1
|
Zheng Y, Gao D, Xie H, Geng H. Epicatechin protects mice against OVA-induced asthma through inhibiting airway inflammation and modulating gut microbiota. Cell Signal 2025; 127:111609. [PMID: 39826677 DOI: 10.1016/j.cellsig.2025.111609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/21/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Allergic asthma is a chronic airway inflammatory reaction that seriously affects people's quality of life and even endangers their lives. The aim of this study was to explore the role of epicatechin (EC) on asthma and its potential mechanism. A mice model of allergic asthma was established by intraperitoneal injection of ovalbumin (OVA) with aluminum hydrogen solution, and nebulized inhalation of OVA to stimulate. EC (10, 20, 40 mg/kg) was administered 30 min before nebulization for three consecutive days. The results showed that EC attenuated OVA-induced lung injury, inflammatory cell infiltration, IgE, and inflammatory cytokine production. EC also inhibited OVA-induced NF-κB activation and increased Nrf2 and HO-1 expression. 16S rRNA sequencing analysis demonstrated that at genus level, EC significantly increased the abundance of Lachnospiraceae_NK4A136_group, Ligilactobacillus, Alloprevotella. Meanwhile, EC inhibited the abundance of Clostridia UCG-014, Helicobacter, Paramuribaculum, and Escherichia-Shigella. In conclusion, EC can effectively alleviate the symptoms of asthma in mice, which may through regulating the composition of gut microbiota and inhibiting inflammatory response.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Gynecology, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, Jilin 130033, China
| | - Dengyu Gao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, Jilin 130033, China
| | - Hongyang Xie
- Department of Gynecology, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, Jilin 130033, China.
| | - Huafeng Geng
- Department of Gynecology, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, Jilin 130033, China.
| |
Collapse
|
2
|
Zheng Y, Gao D, Xie H, Geng H. Geniposidic acid inhibits OVA-induced asthma by suppressing allergic airway inflammation and regulating gut microbiota. Front Immunol 2025; 16:1549459. [PMID: 40070820 PMCID: PMC11893829 DOI: 10.3389/fimmu.2025.1549459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
Asthma is a serious chronic inflammatory disease of the respiratory system. In this study, we aimed to explore the role of geniposidic acid (GPA) in ovalbumin (OVA)-induced asthma in mice and to clarify its underlying mechanism. The mice were divided into control group, OVA group, OVA+GPA (12.5, 25, 50 mg/kg) groups. Inflammatory mediators were measured by ELISA. Gut microbiota was detected by 16S RNA sequencing. The results demonstrated that GPA attenuated OVA-induced lung injury, inflammatory cell infiltration, and mucus hypersecretion. OVA-induced IL-4, IL-5, IL-13, and IgE production was also inhibited by GPA. IFN-γ production was increased by GPA. Furthermore, GPA inhibited OVA-induced NF-κB activation and increased Nrf2 expression. In addition, GPA alleviated the dysbiosis of gut microbiota induced by OVA. After GPA treatment, the diversity and abundance of intestinal microbiota in asthma mice increased. At the phylum level, GPA significantly reduced the relative abundance of Ligilactobacillus, Lachnospiraceae, Helicobacter, and Bacteroidales and significantly increased the relative abundance of Muribaculaceae and Muribaculum. In conclusion, GPA protect mice against OVA-induced asthma through suppressing inflammation and regulating gut microbiota.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Dengyu Gao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Hongyang Xie
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Huafeng Geng
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Luo T, Che Q, Guo Z, Song T, Zhao J, Xu D. Modulatory effects of traditional Chinese medicines on gut microbiota and the microbiota-gut-x axis. Front Pharmacol 2024; 15:1442854. [PMID: 39444598 PMCID: PMC11497133 DOI: 10.3389/fphar.2024.1442854] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
The gut microbiota offers numerous benefits to the human body, including the promotion of nutrient absorption, participation in metabolic processes, and enhancement of immune function. Recent studies have introduced the concept of the gut-organ axis, which encompasses interactions such as the gut-brain axis, gut-liver axis, and gut-lung axis. This concept underscores the complex interplay between gut microbiota and various organs and tissues, including the brain, heart, lungs, liver, kidneys, muscles, and bones. Growing evidence indicates that gut microbiota can influence the onset and progression of multi-organ system diseases through their effects on the gut-organ axis. Traditional Chinese medicine has demonstrated significant efficacy in regulating the gastrointestinal system, leveraging its unique advantages. Considerable advancements have been made in understanding the role of gut microbiota and the gut-organ axis within the mechanisms of action of traditional Chinese medicine. This review aims to elucidate the roles of gut microbiota and the gut-organ axis in human health, explore the potential connections between traditional Chinese medicine and gut microbiota, and examine the therapeutic effects of traditional Chinese medicine on the microbiota-gut-organ axis. Furthermore, the review addresses the limitations and challenges present in current research while proposing potential directions for future investigations in this area.
