1
|
Jia G, Zhong X, Im HK, Schoettler N, Pividori M, Hogarth DK, Sperling AI, White SR, Naureckas ET, Lyttle CS, Terao C, Kamatani Y, Akiyama M, Matsuda K, Kubo M, Cox NJ, Ober C, Rzhetsky A, Solway J. Discerning asthma endotypes through comorbidity mapping. Nat Commun 2022; 13:6712. [PMID: 36344522 PMCID: PMC9640644 DOI: 10.1038/s41467-022-33628-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
Asthma is a heterogeneous, complex syndrome, and identifying asthma endotypes has been challenging. We hypothesize that distinct endotypes of asthma arise in disparate genetic variation and life-time environmental exposure backgrounds, and that disease comorbidity patterns serve as a surrogate for such genetic and exposure variations. Here, we computationally discover 22 distinct comorbid disease patterns among individuals with asthma (asthma comorbidity subgroups) using diagnosis records for >151 M US residents, and re-identify 11 of the 22 subgroups in the much smaller UK Biobank. GWASs to discern asthma risk loci for individuals within each subgroup and in all subgroups combined reveal 109 independent risk loci, of which 52 are replicated in multi-ancestry meta-analysis across different ethnicity subsamples in UK Biobank, US BioVU, and BioBank Japan. Fourteen loci confer asthma risk in multiple subgroups and in all subgroups combined. Importantly, another six loci confer asthma risk in only one subgroup. The strength of association between asthma and each of 44 health-related phenotypes also varies dramatically across subgroups. This work reveals subpopulations of asthma patients distinguished by comorbidity patterns, asthma risk loci, gene expression, and health-related phenotypes, and so reveals different asthma endotypes.
Collapse
Affiliation(s)
- Gengjie Jia
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Institute of Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China
| | - Xue Zhong
- Department of Medicine and Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Hae Kyung Im
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Nathan Schoettler
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Milton Pividori
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - D Kyle Hogarth
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Anne I Sperling
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Steven R White
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | | | | | - Chikashi Terao
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, 420-8527, Japan
- Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yoichiro Kamatani
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Department of Computational Biology and Medical Sciences, Graduate school of Frontier Sciences, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Masato Akiyama
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Graduate school of Frontier Sciences, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Nancy J Cox
- Department of Medicine and Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| | - Andrey Rzhetsky
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA.
- Institute of Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Genomics, Genetics, and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Julian Solway
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
2
|
Han XP, Zhang FQ, Tan XS, Liu L, Ma WX, Ou-Yang HF, Wu CG. EPO modified MSCs can inhibit asthmatic airway remodeling in an animal model. J Cell Biochem 2017; 119:1008-1016. [PMID: 28686347 DOI: 10.1002/jcb.26268] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/05/2017] [Indexed: 01/04/2023]
Abstract
There was no effective measures can be obtained at present to reverse or prevent airway remodeling. We investigated the therapeutic effect of Erythropoietin (EPO) gene modified mesenchymal stem cells (MSCs) on asthmatic airway remodeling and the possible underlied molecular mechanisms. EPO gene was transfected into MSCs via lentivirus vector. The transfected cells (EPO-MSCs) were identified by flow cytometry and the EPO secreting function was detected by PCR and Western blot. MSCs or EPO-MSCs were administrated to albumin (OVA)-induced chronic asthmatic mouse model via tail veins. The asthmatic phenotype was analyzed. Number of cells in bronchoalveolar lavage fluid (BALF) was counted using a hemocytometer. Histological findings of airways were evaluated by microscopic examination. The concentrations of interleukin 4(IL-4), interleukin 5(IL-5), and interleukin 13(IL-13) in lung homogenate were determined by ELISA. The activation state of transforming growth factor-β 1 (TGF-β1), Transforming growth factor beta-activated kinase 1 (TAK1), and p38 Mitogen Activated Protein Kinase (p38MAPK) signaling was detected by Real-Time PCR and Western blotting. EPO-MSCs were successfully constructed. EPO-MSCs showed a more potently suppressive effect on local asthmatic airway inflammation and the level of IL-4, IL-5, and IL-13 in lung tissue than MSCs. Moreover, the numbers of goblet cells, the thicknesses of smooth muscle layer, collagen density, percentage of proliferating cell nuclear antigen positive (PCNA+ ) mesenchymal cells, and von Willebrand factor positive(vWF+ ) vessels were also significantly inhibited by EPO-MSCs. Furthermore, EPO-MSCs could downregulate the expression of TGF-β1, TAK1, and p38MAPK in lung tissue both in mRNA level and in protein level. EPO gene modified MSCs may more efficiently attenuate asthmatic airway remodeling, which maybe related with the downregulation of TGF-β1-TAK1-p38MAPK pathway activity.
