1
|
Rossi S, Capson-Tojo G, Sànchez-Zurano A, Carecci D, Batstone DJ, Acìén-Fernandez GF, Ficara E. Recent advances and challenges in mechanistic modelling of photosynthetic processes for wastewater treatment. WATER RESEARCH 2025; 278:123216. [PMID: 40168914 DOI: 10.1016/j.watres.2025.123216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 04/03/2025]
Abstract
Phototrophy-based wastewater treatment has the potential to reduce wastewater bioremediation costs, improving environmental impacts and allowing for enhanced resource recovery. Microbial interactions occurring in phototrophic-chemotrophic consortia treating wastewater are particularly complex, and with varying impact on each microbial clade by different chemical, biological and physical factors, including light-related aspects. For this reason, mechanistic mathematical modelling of these systems is challenging, and the resulting models are especially complex. The present study focuses particularly on the extension of microalgae-focused models to the simulation of phototrophic-chemotrophic systems, especially as for (i) microalgae-bacteria consortia and (ii) purple bacteria-enriched communities. The review identifies model structures and typical modelling choices, as well as the potential applications and limitations of available experimental protocols for model calibration, identifying relevant research needs and requirements. Simplified models have been proposed, which allow assessment of dominant mechanisms, but may not represent more complex behaviour, including nutrient removal and response to light cycling. These models have been largely applied to simple (oxygen and carbon dioxide) exchange between algae and aerobic heterotrophs. More comprehensive models, including all relevant microbial clades, have been recently published, which consider nutrient cycling, competitive uptake, and other features, including temperature, pH, and gas transfer. These models have comparable structures, but a quantitative comparison between these models is often challenging due to different fundamental stoichiometry (e.g., in the assumed algae composition), or in differing approaches to storage compounds. Particularly for models with a high complexity, it is often difficult to properly estimate biokinetic species-specific parameters for the different phototrophic and chemotrophic populations involved. Several methods have been proposed for model calibration, among which photo-respirometry has shown considerable potential. However, photo-respirometric methods do not follow a standardised approach, which has limited their application and comparability between studies. Finally, the validation of models on long-term data sets, demonstrating the impact of seasonality, as well as long-term population adaptation, is rare.
Collapse
Affiliation(s)
- S Rossi
- Department of Civil and Environmental Engineering (DICA), Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milan, Italy.
| | - G Capson-Tojo
- INRAE, Univ. Montpellier, LBE 102 Avenue des Etangs, 11100 Narbonne, France.
| | - A Sànchez-Zurano
- Department of Chemical Engineering, Faculty of Chemistry, University of Murcia, Campus of Espinardo, 30071 Murcia, Spain.
| | - D Carecci
- Department of Electronics, Informatics and Bioengineering (DEIB), Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milan, Italy.
| | - D J Batstone
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - G F Acìén-Fernandez
- Department of Chemical Engineering, Universidad de Almería, E04120 Almería, Spain.
| | - E Ficara
- Department of Civil and Environmental Engineering (DICA), Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milan, Italy.
| |
Collapse
|
2
|
Veerabadhran M, Chen L, Lens PNL, Nancharaiah YV. Algal-bacterial granules for circular bioeconomy: Formation mechanisms and biotechnological applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125393. [PMID: 40250180 DOI: 10.1016/j.jenvman.2025.125393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/28/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
Cyanobacteria and microalgae are sustainable and renewable biocatalysts for solar energy harvesting, recovering nutrients from wastewater, reducing greenhouse gas emissions from wastewater treatment plants (WWTPs) and enable creation of a sustainable circular bioeconomy. Pure and axenic cultures of photosynthetic microorganisms have been widely studied for synthesizing bio-based products through improving the metabolic pathways via genetic engineering. However, pure cultures suffer from contamination and separation challenges when considered for environmental applications. Mixed microbial communities comprising of photosynthetic organisms and bacteria in the form of either flocs or granules have recently received a lot of attention due to their potential contribution to wastewater treatment, environmental sustainability and circular bioeconomy. The advantages of algal-bacterial granules (ABG) in WWTPs include effective elimination of contaminants and nutrients, reduction in aeration requirement, and production of biomass feedstock for downstream processing. Although ABG are an attractive option for energy positive wastewater treatment, it is not yet matured as technological option for deployment in full-scale WWTPs. Moreover, several aspects of ABG including synergistic metabolism, granulation mechanisms, granular stability, bioreactor operating conditions, cell-cell interactions, extracellular polymeric substances and bio-based products deserve more intense research. This article provides a detailed overview of algal-bacterial communities, their occurrence in natural environments, ABG cultivation in engineered settings, potential biotechnological applications and the recent progress made towards sustainable biological wastewater treatment and circular bioeconomy.