Collapse
Affiliation(s)
- Tingting Luo
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, China
| | - Qingya Che
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, China
| | - Ziyi Guo
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, China
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Tingxia Song
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Delin Xu
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, China
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
Panpan Z, Jinli H, Qiuhong L, Bo D, Juan Z, Hui S, Xin S. Changes in respiratory tract and gut microbiota in AR mice and their relationship with Th1/Th2/Treg. Microb Pathog 2024; 195:106881. [PMID: 39197690 DOI: 10.1016/j.micpath.2024.106881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND The etiology of allergic rhinitis (AR) is not fully understood. Studies have shown that the maturation of children's immune systems is closely related to microecology. However, few studies have focused simultaneously on changes in respiratory and gut microbiota in AR and their correlation between microecological changes and Th1/Th2/Treg. OBJECTIVE The aim is to investigate the pathogenesis of AR based on respiratory microecology, gut microecology, and Th1/Th2/Treg levels by applying microbiome techniques and correlation analysis. METHODS Standardized OVA-induced AR mice were established. Serum OVA-sIgE, IL-4, IFN-γ, IL-10 were measured by ELISA, Tregs in lymph nodes were determined by flow cytometry, and the histological characteristics of nasal tissues were evaluated by Hematoxylin & Eosin (H&E). Nasal symptoms were observed to determine the reliability of the AR mouse model. Nasal lavage fluid (NALF) and fecal samples were collected after the last OVA challenge. The composition of respiratory microbiota in NALF and gut microbial in feces samples via 16S rRNA gene sequencing between the two groups, further explored the relationship between microbiota and Th1/Th2/Treg levels. RESULTS In the AR group, the incidence of nose rubbing and sneezing in each mouse was significantly increased compared with the control group (all P < 0.001) and the inflammatory cell infiltration of NALF shows a significant increase in eosinophilic and neutrophilic infiltrates upon the AR group; H&E showed that the nasal mucosa of AR mice infiltration of massive eosinophils cells and neutrophils cells. OVA-sIgE and IL-4 in the AR group were increased (P < 0.01, P < 0.05) and IFN-γ, IL-10 were significantly decreased (P < 0.01, P < 0.05). Tregs showed a downward trend in the AR group, but there was no statistical difference. Compared with the control group, the respiratory microbiota of AR mice did not change significantly, while the gut microbiota changed significantly. In gut microbiota, compared to the control group, Shannon index in the AR group revealed a significant decrease at the genus level (P < 0.01), and Simpson index was significantly increased at all levels (all P < 0.05). PCoA also showed significant differences in beta diversity between the two groups (all P < 0.05). Compared to the control group, Deferribacteres at phylum level, Roseburia, Ruminiclostridium, Anaerotruncus at genus level were significantly decreased in the AR group (all P < 0.05). Spearman's rank correlation showed that OVA-sIgE was positively correlated with Bacteroidetes, Muribaculaceae and Erysipelotrichaceae (all P < 0.05); IL-4 was significantly negatively correlated with Epsilonbacteraeota and Deferribacteres (all P < 0.05). Treg was significantly positively correlated with Patescibacteria, Lachnospiraceae, and Saccharimonadaceae in gut microecology. CONCLUSION Our results showed that the respiratory microbiota of AR mice was not significantly altered, but the gut microbiota varied significantly and there was a correlation between gut microbiota and Th1/Th2/Treg.
Collapse
Affiliation(s)
- Zhang Panpan
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Huang Jinli
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Li Qiuhong
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Dong Bo
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Zhang Juan
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Su Hui
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China.
| | - Sun Xin
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
5
|
Mousavian AH, Zare Garizi F, Ghoreshi B, Ketabi S, Eslami S, Ejtahed HS, Qorbani M. The association of infant and mother gut microbiomes with development of allergic diseases in children: a systematic review. J Asthma 2024; 61:1121-1135. [PMID: 38506489 DOI: 10.1080/02770903.2024.2332921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVE It is believed that gut microbiota alteration leads to both intestinal and non-intestinal diseases in children. Since infants inherit maternal microbiota during pregnancy and lactation, recent studies suggest that changes in maternal microbiota can cause immune disorders as well. This systematic review was designed to assess the association between the child and mother's gut microbiome and allergy development in childhood. DATA SOURCES In this systematic review, international databases including PubMed, Scopus, and ISI/WOS were searched until January 2023 to identify relevant studies. STUDY SELECTIONS Observational studies that analyzed infant or maternal stool microbiome and their association with allergy development in children were included in this study. Data extraction and quality assessment of the included studies were independently conducted by two researchers. RESULTS Of the 1694 papers evaluated, 21 studies examined neonate gut microbiome by analyzing stool samples and six studies examined maternal gut microbiota. A total of 5319 participants were included in this study. Asthma followed by eczema and dermatitis were the most common allergy disorders among children. Urbanization caused a lack of diversity in the bacterial microbiota as well as lower levels of Bifidobacterium and Lachnospira associated with a higher risk of allergy. In contrast, higher levels of Roseburia and Flavonifractor were associated with lower allergy risk. CONCLUSIONS This systematic review shows that gut microbiota may be associated with allergy development. Further studies are required to provide a definitive answer.
Collapse
Affiliation(s)
- Amir-Hossein Mousavian
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Zare Garizi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Behnaz Ghoreshi
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Siavash Ketabi
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
6
|
Sacharczuk M, Mickael ME, Kubick N, Kamińska A, Horbańczuk JO, Atanasov AG, Religa P, Ławiński M. The Current Landscape of Hypotheses Describing the Contribution of CD4+ Heterogeneous Populations to ALS. Curr Issues Mol Biol 2024; 46:7846-7861. [PMID: 39194682 DOI: 10.3390/cimb46080465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a poorly understood and fatal disease. It has a low prevalence and a 2-4 year survival period. Various theories and hypotheses relating to its development process have been proposed, albeit with no breakthrough in its treatment. Recently, the role of the adaptive immune system in ALS, particularly CD4+ T cells, has begun to be investigated. CD4+ T cells are a heterogeneous group of immune cells. They include highly pro-inflammatory types such as Th1 and Th17, as well as highly anti-inflammatory cells such as Tregs. However, the landscape of the role of CD4+ T cells in ALS is still not clearly understood. This review covers current hypotheses that elucidate how various CD4+ T cells can contribute to ALS development. These hypotheses include the SWITCH model, which suggests that, in the early stages of the disease, Tregs are highly capable of regulating the immune response. However, in the later stages of the disease, it seems that pro-inflammatory cells such as Th1 and Th17 are capable of overwhelming Treg function. The reason why this occurs is not known. Several research groups have proposed that CD4+ T cells as a whole might experience aging. Others have proposed that gamma delta T cells might directly target Tregs. Additionally, other research groups have argued that less well-known CD4+ T cells, such as Emoes+ CD4+ T cells, may be directly responsible for neuron death by producing granzyme B. We propose that the ALS landscape is highly complicated and that there is more than one feasible hypothesis. However, it is critical to take into consideration the differences in the ability of different populations of CD4+ T cells to infiltrate the blood-brain barrier, taking into account the brain region and the time of infiltration. Shedding more light on these still obscure factors can help to create a personalized therapy capable of regaining the balance of power in the battle between the anti-inflammatory and pro-inflammatory cells in the central nervous system of ALS patients.
