.3390/md22060280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
This study aimed to improve the conventional procedure of alginate isolation from the brown seaweed (Laminaria digitata L.) biomass and investigate the possibility of further valorization of the ethanolic fraction representing the byproduct after the degreasing and depigmentation of biomass. The acid treatment of biomass supported by ultrasound was modeled and optimized regarding the alginate yield using a response surface methodology based on the Box-Behnken design. A treatment time of 30 min, a liquid-to-solid ratio of 30 mL/g, and a treatment temperature of 47 °C were proposed as optimal conditions under which the alginate yield related to the mass of dry biomass was 30.9%. The use of ultrasonic radiation significantly reduced the time required for the acid treatment of biomass by about 4 to 24 times compared to other available conventional procedures. The isolated alginate had an M/G ratio of 1.08, which indicates a greater presence of M-blocks in its structure and the possibility of forming a soft and elastic hydrogel with its use. The chemical composition of the ethanolic fraction including total antioxidant content (293 mg gallic acid equivalent/g dry weight), total flavonoid content (14.9 mg rutin equivalent/g dry weight), contents of macroelements (the highest content of sodium, 106.59 mg/g dry weight), and microelement content (the highest content of boron, 198.84 mg/g dry weight) was determined, and the identification of bioactive compounds was carried out. The results of ultra high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis confirmed the presence of 48 compounds, of which 41 compounds were identified as sugar alcohol, phenolic compounds, and lipids. According to the 2,2-diphenyl-1-picrylhydrazyl assay, the radical scavenging activity of the ethanolic fraction (the half-maximal inhibitory concentration of 42.84 ± 0.81 μg/mL) indicated its strong activity, which was almost the same as in the case of the positive control, synthetic antioxidant butylhydroxytoluene (the half-maximal inhibitory concentration of 36.61 ± 0.79 μg/mL). Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis, and Bacillus cereus) were more sensitive to the ethanolic fraction compared to Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Shigella sonnei). The obtained results indicated the possibility of the further use of the ethanolic fraction as a fertilizer for plant growth in different species and antifouling agents, applicable in aquaculture.
Collapse
Affiliation(s)
- Ivana M. Savić Gajić
- Faculty of Technology in Leskovac, University of Nis, Bulevar oslobodjenja 124, 16000 Leskovac, Serbia;
| | - Ivan M. Savić
- Faculty of Technology in Leskovac, University of Nis, Bulevar oslobodjenja 124, 16000 Leskovac, Serbia;
| | - Aleksandra M. Ivanovska
- Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Jovana D. Vunduk
- Institute of General and Physical Chemistry, Studentski Trg 12/V, 11158 Belgrade, Serbia;
| | - Ivana S. Mihalj
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000 Novi Sad, Serbia; (I.S.M.); (Z.B.S.)
| | - Zorica B. Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000 Novi Sad, Serbia; (I.S.M.); (Z.B.S.)
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| |
Collapse
|
16
|
Cebrián-Lloret V, Cartan-Moya S, Martínez-Sanz M, Gómez-Cortés P, Calvo MV, López-Rubio A, Martínez-Abad A. Characterization of the invasive macroalgae Rugulopteryx Okamurae for potential biomass valorisation. Food Chem 2024; 440:138241. [PMID: 38141439 DOI: 10.1016/j.foodchem.2023.138241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/15/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
This study aimed to examine the composition and properties of the invasive macroalgae R. okamurae and explore potential applications. The results showed that the seaweed biomass is mainly composed of structural carbohydrates, with alginate being the main constituent, accounting for 32 % of its total composition and with a mannuronic and guluronic acid ratio (M/G) ratio of 0.93. It also has a relatively high concentration of fucose, related to the presence of fucoidans that have important biological functions. Among the mineral contents, a high magnesium and calcium (7107 and 5504 mg/kg) concentration, and the presence of heavy metals above legislated thresholds, were notable. R. okamurae also contained a high lipid content of 17 %, mainly composed of saturated fatty acids, but with a significant fraction of n3 polyunsaturated fatty acids (18 %) resulting in a low n6/n3 ratio (0.31), that has health benefits. The protein content of R. okamurae was 12 %, with high-quality proteins, as essential amino acids (mainly leucine, phenylalanine and valine) constitute 32 % of the total amino acids. It also showed a high polyphenol content and outstanding antioxidant properties (106.88 mg TE/g). Based on these findings, R. okamurae has significant potential as a sustainable source of bioactive compounds that can add value to different sectors, including food, feed, pharmaceuticals and cosmetics.
