1
|
Bai Y, Fang P, Li S, Xiao Z, Chen W, Li W, Wang X, Chen J, Li Y, Chen J, Huang W, Luo X, Ueki S, Fang D, Yang Q, Zhang Y. Accumulation of long-chain unsaturated fatty acids in the airway inflammatory microenvironment drives eosinophil etosis and corticosteroid resistance. Cell Commun Signal 2025; 23:217. [PMID: 40336088 PMCID: PMC12057054 DOI: 10.1186/s12964-025-02217-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/25/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Eosinophilic inflammation is a feature of chronic rhinosinusitis with nasal polyps (CRSwNP). Patients with eosinophilic CRSwNP (ENP) tend to be refractory and prone to recurrence. Although there is increasing evidence linking lipid metabolic irregularities to eosinophilia, the particular lipid responsible for promoting eosinophilic inflammation and the precise molecular mechanisms involved remain unclear. METHODS Lipidomic atlas and metabolic pathway enrichment were identified by liquid chromatography-tandem mass spectrometry and RNA sequencing, respectively. Eosinophil extracellular trap cell death (EETosis) was detected by immunofluorescence microscopy and transmission electron microscopy. Functional analyses were performed on purified eosinophils. RESULTS The unbiased lipidomic atlas identified a specific accumulation in long-chain fatty acids (LCFAs) in ENP. Consistently, RNA-seq analysis confirmed the enrichment in long-chain unsaturated fatty acid metabolism pathway in ENP. In this lipid-rich airway inflammatory environment, EETosis including ETotic eosinophils, EETs release and Charcot-Leyden crystals (CLCs) generation was enhanced in ENP, and associated with disease severity. Further, we found that both saturated and unsaturated LCFAs, such as arachidonic acid, are critical fuel sources to trigger eosinophil activation and filamentous DNA release, whereas only arachidonic acid could induce crystalline Galectin10 (CLCs). Mechanistically, arachidonic acid induces EETosis through a mechanism independent of reactive oxygen species but the IRE1α/XBP1s/PAD4 pathway. Both the long-acting dexamethasone and short-acting hydrocortisone, while facilitate eosinophil apoptosis, are ineffective to block arachidonic acid-induced EETosis. CONCLUSIONS Our findings demonstrate a previously unknown role of the LCFA arachidonic acid in mediating EETosis and glucocorticoid insensitivity to drive ENP progression, which may lead to novel insights regarding the treatment of patients with refractory eosinophilic inflammation.
Collapse
Affiliation(s)
- Yurong Bai
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangdong, Guangzhou, 510630, Guangdong, China
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Key Laboratory of Airway Inflammatory Disease Research and Innovative Technology Translation, Guangzhou, 510630, China
| | - Pengda Fang
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangdong, Guangzhou, 510630, Guangdong, China
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Key Laboratory of Airway Inflammatory Disease Research and Innovative Technology Translation, Guangzhou, 510630, China
| | - Shasha Li
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, Guangzhou, 510630, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat- Sen University, Guangzhou, 510630, China
| | - Zhenhao Xiao
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangdong, Guangzhou, 510630, Guangdong, China
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Key Laboratory of Airway Inflammatory Disease Research and Innovative Technology Translation, Guangzhou, 510630, China
| | - Wenyi Chen
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangdong, Guangzhou, 510630, Guangdong, China
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Key Laboratory of Airway Inflammatory Disease Research and Innovative Technology Translation, Guangzhou, 510630, China
| | - Wenlong Li
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangdong, Guangzhou, 510630, Guangdong, China
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Key Laboratory of Airway Inflammatory Disease Research and Innovative Technology Translation, Guangzhou, 510630, China
| | - Xinyue Wang
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangdong, Guangzhou, 510630, Guangdong, China
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Key Laboratory of Airway Inflammatory Disease Research and Innovative Technology Translation, Guangzhou, 510630, China
| | - Jingyuan Chen
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangdong, Guangzhou, 510630, Guangdong, China
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Key Laboratory of Airway Inflammatory Disease Research and Innovative Technology Translation, Guangzhou, 510630, China
| | - Yue Li
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangdong, Guangzhou, 510630, Guangdong, China
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Key Laboratory of Airway Inflammatory Disease Research and Innovative Technology Translation, Guangzhou, 510630, China
| | - Junhai Chen
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangdong, Guangzhou, 510630, Guangdong, China
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Key Laboratory of Airway Inflammatory Disease Research and Innovative Technology Translation, Guangzhou, 510630, China
| | - Weiqiang Huang
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangdong, Guangzhou, 510630, Guangdong, China
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Key Laboratory of Airway Inflammatory Disease Research and Innovative Technology Translation, Guangzhou, 510630, China
| | - Xin Luo
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangdong, Guangzhou, 510630, Guangdong, China
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Key Laboratory of Airway Inflammatory Disease Research and Innovative Technology Translation, Guangzhou, 510630, China
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School Medicine, Chicago, IL, 60611, USA
| | - Qintai Yang
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangdong, Guangzhou, 510630, Guangdong, China.