Collapse
Affiliation(s)
- Mariusz Sacharczuk
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| | - Michel-Edwar Mickael
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Norwin Kubick
- Department of Biology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Agnieszka Kamińska
- Faculty of Medicine, Collegium Medicum Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
| | - Piotr Religa
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden
| | - Michał Ławiński
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Department of General Surgery, Gastroenterology and Oncology, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
7
|
Ciprandi G, Miraglia del Giudice M, Drago L. Progress on probiotics as add-on therapy for allergic rhinitis. REVUE FRANÇAISE D'ALLERGOLOGIE 2024; 64:103766. [DOI: 10.1016/j.reval.2023.103766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Huang X, Cai H, Zhao Y, Kang Y. The Gut Microbiome and Acute Leukemia: Implications for Early Diagnostic and New Therapies. Mol Nutr Food Res 2024; 68:e2300551. [PMID: 38059888 DOI: 10.1002/mnfr.202300551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/04/2023] [Indexed: 12/08/2023]
Abstract
Acute leukemia (AL), one of the hematological malignancies, shows high heterogeneity. Tremendous progresses are achieved in treating AL with novel targeted drugs and allogeneic hematopoietic stem cell transplantation, there are numerous issues including pathogenesis, early diagnosis, and therapeutic efficacy of AL to be solved. In recent years, an increasing number of studies regarding microbiome have shed more lights on the role of gut microbiota in promoting AL progression. Mechanisms related to the role of gut microbiota in enhancing AL genesis are summarized in the present work, especially on critical pathways like leaky gut, bacterial dysbiosis, microorganism-related molecular patterns, and bacterial metabolites, resulting in AL development. Additionally, the potential of gut microbiota as the biomarker for early AL diagnosis is discussed. It also outlooks therapies targeting gut microbiota for preventing AL development.
Collapse
Affiliation(s)
- Xinwei Huang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Haibo Cai
- Department of Oncology, Yunfeng Hospital, Xuanwei City, Yunnan Province, 655400, China
| | - Yanqin Zhao
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Yongbo Kang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| |
Collapse
|
9
|
Chang C, Wang Q, Li X, Tan H, Huang G. The relationship between prebiotic intake and allergic rhinitis. Laryngoscope Investig Otolaryngol 2023; 8:1146-1153. [PMID: 37899852 PMCID: PMC10601581 DOI: 10.1002/lio2.1158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/28/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Objectives Exploring the relationship between intake of probiotics and the prevalence of allergic rhinitis. Methods Based on data from the National Health and Nutrition Examination Survey, dietary supplement labels were examined to identify products containing probiotics and prebiotics. Statistical methods were used to analyze the factors influencing the prevalence of allergic rhinitis, and further stratified analysis was conducted to control for confounding factors. Results The proportion of individuals not consuming probiotics was significantly higher in the allergic rhinitis (AR) group than in those consuming them, suggesting a correlation between probiotics and AR. In the male subgroup with probiotic intake, the adjusted odds ratio (95% confidence interval) was 0.28 (0.10-0.75), p = .02, indicating that probiotic intake was a protective factor for AR in the male population. In the probiotic-intake group, the odds ratio for age < 65 was 0.26 (0.07-0.94), p = .04, and for age ≥ 80 was less than 1 with p < .0001, suggesting that probiotic intake was a protective factor for AR in age < 65 and age ≥ 80 populations, both with statistical significance. Conclusion Intake of probiotics is associated with a reduced prevalence of allergic rhinitis, particularly in the male population and individuals aged <65 years and ≥ 80 years. Level of Evidence Level 4.
Collapse
Affiliation(s)
- Chao Chang
- Department of Otolaryngology, Xiangyang No.1 People's HospitalHubei University of MedicineXiangyangHubeiChina
| | - Qiuyang Wang
- Department of Otolaryngology, Xiangyang No.1 People's HospitalHubei University of MedicineXiangyangHubeiChina
| | - Xiaodan Li
- Department of Otolaryngology, Xiangyang No.1 People's HospitalHubei University of MedicineXiangyangHubeiChina
| | - Huazhang Tan
- Department of Otolaryngology, Xiangyang No.1 People's HospitalHubei University of MedicineXiangyangHubeiChina
| | - Guoxin Huang
- Department of Evidence‐Based Medicine Center, Xiangyang No.1 People's HospitalHubei University of MedicineXiangyangChina
- School of Public Health and ManagementHubei University of MedicineShiyanHubeiChina
| |
Collapse
|
10
|
Tian Q, Zhang T, Wang L, Ma J, Sun X. Gut dysbiosis contributes to chlamydial induction of hydrosalpinx in the upper genital tract. Front Microbiol 2023; 14:1142283. [PMID: 37125189 PMCID: PMC10133527 DOI: 10.3389/fmicb.2023.1142283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Chlamydia trachomatis is one of the most common sexually infections that cause infertility, and its genital infection induces tubal adhesion and hydrosalpinx. Intravaginal Chlamydia muridarum infection in mice can induce hydrosalpinx in the upper genital tract and it has been used for studying C. trachomatis pathogenicity. DBA2/J strain mice were known to be resistant to the chlamydial induction of hydrosalpinx. In this study, we took advantage of this feature of DBA2/J mice to evaluate the role of antibiotic induced dysbiosis in chlamydial pathogenicity. Antibiotics (vancomycin and gentamicin) were orally administrated to induce dysbiosis in the gut of DBA2/J mice. The mice with or without antibiotic treatment were evaluated for gut and genital dysbiosis and then intravaginally challenged by C. muridarum. Chlamydial burden was tested and genital pathologies were evaluated. We found that oral antibiotics significantly enhanced chlamydial induction of genital hydrosalpinx. And the antibiotic treatment induced severe dysbiosis in the GI tract, including significantly reduced fecal DNA and increased ratios of firmicutes over bacteroidetes. The oral antibiotic did not alter chlamydial infection or microbiota in the mouse genital tracts. Our study showed that the oral antibiotics-enhanced hydrosalpinx correlated with dysbiosis in gut, providing the evidence for associating gut microbiome with chlamydial genital pathogenicity.