Collapse
Affiliation(s)
- Vera Cebrián-Lloret
- Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Sara Cartan-Moya
- Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Marta Martínez-Sanz
- Department of Bioactivity and Food Analysis, Institute of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Pilar Gómez-Cortés
- Department of Bioactivity and Food Analysis, Institute of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - María Visitación Calvo
- Department of Bioactivity and Food Analysis, Institute of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Amparo López-Rubio
- Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Antonio Martínez-Abad
- Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino 7, Paterna 46980, Valencia, Spain.
| |
Collapse
|
17
|
Gomes-Dias JS, Teixeira-Guedes CI, Teixeira JA, Rocha CMR. Red seaweed biorefinery: The influence of sequential extractions on the functional properties of extracted agars and porphyrans. Int J Biol Macromol 2024; 257:128479. [PMID: 38040161 DOI: 10.1016/j.ijbiomac.2023.128479] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Red seaweeds are exploited for their hydrocolloids, but other fractions are usually overlooked. In a novel approach, this study aimed to evaluate cold-water (CWE), ethanolic (EE), and alkaline (SE) extractions, alone and in sequence, to simultaneously: i) decrease the hydrocolloid extraction waste (valorizing bioactive side-streams and/or increasing extraction yield); and ii) increase the hydrocolloids' texturizing properties. It is the first time these extractions' synergetic and/or antagonistic effects will be accessed. For Porphyra dioica, a combination of CWE and EE was optimal: a positive influence on the melting temperature (increasing 5 °C to 74 °C) and sulphate content (a 3-fold reduction to 5 %) was observed, compared to a direct porphyran extraction. The same was observed for Gracilaria vermiculophyla, recovering two additional bioactive fractions without impacting the hydrocolloid's extraction (agar with 220 g/cm2 gelling strength and 14 % yield was obtained). The sequential use of CWE, EE, and SE was the most beneficial in Gelidium corneum processing: it enhanced agar's texturizing capacity (reaching 1150 g/cm2, a 1.5-fold increase when compared to a direct extraction), without affecting its 22 % yield or over 88 % purity. Ultimately, these findings clarified the effects of cascading biorefinery approaches from red seaweeds and their pertinence.
Collapse
Affiliation(s)
- Joana S Gomes-Dias
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | | | - José A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Portugal
| | - Cristina M R Rocha
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Portugal.
| |
Collapse
|
18
|
Sonchaeng U, Wongphan P, Pan-utai W, Paopun Y, Kansandee W, Satmalee P, Tamtin M, Kosawatpat P, Harnkarnsujarit N. Preparation and Characterization of Novel Green Seaweed Films from Ulva rigida. Polymers (Basel) 2023; 15:3342. [PMID: 37631399 PMCID: PMC10460084 DOI: 10.3390/polym15163342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Ulva rigida green seaweed is an abundant biomass consisting of polysaccharides and protein mixtures and a potential bioresource for bioplastic food packaging. This research prepared and characterized novel biodegradable films from Ulva rigida extracts. The water-soluble fraction of Ulva rigida was extracted and prepared into bioplastic films. 1H nuclear magnetic resonance indicated the presence of rhamnose, glucuronic and sulfate polysaccharides, while major amino acid components determined via high-performance liquid chromatography (HPLC) were aspartic acid, glutamic acid, alanine and glycine. Seaweed extracts were formulated with glycerol and triethyl citrate (20% and 30%) and prepared into films. Ulva rigida films showed non-homogeneous microstructures, as determined via scanning electron microscopy, due to immiscible crystalline component mixtures. X-ray diffraction also indicated modified crystalline morphology due to different plasticizers, while infrared spectra suggested interaction between plasticizers and Ulva rigida polymers via hydrogen bonding. The addition of glycerol decreased the glass transition temperature of the films from -36 °C for control films to -62 °C for films with 30% glycerol, indicating better plasticization. Water vapor and oxygen permeability were retained at up to 20% plasticizer content, and further addition of plasticizers increased the water permeability up to 6.5 g·mm/m2·day·KPa, while oxygen permeability decreased below 20 mL·mm/m2·day·atm when blending plasticizers at 30%. Adding glycerol efficiently improved tensile stress and strain by up to 4- and 3-fold, respectively. Glycerol-plasticized Ulva rigida extract films were produced as novel bio-based materials that supported sustainable food packaging.