Collapse
Affiliation(s)
- Xin-Peng Han
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fang-Qi Zhang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiang-Shu Tan
- Department of Internal Medicine, Xi'an Jiaotong University Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Liang Liu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wen-Xian Ma
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hai-Feng Ou-Yang
- Department of Respiratory Medicine, Baoan District Central Hospital, Shenzhen, China
| | - Chang-Gui Wu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Xu H, Radabaugh T, Lu Z, Galligan M, Billheimer D, Vercelli D, Wright AL, Monks TJ, Halonen M, Lau SS. Exploration of early-life candidate biomarkers for childhood asthma using antibody arrays. Pediatr Allergy Immunol 2016; 27:696-701. [PMID: 27434124 PMCID: PMC5526199 DOI: 10.1111/pai.12613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/16/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Proteomic approaches identifying biomarkers have been applied to asthma to only a very limited extent. METHODS With an antibody array (RayBiotech, Norcross, GA, USA), the relative intensity and rank differences of 444 proteins were compared in 24 plasma samples obtained at age 3, 11 from children with and 12 without asthma diagnoses at ages 5 and 9. Protein candidates identified by antibody array were quantitated by ELISA in an enlarged sample. Proteins found to differentiate children with and without asthma were also examined for association with known Year 1 asthma risk factors, eczema, and wheeze. RESULTS In the antibody array, four proteins had rank differences between asthma and non-asthma groups (FDR <0.1). By ELISA, mean log (±s.e.m.) erythropoietin (EPO) level (IU/l) was lower (0.750 ± 0.048 vs. 0.898 ± 0.035; p = 0.006) and mean (±s.e.m.) soluble GP130 (sGP130) level (ng/ml) was higher in the asthma vs. the non-asthma group (302 ± 13 vs. 270 ± 8; p = 0.041). The other 2 array proteins (galactin-3 and eotaxin-3) did not differ by ELISA by asthma. EPO related to the asthma risk factor, first year eczema, whereas sGP130 related to first year wheeze. CONCLUSIONS Through two independent assessments, age 3 plasma levels of EPO and sGP130 were found related to childhood asthma.
Collapse
Affiliation(s)
- Haili Xu
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ, USA.,Department of Pharmacology, The University of Arizona, Tucson, AZ, USA
| | - Timothy Radabaugh
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ, USA.,Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Zhenqiang Lu
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ, USA.,Department of Epidemiology and Biostatistics, College of Public Health, The University of Arizona, Tucson, AZ, USA
| | - Michael Galligan
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ, USA.,Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Dean Billheimer
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ, USA.,Department of Epidemiology and Biostatistics, College of Public Health, The University of Arizona, Tucson, AZ, USA.,Bio5 Institute, The University of Arizona, Tucson, AZ, USA.,Statistics Consulting Laboratory, The University of Arizona, Tucson, AZ, USA
| | - Donata Vercelli
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ, USA.,Bio5 Institute, The University of Arizona, Tucson, AZ, USA.,Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA.,Arizona Respiratory Center, The University of Arizona, Tucson, AZ, USA.,Arizona Center for the Biology of Complex Disease, The University of Arizona, Tucson, AZ, USA
| | - Anne L Wright
- Arizona Respiratory Center, The University of Arizona, Tucson, AZ, USA.,Department of Pediatrics, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Terrence J Monks
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ, USA.,Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA.,Bio5 Institute, The University of Arizona, Tucson, AZ, USA.,Arizona Center for the Biology of Complex Disease, The University of Arizona, Tucson, AZ, USA
| | - Marilyn Halonen
- Department of Pharmacology, The University of Arizona, Tucson, AZ, USA.,Bio5 Institute, The University of Arizona, Tucson, AZ, USA.,Arizona Respiratory Center, The University of Arizona, Tucson, AZ, USA.,Arizona Center for the Biology of Complex Disease, The University of Arizona, Tucson, AZ, USA
| | - Serrine S Lau
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ, USA. .,Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA. .,Bio5 Institute, The University of Arizona, Tucson, AZ, USA. .,Arizona Center for the Biology of Complex Disease, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
4
|
The effect of atorvastatin on lung histopathology in a murine model of chronic asthma. Allergol Immunopathol (Madr) 2014; 42:355-61. [PMID: 24269182 DOI: 10.1016/j.aller.2013.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/27/2013] [Accepted: 09/14/2013] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Atorvastatin is a statin group medicine that reduces the level of serum cholesterol; thus it is used to treat hypercholesterolaemia. Independent of the cholesterol-lowering property of statins they also have anti-inflammatory and immunomodulating effects. This study aimed to investigate the effect of atorvastatin on histological changes in the lungs in a murine model of chronic asthma. MATERIALS AND METHODS Twenty-eight BALB/c mice in Group I, II, III and IV were divided into four groups. All the mice except the control group (Group I) were sensitised with ovalbumin. Intraperitoneal injection with saline, atorvastatin (10mg/kg), dexametazon (1mg/kg) was administered to Group II, Group III, and Group IV respectively for five consecutive days. Mice were sacrificed 24h after the last drug administration. All the histological properties of lung tissue samples from all groups were evaluated with light and electron microscopy. In addition, IL-4 and IL-5 levels of the lung tissue were measured. RESULTS When Group II and Group III (atorvastatin) were compared, thicknesses of basement membrane and subepithelial smooth muscle layer, height of epithelium, number of mast and goblet cells were significantly lower in Group III. In comparing Group III (atorvastatin) and Group IV (dexamethasone), all the improvements in histological parameters were similar. In addition, the IL-4 and IL-5 levels of the lung tissue were significantly lower in atorvastatin group (Group III) compared to placebo-treated group. CONCLUSION Atorvastatin had a beneficial effect on histological changes in a chronic murine model of asthma.
Collapse
|