Collapse
Affiliation(s)
- Qi Tian
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
- *Correspondence: Qi Tian,
| | - Tianyuan Zhang
- Key Lab of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- Tianyuan Zhang,
| | - Luying Wang
- Department of Obstetrics and Gynecology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingyue Ma
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Sun
- Department of Obstetrics and Gynecology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Diet and Microbiome in Health and Aging. Nutrients 2022; 14:nu14163250. [PMID: 36014756 PMCID: PMC9416264 DOI: 10.3390/nu14163250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
After several years of research, sufficient evidence has been found supporting that diet is one of the main factors able to modulate both composition and activity of the intestinal microbiota, thus positioning it as a cornerstone in the host-microbiota interface [...]
Collapse
|
12
|
Ciprandi G, Tosca MA. Probiotics in Children with Asthma. CHILDREN (BASEL, SWITZERLAND) 2022; 9:978. [PMID: 35883962 PMCID: PMC9316460 DOI: 10.3390/children9070978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/11/2022]
Abstract
A type-2 immune response usually sustains wheezing and asthma in children. In addition, dysbiosis of digestive and respiratory tracts is detectable in patients with wheezing and asthma. Probiotics may rebalance immune response, repair dysbiosis, and mitigate airway inflammation. As a result, probiotics may prevent asthma and wheezing relapse. There is evidence that some probiotic strains may improve asthma outcomes in children. In this context, the PROPAM study provided evidence that two specific strains significantly prevented asthma exacerbations and wheezing episodes. Therefore, oral probiotics could be used as add-on asthma therapy in managing children with asthma, but the choice should be based on documented evidence.
Collapse
Affiliation(s)
- Giorgio Ciprandi
- Allergy Clinic, Casa di Cura Villa Montallegro, 16146 Genoa, Italy
| | | |
Collapse
|
13
|
Cai Y, Zhao Y, Kang Y, Yang Y. Future Prospect of Oral Microbiota Influencing Allergy/Asthma Development. Front Microbiol 2022; 13:875664. [PMID: 35722345 PMCID: PMC9198628 DOI: 10.3389/fmicb.2022.875664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/14/2022] [Indexed: 01/10/2023] Open
Abstract
Allergic diseases have become a primary public health issue in a moderately prosperous society. Colonization of microorganisms early in life appears to be significant in guiding the regulation of childhood immune system maturation and allergy development. Since the oral cavity is the first position where most foreign antigens meet the immune system, the oral microbiota may play a key role in the development of allergies. However, the study on the effects of oral microorganisms on allergy/asthma is very restricted and should be actively investigated. It requires considerable effort to enrich our knowledge in this area of the relationship between the oral cavity and allergy/asthma. To promote the rapid progress of relevant research. In this review, we aimed to provide several insights into the role of the oral microbiota in allergy/asthma while prospecting future directions.
Collapse
Affiliation(s)
- Yue Cai
- Department of Endocrinology, Affiliated Hospital of Yunnan University, Kunming, China
| | - Yanqin Zhao
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yongbo Kang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Ying Yang
- Department of Endocrinology, Affiliated Hospital of Yunnan University, Kunming, China
| |
Collapse
|
14
|
Comparative Study on Medicinal Natures (qi) of Black Ginseng, Red Ginseng, and Ginseng Leaves Based on Typical Deficiency-Heat Syndrome Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5194987. [PMID: 35502177 PMCID: PMC9056217 DOI: 10.1155/2022/5194987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/03/2022] [Accepted: 04/09/2022] [Indexed: 11/17/2022]
Abstract
To elucidate the medicinal nature of black ginseng (BG) by comparison of the effects of four Chinese herbs with different medicinal natures on the deficiency-heat syndrome rat model which was established by intragastric administration of traditional Chinese drugs with hot nature, the appearance indexes, biochemical indexes, and pathological sections of thyroid and stomach were examined. In addition, the seven short-chain fatty acids (SCFAs) in rat feces were also determined by headspace gas chromatography-mass spectrometry to reveal the action mechanism of the drugs with different natures. Results indicated that all the 4 drugs could exhibit similar actions in regulating the biochemical indexes of triiodothyronine (T3), thyroxine (T4), thyrotropin-releasing hormone (TRH), thyroid-stimulating hormone (TSH), and corticosterone (CORT) representing the hypothalamus-pituitary-thyroid (HPT) and hypothalamus-pituitary-adrenal (HPA) axes of the animal. However, cold-natured cortex phellodendri (HB) and ginseng leaves (GLs) showed stronger downregulation of the AChE activity of the nervous system. Red ginseng (RG) and BG tested exhibited stronger upregulation of the liver Na+-K+-ATPase activity. Principal component analysis (PCA) showed that GLs are similar to those of HB which belongs to the cold-nature drug, whereas BG showed closer to RG which attributes to a warm-nature drug. Thus, BG could be ascribed to a warm-nature drug. Further research disclosed that RG and BG mainly regulated the acetic acid and GL and HB primarily modulated the isovaleric acid and hexanoic acid in rat feces, which could be the features of drugs with warm or cold nature on the regulation of SCFAs in rats. It is for the first time that the medicinal nature of BG and its effect on the SCFAs were examined.