Collapse
Affiliation(s)
- Uruchaya Sonchaeng
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Wanida Pan-utai
- Department of Applied Microbiology, Institute of Food Research and Product Development, Kasetsart University, Bangkok 10900, Thailand
| | - Yupadee Paopun
- Scientific Equipment and Research Division, Kasetsart University Research and Development Institute, Kasetsart University, Bangkok 10900, Thailand (W.K.)
| | - Wiratchanee Kansandee
- Scientific Equipment and Research Division, Kasetsart University Research and Development Institute, Kasetsart University, Bangkok 10900, Thailand (W.K.)
| | - Prajongwate Satmalee
- Department of Food Chemistry and Physics, Institute of Food Research and Product Development, Kasetsart University, Bangkok 10900, Thailand;
| | - Montakan Tamtin
- Kung Krabaen Bay Royal Development Study Center, Department of Fisheries, Ministry of Agriculture and Cooperatives, Chantha Buri 22120, Thailand
| | - Prapat Kosawatpat
- Phetchaburi Coastal Aquaculture Research and Development Center, Coastal Aquaculture Research and Development Division, Department of Fisheries, Ministry of Agriculture and Cooperatives, Phetchaburi 76100, Thailand;
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
19
|
Nesic A, De Bonis MV, Dal Poggetto G, Ruocco G, Santagata G. Microwave Assisted Extraction of Raw Alginate as a Sustainable and Cost-Effective Method to Treat Beach-Accumulated Sargassum Algae. Polymers (Basel) 2023; 15:2979. [PMID: 37514369 PMCID: PMC10383502 DOI: 10.3390/polym15142979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
This paper highlights the potential of Sargassum algae, recovered from raw beach seaweed wastes, as a valid source of valuable sodium alginate. Alginate is a biodegradable, highly attractive polysaccharide widely used in food, pharmaceuticals, and biomedicine applications. The aim of this work is to employ a new eco-sustainable and cost-effective extractive method to obtain alginate as a raw material from pollutant organic Sargassum seaweeds. Algae were exposed to microwave pre-treatment under static and dynamic conditions, and three different extractive protocols were followed: (a) conventional, (b) hot water and (c) alkaline method. All samples were characterized by GPC, SEM, FTIR/ATR and TGA. It was found that alginate's best performances were obtained by the microwave dynamic pre-treatment method followed by alkaline extractive protocol. Nevertheless, the microwave pre-treatment of algae allowed the easiest breaking of their cell walls and the following fast releasing of sodium alginate. The authors demonstrated that microwave-enhanced extraction is an effective way to obtain sodium alginate from Sargassum-stranded seaweed waste materials in a cost-effective and eco-sustainable approach. They also assessed their applications as mulching films for agricultural applications.