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
- Key Laboratory of Airway Inflammatory Disease Research and Innovative Technology Translation, Guangzhou, 510630, China.
| | - Yana Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangdong, Guangzhou, 510630, Guangdong, China.
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
- Key Laboratory of Airway Inflammatory Disease Research and Innovative Technology Translation, Guangzhou, 510630, China.
| |
Collapse
|
2
|
Shiomi M, Watanabe R, Ishihara R, Tanaka S, Nakazawa T, Hashimoto M. Comparative Insights on IL-5 Targeting with Mepolizumab and Benralizumab: Enhancing EGPA Treatment Strategies. Biomolecules 2025; 15:544. [PMID: 40305320 PMCID: PMC12025051 DOI: 10.3390/biom15040544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/28/2025] [Accepted: 04/05/2025] [Indexed: 05/02/2025] Open
Abstract
Eosinophilic granulomatosis with polyangiitis (EGPA) is a necrotizing vasculitis characterized by extravascular granulomas and eosinophilia in both blood and tissues. Eosinophils, which play a critical role in the pathophysiology of EGPA, require interleukin (IL)-5 for maturation in the bone marrow and migration to tissues. Glucocorticoids and immunosuppressants have been the cornerstone of treatment; however, their side effects have imposed a significant burden on many patients. Mepolizumab, an antibody that binds to and neutralizes IL-5, demonstrated efficacy in controlling disease activity in EGPA in the MIRRA trial conducted in 2017. In 2024, benralizumab, an IL-5 receptor alpha antagonist, was shown to be non-inferior to mepolizumab in efficacy against EGPA in the MANDARA trial. Both drugs were originally used for severe asthma and have benefited EGPA by reducing eosinophil counts. Due to differences in pharmacological structure and pharmacokinetics, the degree of eosinophil suppression varies between the two agents, and recent studies suggest that they may also affect inflammatory and homeostatic eosinophils differently. This review summarizes the latest insights into the pathophysiology of EGPA, highlights the similarities and differences between the two drugs, and discusses future treatment strategies for EGPA based on current clinical unmet needs, including drug selection.
