1
|
Wang D, Zou Y, Zhao T, Cao W, Han J, Wu Q, Li Z, Li X, Liu P, Bai L, Ren G. Fibroblast growth factor 21 alleviated atopic march by inhibiting the differentiation of type 2 helper T cells. Int Immunopharmacol 2025; 147:114055. [PMID: 39798471 DOI: 10.1016/j.intimp.2025.114055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND The blood FGF21 expression has been previously suggested to increase in patients developing atopic dermatitis (AD) and asthma. However, its impact on atopic march is rarely analyzed. The present work focused on investigating the role of Fibroblast Growth Factor 21(FGF21) in atopic march mice and its underlying mechanisms. METHODS The models were induced with Diisononyl phthalate (DINP) and OVA in wild-type C57BL/6 and FGF21-/- mice. RAW264.7 cells were induced by LPS with/without FGF21 or KLB-SiRNA for in vitro analyses. RESULTS The data indicated that there were more severe allergic reactions including IgE levels and the proportion of mast cells in the blood of FGF21-/- mice in relative to WT model mice during the progression from AD to asthma. However, exogenous administration of FGF21 inhibited allergies. In this study, we reported that FGF21 mitigated AD-like lesions and Th1/2 or Th17/Treg cell imbalance in AD mice, and significantly decreased TSLP, IL-33, IL-4, IL-5, IL-13 and IL-17A expression on skin. During the asthma phase, FGF21 improved airway remodeling by downgrading inflammatory factors IL-4, IL-5, IL-13 and IL-17A; fibrotic markers α-SMA and Collagen I; and oxidative products MDA and ROS in wild-type model mice. Compared with WT model mice, the adverse consequences were aggravated in FGF21-/- asthmatic mice. From the mechanistic perspective, FGF21 suppressed NF-κB/NLRP3, TGF-β1/Smad3 and JNK signaling pathways and increased Nrf2 expression in vivo and in vitro. In addition, β-Klotho knockdown attenuated the ameliorative impact of FGF21 on cellular damage. Blocking AMPKα in the LPS-treated RAW264.7 cells inhibited the reduction of FGF21 and the phosphorylation of JNK. CONCLUSIONS To conclude, FGF21 alleviated atopic march by inhibiting Th2/17 immune response, and reduced airway remodeling by regulating NF-κB/NLRP3, TGF-β1/Smad3 and AMPKα/JNK pathways. Moreover, this study provides a rationale and novel ideas for applying FGF21 in treating AD and asthma.
Collapse
Affiliation(s)
- Dan Wang
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yimeng Zou
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianqi Zhao
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Weiyue Cao
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiachi Han
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qing Wu
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhitong Li
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Li
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Peijing Liu
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Lin Bai
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Guiping Ren
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China; Research Center of Genetic Engineering of Pharmaceuticals of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Yu R, Liu S, Li Y, Lu L, Huang S, Chen X, Xue Y, Fu T, Liu J, Li Z. TRPV1 + sensory nerves suppress conjunctival inflammation via SST-SSTR5 signaling in murine allergic conjunctivitis. Mucosal Immunol 2024; 17:211-225. [PMID: 38331094 DOI: 10.1016/j.mucimm.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Allergic conjunctivitis (AC), an allergen-induced ocular inflammatory disease, primarily involves mast cells (MCs) and eosinophils. The role of neuroimmune mechanisms in AC, however, remains to be elucidated. We investigated the effects of transient receptor potential vanilloid 1 (TRPV1)-positive sensory nerve ablation (using resiniferatoxin) and TRPV1 blockade (using Acetamide, N-[4-[[6-[4-(trifluoromethyl)phenyl]-4-pyrimidinyl]oxy]-2-benzothiazolyl] (AMG-517)) on ovalbumin-induced conjunctival allergic inflammation in mice. The results showed an exacerbation of allergic inflammation as evidenced by increased inflammatory gene expression, MC degranulation, tumor necrosis factor-α production by MCs, eosinophil infiltration and activation, and C-C motif chemokine 11 (CCL11) (eotaxin-1) expression in fibroblasts. Subsequent findings demonstrated that TRPV1+ sensory nerves secrete somatostatin (SST), which binds to SST receptor 5 (SSTR5) on MCs and conjunctival fibroblasts. SST effectively inhibited tumor necrosis factor-α production in MCs and CCL11 expression in fibroblasts, thereby reducing eosinophil infiltration and alleviating AC symptoms, including eyelid swelling, lacrimation, conjunctival chemosis, and redness. These findings suggest that targeting TRPV1+ sensory nerve-mediated SST-SSTR5 signaling could be a promising therapeutic strategy for AC, offering insights into neuroimmune mechanisms and potential targeted treatments.