Collapse
Affiliation(s)
- Aleksandra Nesic
- Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11 000 Belgrade, Serbia
| | - Maria Valeria De Bonis
- College of Engineering, Campus Macchia Romana, University of Basilicata, 85100 Potenza, Italy
| | - Giovanni Dal Poggetto
- National Council of Research, Institute for Polymers, Composites and Biomaterials, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Gianpaolo Ruocco
- College of Engineering, Campus Macchia Romana, University of Basilicata, 85100 Potenza, Italy
| | - Gabriella Santagata
- National Council of Research, Institute for Polymers, Composites and Biomaterials, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| |
Collapse
|
20
|
Pasquier E, Rosendahl J, Solberg A, Ståhlberg A, Håkansson J, Chinga-Carrasco G. Polysaccharides and Structural Proteins as Components in Three-Dimensional Scaffolds for Breast Cancer Tissue Models: A Review. Bioengineering (Basel) 2023; 10:682. [PMID: 37370613 PMCID: PMC10295496 DOI: 10.3390/bioengineering10060682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer is the most common cancer among women, and even though treatments are available, efficiency varies with the patients. In vitro 2D models are commonly used to develop new treatments. However, 2D models overestimate drug efficiency, which increases the failure rate in later phase III clinical trials. New model systems that allow extensive and efficient drug screening are thus required. Three-dimensional printed hydrogels containing active components for cancer cell growth are interesting candidates for the preparation of next generation cancer cell models. Macromolecules, obtained from marine- and land-based resources, can form biopolymers (polysaccharides such as alginate, chitosan, hyaluronic acid, and cellulose) and bioactive components (structural proteins such as collagen, gelatin, and silk fibroin) in hydrogels with adequate physical properties in terms of porosity, rheology, and mechanical strength. Hence, in this study attention is given to biofabrication methods and to the modification with biological macromolecules to become bioactive and, thus, optimize 3D printed structures that better mimic the cancer cell microenvironment. Ink formulations combining polysaccharides for tuning the mechanical properties and bioactive polymers for controlling cell adhesion is key to optimizing the growth of the cancer cells.
Collapse
Affiliation(s)
- Eva Pasquier
- RISE PFI AS, Høgskoleringen 6b, NO-7491 Trondheim, Norway; (E.P.); (A.S.)
| | - Jennifer Rosendahl
- RISE Unit of Biological Function, Division Materials and Production, RISE Research Institutes of Sweden, Box 857, 50115 Borås, Sweden; (J.R.); (J.H.)
| | - Amalie Solberg
- RISE PFI AS, Høgskoleringen 6b, NO-7491 Trondheim, Norway; (E.P.); (A.S.)
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden;
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41390 Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Joakim Håkansson
- RISE Unit of Biological Function, Division Materials and Production, RISE Research Institutes of Sweden, Box 857, 50115 Borås, Sweden; (J.R.); (J.H.)
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | | |
Collapse
|
21
|
Dang BT, Ramaraj R, Huynh KPH, Le MV, Tomoaki I, Pham TT, Hoang Luan V, Thi Le Na P, Tran DPH. Current application of seaweed waste for composting and biochar: A review. BIORESOURCE TECHNOLOGY 2023; 375:128830. [PMID: 36878373 DOI: 10.1016/j.biortech.2023.128830] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
To address the origins of ocean acidification, seaweed aquaculture is emerging as a key biosequestration strategy. Nevertheless, seaweed biomass is involved in developing food and animal feed, whereas seaweed waste from commercial hydrocolloid extraction is dumped in landfills, which together limit the carbon cycle and carbon sequestration. This work sought to evaluate the production, properties, and applications of seaweed compost and biochar to strengthen the "carbon sink" implications of aquaculture sectors. Due to their unique characteristics, the production of seaweed-derived biochar and compost, as well as their existing applications, are distinct when compared to terrestrial biomass. This paper outlines the benefits of composting and biochar production as well as proposes ideas and perspectives to overcome technical shortcomings. If properly synchronized, progression in the aquaculture sector, composting, and biochar production, potentially promote various Sustainable Development Goals.
Collapse
Affiliation(s)
- Bao-Trong Dang
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam.