Collapse
Affiliation(s)
- Maruthanayagam Veerabadhran
- Biofouling and Biofilm Processes Section, WSCD, Bhabha Atomic Research Centre, Kalpakkam, 603102, Tamil Nadu, India; Microbial Process Engineering Group, Microbial Manufacturing Engineering Centre, Chinese Academy of Sciences - Qingdao Institute of Bioenergy and Bioprocess Technology, Qingdao, 266101, Shandong, China
| | - Lin Chen
- Microbial Process Engineering Group, Microbial Manufacturing Engineering Centre, Chinese Academy of Sciences - Qingdao Institute of Bioenergy and Bioprocess Technology, Qingdao, 266101, Shandong, China.
| | - Piet N L Lens
- IHE Delft Institute for Water Education, Westvest 7, the Netherlands
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes Section, WSCD, Bhabha Atomic Research Centre, Kalpakkam, 603102, Tamil Nadu, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India.
| |
Collapse
|
3
|
Zhong J, Tang L, Gao M, Wang S, Wang X. Beyond feast and famine: Cultivating hydrodynamic oxygenic photogranules with better performances under permanent feast regime. BIORESOURCE TECHNOLOGY 2024; 401:130752. [PMID: 38685514 DOI: 10.1016/j.biortech.2024.130752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Oxygenic photogranules (OPGs) are currently obtained in permanent famine or cyclic feast-famine regimes. Whether photogranulation occurs under a permanent feast regime and how these regimes impact OPGs are unknown. Herein, the three regimes, each applied in two replicate hydrodynamic reactors, were established by different feeding frequencies. Results showed that OPGs were successfully cultivated in all regimes after 24-36 days of photogranulation phases with similar microbial community functions, including filamentous gliding, extracellular polymeric substances production, and carbon/nitrogen metabolism. The OPGs were then operated under the same sequencing batch mode and all achieved efficient removal of chemical oxygen demand (>91 %), ammonium (>96 %), and total nitrogen (>76 %) after different adaptation periods (19-41 days). Notably, the permanent feast regime obtained OPGs with the best physicochemical properties, the shortest adaptation period, and the lowest effluent turbidity, thus representing a novel means of hydrodynamic cultivating OPGs with better performances for sustainable wastewater treatment.
Collapse
Affiliation(s)
- Jiewen Zhong
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Liaofan Tang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Mingming Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Weihai Research Institute of Industrial Technology of Shandong University, Weihai 264209, China
| | - Xinhua Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
4
|
González-Pech RA, Li VY, Garcia V, Boville E, Mammone M, Kitano H, Ritchie KB, Medina M. The Evolution, Assembly, and Dynamics of Marine Holobionts. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:443-466. [PMID: 37552896 DOI: 10.1146/annurev-marine-022123-104345] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The holobiont concept (i.e., multiple living beings in close symbiosis with one another and functioning as a unit) is revolutionizing our understanding of biology, especially in marine systems. The earliest marine holobiont was likely a syntrophic partnership of at least two prokaryotic members. Since then, symbiosis has enabled marine organisms to conquer all ocean habitats through the formation of holobionts with a wide spectrum of complexities. However, most scientific inquiries have focused on isolated organisms and their adaptations to specific environments. In this review, we attempt to illustrate why a holobiont perspective-specifically, the study of how numerous organisms form a discrete ecological unit through symbiosis-will be a more impactful strategy to advance our understanding of the ecology and evolution of marine life. We argue that this approach is instrumental in addressing the threats to marine biodiversity posed by the current global environmental crisis.