Collapse
Affiliation(s)
- Mayu Shiomi
- Department of Rheumatology, Osaka Saiseikai Nakatsu Hospital, Osaka 530-0012, Japan
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-Ku, Osaka 545-8585, Japan
| | - Ryu Watanabe
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-Ku, Osaka 545-8585, Japan
| | - Ryuhei Ishihara
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-Ku, Osaka 545-8585, Japan
| | - Sayaka Tanaka
- Department of Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Takashi Nakazawa
- Department of Rheumatology, Osaka Saiseikai Nakatsu Hospital, Osaka 530-0012, Japan
| | - Motomu Hashimoto
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-Ku, Osaka 545-8585, Japan
| |
Collapse
|
3
|
Kawasaki-Nagano M, Tamagawa-Mineoka R, Kurioka T, Arakawa Y, Nakanishi M, Kishida M, Nishigaki H, Hashidate-Yoshida T, Shindou H, Katoh N. Lysophosphatidylcholine Acyltransferase 2 Contributes to Increased Allergic and Irritant Inflammation in Mice. Exp Dermatol 2024; 33:e70015. [PMID: 39513758 DOI: 10.1111/exd.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
Platelet-activating factor (PAF) is an important chemical mediator in the field of inflammation, but its function in the skin is unclear. To unravel the role of PAF, we focused on lysophosphatidylcholine acyltransferase 2 (LPCAT2 also called LPLAT9), a biosynthetic enzyme involved in PAF production, and investigated the role of PAF in allergic contact dermatitis (ACD) and irritant contact dermatitis (ICD). We measured the amount of PAF in the skin and investigated the ear swelling responses and leukocyte infiltration into the skin following the application of 2,4,6-trinitro-1-chlorobenzene (TNCB) or croton oil in wild-type (WT) and LPCAT2 knockout (LPCAT2-KO) mice. The amount of PAF was increased in the skin of WT mice after TNCB or croton oil application but not detected in LPCAT2-KO mice. The ear swelling response was decreased in LPCAT2-KO mice compared with that in WT mice. In the ACD model, the numbers of lymphocytes, eosinophils, macrophages, mast cells and neutrophils were smaller in LPCAT2-KO mice than in WT mice. In the ICD model, the ear swelling response was also decreased in LPCAT2-KO mice compared with that in WT mice. When double staining of each inflammatory cell type and LPCAT2 was performed in ACD tissue, marked co-staining of the eosinophil marker and LPCAT2 was observed. In addition, LPCAT2 expression was observed in the epidermis. These results indicate that PAF is involved in the infiltration of several cell types into the sites of allergic and non-allergic skin inflammation. Furthermore, eosinophils and keratinocytes are primarily responsible for PAF production in skin inflammation.
Collapse
Affiliation(s)
- Midori Kawasaki-Nagano
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Risa Tamagawa-Mineoka
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoki Kurioka
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yukiyasu Arakawa
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mari Nakanishi
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Megumi Kishida
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiromi Nishigaki
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Norito Katoh
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Gu W, Huang C, Chen G, Kong W, Zhao L, Jie H, Zhen G. The role of extracellular traps released by neutrophils, eosinophils, and macrophages in asthma. Respir Res 2024; 25:290. [PMID: 39080638 PMCID: PMC11290210 DOI: 10.1186/s12931-024-02923-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Extracellular traps (ETs) are a specialized form of innate immune defense in which leukocytes release ETs composed of chromatin and active proteins to eliminate pathogenic microorganisms. In addition to the anti-infection effect of ETs, researchers have also discovered their involvement in the pathogenesis of inflammatory disease, tumors, autoimmune disease, and allergic disease. Asthma is a chronic airway inflammatory disease involving multiple immune cells. The increased level of ETs in asthma patients suggests that ETs play an important role in the pathogenesis of asthma. Here we review the research work on the formation mechanism, roles, and therapeutic strategies of ETs released by neutrophils, eosinophils, and macrophages in asthma.
Collapse
Affiliation(s)
- Wei Gu
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Chunli Huang
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Gongqi Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Weiqiang Kong
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Lu Zhao
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Huiru Jie
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Guohua Zhen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China.