| | | | - Ky-Phuong-Ha Huynh
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Minh-Vien Le
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Itayama Tomoaki
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Tan-Thi Pham
- Faculty of Applied Sciences, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Van Hoang Luan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Pham Thi Le Na
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Duyen P H Tran
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan, ROC
| |
Collapse
|
22
|
Rhein-Knudsen N, Reyes-Weiss D, Horn SJ. Extraction of high purity fucoidans from brown seaweeds using cellulases and alginate lyases. Int J Biol Macromol 2023; 229:199-209. [PMID: 36584780 DOI: 10.1016/j.ijbiomac.2022.12.261] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Fucoidans are fucose rich sulfated polysaccharides that are found in the cell wall of brown seaweeds and have been shown to have several beneficial bioactivities. In the present study, we report a new enzymatic extraction technique for the production of pure and intact fucoidans from the two brown seaweeds Saccharina latissima and Alaria esculenta. This new extraction protocol uses the commercial cellulase blend Cellic® CTec2 in combination with endo- and exo-acting thermophilic alginate lyases. The fucoidans obtained by this extraction technique are compared to traditionally extracted fucoidans in terms of chemical compositions and molecular weights and are shown to contain significantly higher amounts of fucose and sulfate, the main components of fucoidans, while cellulose, laminarin, and alginate contamination is low. Thus, by using this combination of enzymes, the extracted fucoidans do not undergo depolymerization during extraction and additional purification steps are not needed. The high purity fucoidans isolated by this new enzymatic extraction technique can be used to provide insight into the different fucoidan structures and biological activities.
Collapse
Affiliation(s)
- Nanna Rhein-Knudsen
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Diego Reyes-Weiss
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Svein Jarle Horn
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway.
| |
Collapse
|
23
|
Stabilization Activity of Kelp Extract in Ethylene-Propylene Rubber as Safe Packaging Material. Polymers (Basel) 2023; 15:polym15040977. [PMID: 36850259 PMCID: PMC9967782 DOI: 10.3390/polym15040977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
This paper presents the stabilization effects of the solid extract of kelp (Ascophyllum nodosum) on an engineering elastomer, ethylene-propylene copolymer (EPR), which may be used as packaging material. Progressive increase in additive loadings (0.5, 1, and 2 phr) increases the oxidation induction time for thermally aged rubber at 190 °C from 10 min to 30 min for pristine material and modified polymer by adding 2 phr protection powder. When the studied polymer is γ-irradiated at 50 and 100 kGy, the onset oxidation temperatures increase as a result of blocking the oxidation reactivity of free radicals. The stabilization effect occurs through the activity of alginic acid, which is one of the main active components associated with alginates. The accelerated degradation caused by γ-exposure advances more slowly when the kelp extract is present. The OOT value for the oxidation of EPR samples increases from 130 °C to 165 °C after the γ-irradiation of pristine and modified (2 phr of kelp powder) EPR, respectively. The altered oxidation state of EPR samples by the action of γ-rays in saline serum is faster in neat polymer than in stabilized material. When the probes are placed in physiological serum and irradiated at 25 kGy, the OOT value for neat EPR (145 °C) is much lower than the homologous value for the polymer samples protected by kelp extract (153 °C for the concentration of 0.5 phr, 166 °C for the concentration of 1 phr, and 185 °C for the concentration of 2 phr).
Collapse
|
24
|
Silva MP, Badruddin IJ, Tonon T, Rahatekar S, Gomez LD. Environmentally benign alginate extraction and fibres spinning from different European Brown algae species. Int J Biol Macromol 2023; 226:434-442. [PMID: 36502944 DOI: 10.1016/j.ijbiomac.2022.11.306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Applications of natural fibres are expanding, and sustainable alternatives are needed to support this growing demand. We investigated the production of fibres using alginates from Saccharina latissima (SAC), Laminaria digitata (LAM), Sacchoriza polyschides (SACC), and Himanthalia spp. (HIM). After extraction (3 % w/v biomass) using a sustainable protocol based on citric acid, crude alginate represented 61-65 % of the biomass dry weight for SAC and LAM, and 34-41 % for SACC and HIM when experiments were performed at small scale (1.5 g of starting material). Interestingly, scaling-up extraction (60 g of starting material) decreased yields to 26-30 %. SAC and LAM alginates had the highest M/G (mannuronic acid/guluronic acid) ratios and molecular weights when compared to those from SACC and HIM (M/G:1.98 and 2.23, MW: 302 and 362 kDa, vs 1.83 and 1.86, 268 and 168 kDa). When the four types of alginates were tested for spinning fibres cross-linked with CaCl2, only SAC and LAM alginates produced fibres. These fibres showed no clumps or cracks under stretching action and presented a similar Young's modulus (2.4 and 2.0 GPa). We have demonstrated that alginate extracted from S. latissima and L. digitata can be successfully spun into functional fibres cross-linked with CaCl2.