Collapse
|
15
|
Kang Y, Cai Y, Yang Y. The Gut Microbiome and Hepatocellular Carcinoma: Implications for Early Diagnostic Biomarkers and Novel Therapies. Liver Cancer 2022; 11:113-125. [PMID: 35634424 PMCID: PMC9109080 DOI: 10.1159/000521358] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/04/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) ranks the third place among all causes inducing cancer-associated mortality, worldwide. HCC nearly exclusively occurs in cases suffering from chronic liver disease (CLD), which results from the vicious cycle of liver damage, inflammation, and regeneration possibly lasting for dozens of years. Recently, more and more investigation on microbiome-gut-liver axis enhances our understanding toward how gut microbiota promotes liver disease and even HCC development. In this review, we summarize the mechanisms underlying the effect of gut microbiota on promoting HCC occurrence, with the focus on key pathways such as bacterial dysbiosis, leaky gut, bacterial metabolites, and microorganism-related molecular patterns, which promote liver inflammation, genotoxicity, and fibrosis that finally lead to cancer occurrence. Furthermore, we discuss gut microbiota's important potential to be the early diagnostic biomarker for HCC. Gut microbiota may be the candidate targets to simultaneously prevent CLD and HCC occurrence among advanced liver disease cases. We outlook the gut microbiota-targeting treatments in detail to prevent CLD and HCC progression.
Collapse
Affiliation(s)
- Yongbo Kang
- Department of Endocrinology, Affiliated Hospital of Yunnan University, Kunming, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yue Cai
- Department of Endocrinology, Affiliated Hospital of Yunnan University, Kunming, China
| | - Ying Yang
- Department of Endocrinology, Affiliated Hospital of Yunnan University, Kunming, China
| |
Collapse
|
16
|
Liu C, Song Y, Wu T, Shiung K, Chen I, Chang T, Liang S, Yen H. Targeting glycolysis in Th2 cells by pterostilbene attenuates clinical severities in an asthmatic mouse model and IL‐4 production in peripheral blood from asthmatic patients. Immunology 2022; 166:222-237. [DOI: 10.1111/imm.13469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/05/2022] [Accepted: 02/28/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Chuan‐Teng Liu
- Research Center for Traditional Chinese Medicine Department of Medical Research China Medical University Taichung Taiwan
- Chinese Medicine Research Center China Medical University Taichung Taiwan
| | - Ying‐Chyi Song
- Research Center for Traditional Chinese Medicine Department of Medical Research China Medical University Taichung Taiwan
- Graduate Institute of Integrated Medicine College of Chinese Medicine China Medical University Taichung Taiwan
| | - Tsai‐Chen Wu
- Research Center for Traditional Chinese Medicine Department of Medical Research China Medical University Taichung Taiwan
- School of Chinese Medicine College of Chinese Medicine China Medical University Taichung Taiwan
| | - Ko‐Chieh Shiung
- Department of Microbiology and Immunology The University of Melbourne at the Peter Doherty Institute for Infection and Immunity Melbourne Victoria Australia
| | - I‐Hsuan Chen
- Department of Humanities Brandeis University School of Arts & Sciences Waltham MA USA
| | - Tung‐Ti Chang
- School of Post‐Baccalaureate Chinese Medicine College of Chinese Medicine China Medical University Taichung Taiwan
| | - Shinn‐Jye Liang
- Division of Pulmonary and Critical Care Department of Internal Medicine China Medical University Hospital Taichung Taiwan
| | - Hung‐Rong Yen
- Research Center for Traditional Chinese Medicine Department of Medical Research China Medical University Taichung Taiwan
- Chinese Medicine Research Center China Medical University Taichung Taiwan
- School of Chinese Medicine College of Chinese Medicine China Medical University Taichung Taiwan
- Department of Chinese Medicine China Medical University Hospital Taichung Taiwan
- Department of Medical Laboratory Science and Biotechnology Asia University Taichung Taiwan
| |
Collapse
|
17
|
Scapaticci S, Neri CR, Marseglia GL, Staiano A, Chiarelli F, Verduci E. The impact of the COVID-19 pandemic on lifestyle behaviors in children and adolescents: an international overview. Ital J Pediatr 2022; 48:22. [PMID: 35120570 PMCID: PMC8815717 DOI: 10.1186/s13052-022-01211-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022] Open
Abstract
The adverse effects of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are not limited to the related infectious disease. In children and adolescents, serious risks due to the coronavirus disease 2019 (COVID-19) pandemic are also related to its indirect effects. These include an unbalanced diet with an increased risk of weight excess or nutritional deficiencies, increased sedentary lifestyle, lack of schooling, social isolation, and impaired mental health.Pediatricians should be aware of the side effects of the COVID-19 pandemic on children's diet, physical mental health and advise the families according to their nutritional needs and financial resources. Moreover, the lack of a targeted therapy able to offer protection against the deleterious effects of SARS-CoV-2 infection should require a greater effort by scientific societies to find a more effective prevention strategy. In this context, much interest should be given to nutritional support, able to contrast malnutrition and to stimulate the immune system.