Collapse
Affiliation(s)
- Ruoxun Yu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Sijing Liu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yan Li
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Liyuan Lu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuoya Huang
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinwei Chen
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Zhijie Li
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Nishimura M, Nakanishi T, Ichishi M, Matsushima Y, Watanabe M, Yamanaka K. Increased Mortality Risk at Septic Condition in Inflammatory Skin Disorders and the Effect of High-Fat Diet Consumption. Int J Mol Sci 2023; 25:478. [PMID: 38203647 PMCID: PMC10778955 DOI: 10.3390/ijms25010478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
In recent years, attention has increasingly focused on various infectious diseases. Although some fatalities are directly attributed to the causative virus, many result from complications and reactive inflammation. Patients with comorbidities are at a higher risk of mortality. Refractory skin conditions such as atopic dermatitis, psoriasis, and epidermolysis bullosa, known for an elevated risk of sepsis, partly owe this to compromised surface barrier function. However, the detailed mechanisms underlying this phenomenon remain elusive. Conversely, although the detrimental effects of a high-fat diet on health, including the onset of metabolic syndrome, are widely recognized, the association between diet and susceptibility to sepsis has not been extensively explored. In this study, we examined the potential causes and pathogenesis of increased sepsis susceptibility in inflammatory skin diseases using a mouse dermatitis model: keratin 14-driven caspase-1 is overexpressed (KCASP1Tg) in mice on a high-fat diet. Our findings reveal that heightened mortality in the dermatitis mouse model is caused by the inflamed immune system due to the chronic inflammatory state of the local skin, and administration of LPS causes a rapid increase in inflammatory cytokine levels in the spleen. Intake of a high-fat diet exacerbates these cytokine levels. Interestingly, we also observed a reduced expression of Toll-like receptor 4 (TLR4) in monocytes from KCASP1Tg mice, potentially predisposing these animals to heightened infection risks and associated complications. Histological analysis showed a clear decrease in T and B cells in the spleen of KCASP1Tg mice fed a high-fat diet. Thickening of the alveolar wall, inflammatory cell infiltration, and alveolar hemorrhage were more prominent in the lungs of KCASP1Tg and KCASP1Tg with fat mice. We postulate that the chronic, non-infectious inflammation induces a negative feedback loop within the inflammatory cascade, and the suppressed expression of TLR4 renders the mice more susceptible to infections. Therefore, it is imperative for individuals with chronic skin inflammation to closely monitor disease progression upon infection and seek timely and appropriate treatment. Additionally, chronic inflammation of adipose tissue, induced by high-fat food intake, combined with dermatitis inflammation, may exacerbate infections, necessitating a review of dietary habits.
Collapse
Affiliation(s)
- Mai Nishimura
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Mie, Japan; (M.N.); (T.N.); (Y.M.)
- Inflammatory Skin Disease Research Center, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Mie, Japan
| | - Takehisa Nakanishi
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Mie, Japan; (M.N.); (T.N.); (Y.M.)
| | - Masako Ichishi
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Mie, Japan; (M.I.); (M.W.)
| | - Yoshiaki Matsushima
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Mie, Japan; (M.N.); (T.N.); (Y.M.)
| | - Masatoshi Watanabe
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Mie, Japan; (M.I.); (M.W.)
| | - Keiichi Yamanaka
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Mie, Japan; (M.N.); (T.N.); (Y.M.)
- Inflammatory Skin Disease Research Center, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Mie, Japan
| |
Collapse
|
4
|
Chiricozzi A, Di Nardo L, Gori N, Antonelli F, Pinto L, Cuffaro G, Piro G, Savino G, Tortora G, Peris K. Dupilumab-associated ocular adverse events are predicted by low tear break-up time and correlate with high IL-33 tear concentrations in patients with atopic dermatitis. Exp Dermatol 2023; 32:1531-1537. [PMID: 37357541 DOI: 10.1111/exd.14859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023]
Abstract
Dupilumab, blocking IL-4 and IL-13 signals, improves atopic dermatitis and Quality of Life but might be also associated with the occurrence of ocular adverse events (OAEs). The main objective of our prospective study was to characterize the cytokine and chemokine profile in the tear fluid of dupilumab-treated patients with moderate-to- severe atopic dermatitis and to identify biomarkers predicting the occurrence of ocular adverse events. Patients with moderate-to-severe AD underwent dermatological and ophthalmological evaluation at the baseline (T0) and week 16 or at the time of an eventual ocular adverse events (T1). A multiplex immunoassay measuring multiple cytokines and chemokines in the tear fluid extracted during ocular examination at both T0 and T1 was performed. Thirty-nine patients with moderate-to-severe AD and treated with dupilumab were included in the study. Baseline tear fluid levels revealed a significantly higher concentration of type 2 cytokines and chemokines in AD patients than healthy controls. The occurrence of ocular adverse events during dupilumab therapy was associated with a significant increase of IL-33 tear fluid levels and a significantly lower tear break-up time, this latter also identified as predictive factor. Our findings suggest that the ophthalmological examination should be considered a valid support to identify patients at risk of developing OAEs and to provide their appropriate management.
Collapse
Affiliation(s)
- A Chiricozzi
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - L Di Nardo
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - N Gori
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - F Antonelli
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - L Pinto
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - G Cuffaro
- Ocular Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - G Piro
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - G Savino
- Ocular Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Ophthalmology Unit, Università Cattolica del Sacro Cuore, Rome, Italy
| | - G Tortora
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - K Peris
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| |
Collapse
|