Collapse
Affiliation(s)
- Mariana P Silva
- Centre for Novel Agricultural Product, Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | - Ishrat Jahan Badruddin
- Enhanced Composites and Structures Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, United Kingdom
| | - Thierry Tonon
- Centre for Novel Agricultural Product, Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | - Sameer Rahatekar
- Enhanced Composites and Structures Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, United Kingdom
| | - Leonardo D Gomez
- Centre for Novel Agricultural Product, Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom.
| |
Collapse
|
25
|
An assessment of physical and chemical conditions in alginate extraction from two cultivated brown algal species in Norway: Alaria esculenta and Saccharina latissima. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Ferreira M, Salgado JM, Fernandes H, Peres H, Belo I. Potential of Red, Green and Brown Seaweeds as Substrates for Solid State Fermentation to Increase Their Nutritional Value and to Produce Enzymes. Foods 2022; 11:foods11233864. [PMID: 36496673 PMCID: PMC9741140 DOI: 10.3390/foods11233864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Seaweeds are valuable feedstocks with the potential to be used as ingredients in aquafeeds. However, their use are still limited, given their recalcitrant polysaccharide structure. To break this structure, a biotechnological approach such as solid-state fermentation (SSF) by filamentous fungi can be used, which simultaneously increases the nutritional value of the biomass. However, SSF has hardly been studied in seaweeds; thus, in this study, five different seaweeds (Gracilaria sp., Porphyra dioica, Codium tomentosum, Ulva rigida, and Alaria esculenta) were used as substrates in SSF with Aspergillus ibericus MUM 03.49 and A. niger CECT 2915. Firstly, the seaweeds were fully characterized, and, then, changes in the crude protein and carbohydrate contents were assessed in the fermented biomass, as well as any carbohydrases production. The SSF of U. rigida with both fungi resulted in the maximum xylanase and β-glucosidase activities. The maximum cellulase activity was achieved using Gracilaria sp. and U. rigida in the SSF with A. niger. The protein content increased in C. tomentosum after SSF with A. ibericus and in U. rigida after SSF with both fungi. Moreover, U. rigida's carbohydrate content decreased by 54% and 62% after SSF with A. ibericus and A. niger, respectively. Seaweed bioprocessing using SSF is a sustainable and cost-effective strategy that simultaneously produces high-value enzymes and nutritionally enhanced seaweeds to be included in aquafeeds.
Collapse
Affiliation(s)
- Marta Ferreira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - José Manuel Salgado
- Biotecnia Group, Department of Chemical Engineering, Campus Agua, University of Vigo (Campus Ourense), As Lagoas s/n, 32004 Ourense, Spain
| | - Helena Fernandes
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- CIMAR/CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Helena Peres
- CIMAR/CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208 Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence:
| |
Collapse
|
27
|
Bojorges H, Fabra MJ, López-Rubio A, Martínez-Abad A. Alginate industrial waste streams as a promising source of value-added compounds valorization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156394. [PMID: 35660439 DOI: 10.1016/j.scitotenv.2022.156394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
The alginate industry processes more than hundred thousand tons per year of algae in Europe, discarding around 80% of the algae biomass as different solid/liquid residual streams. In this work, Saccharina latissima and Ascophyllum nodosum, their generated alginates and all residual fractions generated in the process were characterized in terms of lipid, ash, protein content, and the carbohydrate composition and antioxidant capacities analyzed. The first fraction after acid treatment (ca. 50% of the initial dry biomass) was rich in phlorotannins (15 mg GAE/g) and bioactive fucoidans (15-70%), with a high sulfation degree in A. nodosum. Two fractions generated from the solid residue, one soluble and another insoluble (Ra and Rb, respectively), constituted 9% and 5-8% of the initial biomass and showed great potential as a source of soluble protein (30% for S. latissima), and cellulose (70%) or fucoidan, respectively. Valorization strategies are suggested for these waste streams, evidencing their high potential as bioactive, texturizing or nutritional added-value ingredients for cosmetic, food, feed or pharmaceutical applications.