Collapse
Affiliation(s)
- S Scapaticci
- Department of Paediatrics, University of Chieti-Pescara, Chieti, Italy
| | - C R Neri
- Department of Paediatrics, University of Chieti-Pescara, Chieti, Italy
| | - G L Marseglia
- Department of Paediatrics, University of Pavia IRCCS San Matteo foundation, Pavia, Italy
| | - A Staiano
- Department of Paediatrics, University of Naples "Federico II", Naples, Italy
| | - F Chiarelli
- Department of Paediatrics, University of Chieti-Pescara, Chieti, Italy.
| | - E Verduci
- Department of Paediatrics, Children's Hospital "Vittore Buzzi", University of Milan, Milan, Italy
| |
Collapse
|
18
|
Zhang C, Li L, Jin B, Xu X, Zuo X, Li Y, Li Z. The Effects of Delivery Mode on the Gut Microbiota and Health: State of Art. Front Microbiol 2022; 12:724449. [PMID: 35002992 PMCID: PMC8733716 DOI: 10.3389/fmicb.2021.724449] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
The delivery mode is an important factor driving alteration in the gut microbiota during the neonatal period. Several studies prove that the alteration of gut microbiota induced by cesarean section could influence the activation of intestinal epithelial cells and the development of immune system. Further, some autoimmune and metabolic disorders may be related to the microbiota dysbiosis in infants caused by cesarean section. It is noteworthy that probiotics could promote the intestinal microecology, which may further prevent and treat cesarean section related diseases. This review summarized the great significance of delivery mode on microbiota and health, as well as provided clinically feasible methods for the prevention and treatment of cesarean section related gut diseases.
Collapse
Affiliation(s)
- Chenchen Zhang
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Biying Jin
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinyan Xu
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
19
|
Kang YB, Cai Y. Faecal microbiota transplantation enhances efficacy of immune checkpoint inhibitors therapy against cancer. World J Gastroenterol 2021; 27:5362-5375. [PMID: 34539138 PMCID: PMC8409158 DOI: 10.3748/wjg.v27.i32.5362] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Even though immune checkpoint inhibitors (ICIs) are effective on multiple cancer types, there are still many non-responding patients. A possible factor put forward that may influence the efficacy of ICIs is the gut microbiota. Additionally, faecal microbiota transplantation may enhance efficacy of ICIs. Nevertheless, the data available in this field are insufficient, and relevant scientific work has just commenced. As a result, the current work reviewed the latest research on the association of gut microbiota with ICI treatments based on anti-programmed cell death protein 1 antibody and anti- cytotoxic T-lymphocyte-associated protein 4 antibody and explored the therapeutic potential of faecal microbiota transplantation in combination with ICI therapy in the future.
Collapse
Affiliation(s)
- Yong-Bo Kang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030600, Shanxi Province, China
| | - Yue Cai
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030600, Shanxi Province, China
| |
Collapse
|
20
|
Wang Z, Lai Z, Zhang X, Huang P, Xie J, Jiang Q, Zhang Q, Chung KF. Altered gut microbiome compositions are associated with the severity of asthma. J Thorac Dis 2021; 13:4322-4338. [PMID: 34422359 PMCID: PMC8339736 DOI: 10.21037/jtd-20-2189] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 05/31/2021] [Indexed: 12/31/2022]
Abstract
Background Despite substantial evidence on the contribution of the diversity of the gut microbiome to the pathogenesis of asthma and allergic diseases, little is known about their relationship with asthma severity and/or clinical phenotypes. We analyzed the difference in composition of the gut microbiome between subjects with asthma and healthy subjects and explored its role in the development of asthma. Methods Fecal samples from 15 subjects with severe asthma (SA), 14 with non-severe asthma (NSA), and 15 healthy subjects were assessed by 16S ribosomal RNA gene sequencing methods to identify the gut bacterial composition. Results Compared with those in the NSA group, patients in the SA group had a higher dose of inhaled corticosteroids, and there were more atopic subjects (60% vs. 35.7%, respectively). No significant differences were found at the phylum level either in operational taxonomic unit numbers or in diversity scores among the SA, NSA, and healthy groups. However, at the family level, the relative abundance of Acidaminococcaceae in the SA group was remarkedly lower than that in the group with healthy subjects (P<0.05). Furthermore, Veillonellaceae and Prevotellaceae were significantly more common in samples from the SA group than in those from the NSA group (P<0.05). In the SA group, positive correlations were observed between the relative abundance of Veillonellaceae and mid-expiratory flow 25% (MEF25%) predicted (r=0.538, P=0.047), as well as between the relative abundance of Acidaminococcaceae and body mass index (r=0642, P=0.010). Principal component analysis suggested that the relative abundances of Acidaminococcaceae and Prevotellaceae were associated with severe asthma. Moreover, we found that class Betaproteobacteria, order Burkholderiales, and family Alcaligenaceae were significantly different among the groups defined by serum immunoglobulin E (IgE) levels. Conclusions Our findings suggest that altered gut microbiome compositions are involved in the severity of asthma and that there are specific bacteria related to different asthma phenotypes in terms of serum IgE levels.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Pulmonary and Critical Care Medicine, Guangzhou Insitute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Hexian Memorial Hospital of PanYu District, Guangzhou, China
| | - Zhengdao Lai
- Pulmonary and Critical Care Medicine, Guangzhou Insitute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Dongguan Institute of Respiratory and Critical Care Medicine, Afliated Dongguan People's Hospital, Southern Medicial University, Dongguan, China
| | - Xiaoxian Zhang
- Pulmonary and Critical Care Medicine, Guangzhou Insitute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peikai Huang
- Pulmonary and Critical Care Medicine, Guangzhou Insitute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Respiration Medicine, Huizhou Municipal Central Hospital, Huizhou, China
| | - Jiaxing Xie
- Pulmonary and Critical Care Medicine, Guangzhou Insitute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian Jiang