| |
Collapse
|
5
|
Ibrahim N, Bleichert S, Klopf J, Kurzreiter G, Hayden H, Knöbl V, Artner T, Krall M, Stiglbauer-Tscholakoff A, Oehler R, Petzelbauer P, Busch A, Bailey MA, Eilenberg W, Neumayer C, Brostjan C. Reducing Abdominal Aortic Aneurysm Progression by Blocking Neutrophil Extracellular Traps Depends on Thrombus Formation. JACC Basic Transl Sci 2024; 9:342-360. [PMID: 38559632 PMCID: PMC10978405 DOI: 10.1016/j.jacbts.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/02/2023] [Accepted: 11/01/2023] [Indexed: 04/04/2024]
Abstract
Neutrophil extracellular traps (NETs) are implicated in the pathogenesis of abdominal aortic aneurysm (AAA), located in adventitia and intraluminal thrombus. We compared the therapeutic potential of targeting upstream or downstream effector molecules of NET formation in 2 murine AAA models based on angiotensin II or peri-adventitial elastase application. In both models, NETs were detected in formed aneurysms at treatment start. Although NET inhibitors failed in the elastase model, they prevented progression of angiotensin II-induced aneurysms with thrombus, which resembles established human disease (including thrombus development). Blockade of upstream NET mediators was more effective than interference with downstream NET molecules.
Collapse
Affiliation(s)
- Nahla Ibrahim
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Sonja Bleichert
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Johannes Klopf
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Gabriel Kurzreiter
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Hubert Hayden
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Viktoria Knöbl
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Tyler Artner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Moritz Krall
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Alexander Stiglbauer-Tscholakoff
- Division of Cardiovascular and Interventional Radiology, Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Rudolf Oehler
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Albert Busch
- Department for Visceral, Thoracic and Vascular Surgery, Technical University of Dresden and University Hospital Carl-Gustav Carus, Dresden, Germany
| | - Marc A. Bailey
- Leeds Institute for Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
- Leeds Vascular Institute, Leeds General Infirmary, Leeds, United Kingdom
| | - Wolf Eilenberg
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| | - Christine Brostjan
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and University Hospital Vienna, Vienna, Austria
| |
Collapse
|
6
|
Liu K, Han B. Role of immune cells in the pathogenesis of myocarditis. J Leukoc Biol 2024; 115:253-275. [PMID: 37949833 DOI: 10.1093/jleuko/qiad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Myocarditis is an inflammatory heart disease that mostly affects young people. Myocarditis involves a complex immune network; however, its detailed pathogenesis is currently unclear. The diversity and plasticity of immune cells, either in the peripheral blood or in the heart, have been partially revealed in a number of previous studies involving patients and several kinds of animal models with myocarditis. It is the complexity of immune cells, rather than one cell type that is the culprit. Thus, recognizing the individual intricacies within immune cells in the context of myocarditis pathogenesis and finding the key intersection of the immune network may help in the diagnosis and treatment of this condition. With the vast amount of cell data gained on myocarditis and the recent application of single-cell sequencing, we summarize the multiple functions of currently recognized key immune cells in the pathogenesis of myocarditis to provide an immune background for subsequent investigations.
Collapse
Affiliation(s)
- Keyu Liu
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Shandong University, Cheeloo Colledge of Medicine, No. 324 Jingwu Road, 250021, Jinan, China
| | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Shandong University, Cheeloo Colledge of Medicine, No. 324 Jingwu Road, 250021, Jinan, China
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Road, 250021, Jinan, China
- Shandong Provincial Hospital, Shandong Provincial Clinical Research Center for Children' s Health and Disease office, No. 324 Jingwu Road, 250021, Jinan, China
| |
Collapse
|
7
|
Abstract
Sepsis is accompanied by thrombocytopenia and the severity of the thrombocytopenia is associated with mortality. This thrombocytopenia is characteristic of disseminated intravascular coagulation (DIC), the sepsis-associated coagulopathy. Many of the pathogens, both bacterial and viral, that cause sepsis also directly activate platelets, which suggests that pathogen-induced platelet activation leads to systemic thrombosis and drives the multi-organ failure of DIC. In this paper we review the mechanisms of platelet activation by pathogens and the evidence for a role for anti-platelet agents in the management of sepsis.
Collapse
Affiliation(s)
- Dermot Cox
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|