Collapse
Affiliation(s)
- Hylenne Bojorges
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Avda. Agustín escardin, 7, 46980, Paterna, Valencia, Spain
| | - Maria José Fabra
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Avda. Agustín escardin, 7, 46980, Paterna, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy- Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Amparo López-Rubio
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Avda. Agustín escardin, 7, 46980, Paterna, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy- Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Antonio Martínez-Abad
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Avda. Agustín escardin, 7, 46980, Paterna, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy- Spanish National Research Council (SusPlast-CSIC), Madrid, Spain.
| |
Collapse
|
28
|
Tian X, Zhao K, Teng A, Li Y, Wang W. A rethinking of collagen as tough biomaterials in meat packaging: assembly from native to synthetic. Crit Rev Food Sci Nutr 2022; 64:957-977. [PMID: 35997287 DOI: 10.1080/10408398.2022.2111401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Due to the high moisture-associated typical rheology and the changeable and harsh processing conditions in the production process, packaging materials for meat products have higher requirements including a sufficient mechanical strength and proper ductility. Collagen, a highly conserved structural protein consisting of a triple helix of Gly-X-Y repeats, has been proved to be suitable packaging material for meat products. The treated animal digestive tract (i.e. the casing) is the perfect natural packaging material for wrapping meat into sausage. Its thin walls, strong toughness and impact resistance make it the oldest and best edible meat packaging. Collagen casing is another wisdom of meat packaging, which is made by collagen fibers from hide skin, presenting a rapid growth in casing market. To strengthen mechanical strength and barrier behaviors of collagen-based packaging materials, different physical, chemical, and biological cross-linking methods are springing up exuberantly, as well as a variety of reinforcement approaches including nanotechnology. In addition, the rapid development of biomimetic technology also provides a good research idea and means for the promotion of collagen's assembly and relevant mechanical properties. This review can offer some reference on fundamental theory and practical application of collagenous materials in meat products.
Collapse
Affiliation(s)
- Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - KaiXuan Zhao
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Anguo Teng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Yu Li
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
29
|
Gisbert M, Sineiro J, Moreira R. Polyphenols extraction kinetics from Ascophyllum nodosum seaweed employing water and saltwater: Effect of ultrasound sonication. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
30
|
Cebrián-Lloret V, Göksen G, Martínez-Abad A, López-Rubio A, Martínez-Sanz M. Agar-based packaging films produced by melt mixing: Study of their retrogradation upon storage. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
31
|
Life cycle assessment of a seaweed-based biorefinery concept for production of food, materials, and energy. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
A Brief Review on the Development of Alginate Extraction Process and Its Sustainability. SUSTAINABILITY 2022. [DOI: 10.3390/su14095181] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Alginate is an attractive marine resource-based biopolymer, which has been widely used in pharmaceutical, food and textile industries. This paper reviewed the latest development of the conventional and alternative processes for alginate extraction from brown seaweed. To improve extraction yield and product quality, various studies have been carried out to optimize the operation condition. Based on literature survey, the most commonly used protocol is soaking milled seaweed in 2% (w/v) formaldehyde, overnight, solid loading ratio of 1:10–20 (dry weight biomass to solution), then collecting the solid for acid pre-treatment with HCl 0.2–2% (w/v), 40–60 °C, 1:10–30 ratio for 2–4 h. Next, the solid residue from the acid pre-treatment is extracted using Na2CO3 at 2–4% (w/v), 40–60 °C, 2–3 h, 1:10–30 ratio. Then the liquid portion is precipitated by ethanol (95%+) with a ratio of 1:1 (v/v). Finally, the solid output is dried in oven at 50–60 °C. Novel extraction methods using ultrasound, microwave, enzymes and extrusion improved the extraction yield and alginate properties, but the financial benefits have not been fully justified yet. To improve the sustainable production of alginate, it is required to promote seaweed cultivation, reduce water footprint, decrease organic solvent usage and co-produce alginate with other value-added products.
Collapse
|