- Pulmonary and Critical Care Medicine, Guangzhou Insitute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingling Zhang
- Pulmonary and Critical Care Medicine, Guangzhou Insitute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kian Fan Chung
- National Heart & Lung Institute, Imperial College London & Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, UK
| |
Collapse
|
21
|
Guillamón E, Andreo-Martínez P, Mut-Salud N, Fonollá J, Baños A. Beneficial Effects of Organosulfur Compounds from Allium cepa on Gut Health: A Systematic Review. Foods 2021; 10:foods10081680. [PMID: 34441457 PMCID: PMC8392556 DOI: 10.3390/foods10081680] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Dietary changes affect the composition and structure of gut microbiota (GM) in animals and humans. One of the beneficial effects of consuming products derived from plants is the positive influence on immunity and gastrointestinal health. Species belonging to the genus Allium contain many organosulfur compounds (OSCs) that have been widely studied showing their biological properties and beneficial effects on intestinal health and GM. This is the first systematic review of OSCs from Allium performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and it is based on the evidence that we found in literature about the benefits on the GM and intestinal health demonstrated by OSCs from Allium, and specifically from onion. OSCs from Allium cepa have shown a significant antibacterial activity against a broad spectrum of antibiotic-resistant Gram-positive and Gram-negative bacteria. In addition, the intake of OSCs from onion was able to modulate the composition of GM, increasing the beneficial bacterial populations in animal models. Moreover, the beneficial effects observed in murine models of colitis suggest that these compounds could be suitable candidates for the treatment of inflammatory bowel disease (IBD) or reverse the dysbiosis caused by a high-fat diet (HFD). Despite the evidence found both in vitro and in vivo, we have not found any article that tested OSCs different from allicin in clinical trials or dietary intervention studies in humans. In this sense, it would be interesting to conduct new research that tests the benefits of these compounds in human GM.
Collapse
Affiliation(s)
- Enrique Guillamón
- DMC Research Center, Camino de Jayena, 82, 18620 Granada, Spain; (E.G.); (N.M.-S.); (J.F.)
| | - Pedro Andreo-Martínez
- Department of Agricultural Chemistry, Faculty of Chemistry, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain;
- Department of Chemical Engineering, Faculty of Chemistry, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain
| | - Nuria Mut-Salud
- DMC Research Center, Camino de Jayena, 82, 18620 Granada, Spain; (E.G.); (N.M.-S.); (J.F.)
| | - Juristo Fonollá
- DMC Research Center, Camino de Jayena, 82, 18620 Granada, Spain; (E.G.); (N.M.-S.); (J.F.)
- Department of Nutrition and Bromatology, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Alberto Baños
- DMC Research Center, Camino de Jayena, 82, 18620 Granada, Spain; (E.G.); (N.M.-S.); (J.F.)
- Correspondence: ; Tel.: +34-958-576-486
| |
Collapse
|
22
|
Gut Microbiota and Environment in Coronary Artery Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084242. [PMID: 33923612 PMCID: PMC8073779 DOI: 10.3390/ijerph18084242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022]
Abstract
In recent years, studies evaluated the associations between coronary artery disease (CAD) and fecal gut microbiota composition. This opens new perspectives on therapeutic strategies to prevent CAD representing the leading cause of mortality in Western societies. We have conducted a review of the literature regarding the characteristics of the gut microbiota of CAD patients, its underlying mechanisms and their associations with pollution and the Western diet. The latest evidence confirms that an abnormal microbiota predisposes to the development of CAD and differs in composition compared to the microbiota of healthy patients; the results are, however, heterogeneous. The most studied underlying mechanisms involve the production of trimethylamine-N-oxide (TMAO), the synthesis of short-chain fatty acids (SCFAs) and the immune system activation mediated by lipopolysaccharides (LPS). Despite a large amount of available data, there is no evidence about the role of a specific type of gut microbiota in the risk of developing acute coronary syndrome (ACS). Moreover, no relationship has been assessed between the gut microbiota and the characteristics of coronary plaques in humans. However, a close association has been found between both pollution and the Western diet and gut microbiota and CAD. Further studies are needed to clarify the associations between gut microbiota, CAD, and ACS to find efficient therapeutic strategies.
Collapse
|
23
|
Corb Aron RA, Abid A, Vesa CM, Nechifor AC, Behl T, Ghitea TC, Munteanu MA, Fratila O, Andronie-Cioara FL, Toma MM, Bungau S. Recognizing the Benefits of Pre-/Probiotics in Metabolic Syndrome and Type 2 Diabetes Mellitus Considering the Influence of Akkermansia muciniphila as a Key Gut Bacterium. Microorganisms 2021; 9:microorganisms9030618. [PMID: 33802777 PMCID: PMC8002498 DOI: 10.3390/microorganisms9030618] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM) are diseases that can be influenced by the structure of gut microbiota, whose improvement is often neglected in metabolic pathology. This review highlights the following main aspects: the relationship between probiotics/gut microbes with the pathogenesis of MetS, the particular positive roles of Akkermansia muciniphila supplementation in the onset of MetS, and the interaction between dietary polyphenols (prebiotics) with gut microbiota. Therefore, an extensive and in-depth analysis of the often-neglected correlation between gut microbiota and chronic metabolic diseases was conducted, considering that this topic continues to fascinate and stimulate researchers through the discovery of novel strains and their beneficial properties.
Collapse
Affiliation(s)
- Raluca Anca Corb Aron
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (R.A.C.A.); (C.M.V.)
| | - Areha Abid
- Department of Food Science, Faculty of Agricultural and Food Sciences, University of Debrecen, 4032 Debrecen, Hungary;
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (R.A.C.A.); (C.M.V.)
| | - Aurelia Cristina Nechifor
- Department of Analytical Chemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Timea Claudia Ghitea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (T.C.G.); (M.M.T.)