Collapse
Affiliation(s)
- Raúl A González-Pech
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Vivian Y Li
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Vanessa Garcia
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Elizabeth Boville
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Marta Mammone
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | | | - Kim B Ritchie
- Department of Natural Sciences, University of South Carolina, Beaufort, South Carolina, USA;
| | - Mónica Medina
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| |
Collapse
|
5
|
Li S, Xie P, Chang H, Ho SH. Simultaneously enhancement in the assimilation of microalgal nitrogen and the accumulation of carbohydrate by Debaryomyces hansenii. CHEMOSPHERE 2023:139183. [PMID: 37302499 DOI: 10.1016/j.chemosphere.2023.139183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Microalgae-based techniques are considered an alternative to traditional activated sludge processes for removing nitrogen from wastewater. Bacteria consortia have been broadly conducted as one of the most important partners. However, fungal effects on the removal of nutrients and changes in physiological properties of microalgae, and their impact mechanisms remain unclear. The current work demonstrates that, adding fungi increased the nitrogen assimilation of microalgae and the generation of carbohydrates compared to pure microalgal cultivation. The NH4+-N removal efficiency was 95.0% within 48 h using the microalgae-fungi system. At 48 h, total sugars (glucose, xylose, and arabinose) accounted for 24.2 ± 4.2% per dry weight in the microalgae-fungi group. Gene ontology (GO) enrichment analysis revealed that, among various processes, phosphorylation and carbohydrate metabolic processes were more prominent. Gene encoding the key enzymes of glycolysis, pyruvate kinase, and phosphofructokinase were significantly up-regulated. Overall, for the first time, this study provides new insights into the art of microalgae-fungi consortia for producing value-added metabolites.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Haixing Chang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| |
Collapse
|
6
|
Biliani SE, Manariotis ID. Sustainable treatment of primary and secondary effluent by algal-bacterial flocculent biomass in raceway ponds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118167. [PMID: 37229856 DOI: 10.1016/j.jenvman.2023.118167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Two 5.5-L raceway open ponds were used to evaluate the removal of organic material and nutrients from wastewater. Algal-bacterial flocs were placed in the ponds to treat primary and secondary effluent. The organic loading rate ranged from 29 to 95 and 9 to 38 g sCOD m-3 d-1 for the reactor fed with primary and secondary effluent, respectively. The hydraulic retention time (HRT) gradually decreased in both reactors from 5.5 to 2.2 d during a period of 21 days, and after that, both reactors operated at an HRT of 1.1 d. A high biomass concentration of around 2.2 g L-1 was sustained using primary and secondary effluent after 130 days. The biomass, developed with both substrates was very active and completely removed organic material and nutrients in less than 12 h. The algal-bacteria biomass had excellent settling properties and could settle in less than 10 min.
Collapse
Affiliation(s)
- Styliani E Biliani
- Environmental Engineering Laboratory, Department of Civil Engineering, University of Patras, 265 04, Patras, Greece
| | - Ioannis D Manariotis
- Environmental Engineering Laboratory, Department of Civil Engineering, University of Patras, 265 04, Patras, Greece.
| |
Collapse
|
7
|
Rossi S, Carecci D, Ficara E. Thermal response analysis and compilation of cardinal temperatures for 424 strains of microalgae, cyanobacteria, diatoms and other species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162275. [PMID: 36801411 DOI: 10.1016/j.scitotenv.2023.162275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Microalgae and other phototrophic microorganisms can be cultivated to produce food and valuable bioproducts, also allowing to remove nutrients from wastewater and CO2 from biogas or polluted gas streams. Among other environmental and physico-chemical parameters, microalgal productivity is strongly influenced by the cultivation temperature. In this review, cardinal temperatures identifying the thermal response, i.e., the optimal growth condition (TOPT), and the lower and upper limits for microalgae cultivation (TMIN and TMAX), have been included in a structured and harmonized database. Literature data for 424 strains belonging to 148 genera of green algae, cyanobacteria, diatoms, and other phototrophs were tabulated and analysed, with a focus on the most relevant genera that are currently cultivated at the industrial scale in Europe. The dataset creation aimed at facilitating the comparison of different strain performances for different operational temperatures and assisting in the process of thermal and biological modelling, to reduce energy consumption and biomass production costs. A case study was presented, to illustrate the effect of temperature control on the energetic expenditure for cultivating different Chorella sp. strains under a greenhouse located in different European sites.
Collapse
Affiliation(s)
- S Rossi
- Politecnico di Milano, DICA - Department of Civil and Environmental Engineering, Environmental Section, P.zza L. da Vinci, 3, 20133 Milan, Italy.
| | - D Carecci
- Politecnico di Milano, DEIB - Department of Electronics, Information and Bioengineering, P.zza L. da Vinci, 3, 20133 Milan, Italy
| | - E Ficara
- Politecnico di Milano, DICA - Department of Civil and Environmental Engineering, Environmental Section, P.zza L. da Vinci, 3, 20133 Milan, Italy
| |
Collapse
|