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (O.F.)
| | - Ovidiu Fratila
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (O.F.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (T.C.G.); (M.M.T.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (T.C.G.); (M.M.T.)
- Correspondence: ; Tel.: +40-726-776-588
| |
Collapse
|
24
|
Zhou A, Lei Y, Tang L, Hu S, Yang M, Wu L, Yang S, Tang B. Gut Microbiota: the Emerging Link to Lung Homeostasis and Disease. J Bacteriol 2021; 203:e00454-20. [PMID: 33077630 PMCID: PMC7847545 DOI: 10.1128/jb.00454-20] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota plays a crucial role in the development of the immune system and confers benefits or disease susceptibility to the host. Emerging studies have indicated the gut microbiota could affect pulmonary health and disease through cross talk between the gut microbiota and the lungs. Gut microbiota dysbiosis could lead to acute or chronic lung disease, such as asthma, tuberculosis, and lung cancer. In addition, the composition of the gut microbiota may be associated with different lung diseases, the prevalence of which also varies by age. Modulation of the gut microbiota through short-chain fatty acids, probiotics, and micronutrients may present potential therapeutic strategies to protect against lung diseases. In this review, we will provide an overview of the cross-talk between the gut microbiota and the lungs, as well as elucidate the underlying pathogenesis and/or potential therapeutic strategies of some lung diseases from the point of view of the gut microbiota.
Collapse
Affiliation(s)
- An Zhou
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuanyuan Lei
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Shiping Hu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Min Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lingyi Wu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
25
|
Kang Y, Kang X, Zhang H, Liu Q, Yang H, Fan W. Gut Microbiota and Parkinson's Disease: Implications for Faecal Microbiota Transplantation Therapy. ASN Neuro 2021; 13:17590914211016217. [PMID: 34053243 PMCID: PMC8165863 DOI: 10.1177/17590914211016217] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) ranks the second place among neurodegenerative diseases in terms of its morbidity, which affects 1-2% people aged over 65 years. In addition to genetics, some environmental factors may exert vital parts in PD occurrence as well. At present, more and more studies are conducted to elucidate the association between gut microbial dysbiosis and the incidence of PD. Gut microbial dysbiosis has a certain effect on both the central nervous system (CNS) and the enteric nervous system (ENS), which indicates that there is a gut-microbiota-brain axis that induces CNS disorders. Some gut microbial strains are suggested to suppress or weaken the neuroinflammation- and gut-inflammation-immune responses, which suggests the protective and pathogenic effects of certain gut microbial species on PD progression. Therefore, gut microbiome may contain plenty of targets for preventing and managing PD. Faecal microbiota transplantation (FMT) may serve as a direct and useful treatment for PD in the future. Nonetheless, there is little available scientific research in this field. The present work reviewed the latest research to examine the association of gut microbiota with PD, and the future prospects of FMT treatment.
Collapse
Affiliation(s)
- Yongbo Kang
- Department of Microbiology and Immunology,
School of Basic Medical Sciences, Shanxi Medical
University, Taiyuan, Shanxi, China
| | - Xing Kang
- Department of Microbiology and Immunology,
School of Basic Medical Sciences, Shanxi Medical
University, Taiyuan, Shanxi, China
| | - Hongfang Zhang
- Department of Microbiology and Immunology,
School of Basic Medical Sciences, Shanxi Medical
University, Taiyuan, Shanxi, China
| | - Qingqing Liu
- Department of Microbiology and Immunology,
School of Basic Medical Sciences, Shanxi Medical
University, Taiyuan, Shanxi, China
| | - Hao Yang
- Department of Microbiology and Immunology,
School of Basic Medical Sciences, Shanxi Medical
University, Taiyuan, Shanxi, China
| | - Weiping Fan
- Department of Microbiology and Immunology,
School of Basic Medical Sciences, Shanxi Medical
University, Taiyuan, Shanxi, China
| |
Collapse
|
26
|
Liu SK, Ma LB, Yuan Y, Ji XY, Sun WJ, Duan JX, Zeng QP, Wasti B, Xiao B, Zheng JF, Chen P, Xiang XD. Alanylglutamine Relieved Asthma Symptoms by Regulating Gut Microbiota and the Derived Metabolites in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7101407. [PMID: 33456673 PMCID: PMC7785351 DOI: 10.1155/2020/7101407] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Allergic asthma is a chronic inflammatory disease, which seriously affects the life quality of patients, especially children. Alanylglutamine is a nutritional supplement with potential protective and anti-inflammatory effects, but its function in allergic asthma remains elusive. In this study, we focused on the investigations of the roles and functional mechanism of Alanylglutamine in asthma. METHODS Ovalbumin (OVA) induction was utilized to establish a mouse asthma model. 16S rDNA sequencing was performed to compare the diversity of intestinal microorganisms under different treatments. Gas chromatography was utilized to screen the intestinal microbe-short-chain fatty acids in the stool. The lung tissue was extracted to determine signaling pathways, including AMPK, NF-κB, mTOR, STAT3, IKKβ, TGF-β, and IL-1β through Western blot or RT-qPCR. RESULTS It was observed that Alanylglutamine reduced the cytokine in OVA-induced allergic asthma mice. H&E staining showed obvious pneumonia symptoms in the asthma group, while Alanylglutamine alleviated the inflammatory infiltration. Alanylglutamine reversed gut microbiota compositions in OVA-induced allergic asthma mice and enhanced the butyric acid level. The protective role of Alanylglutamine may be associated with the gut microbiota-butyric acid-GPR43 pathway in asthma mice. In contrast to the OVA group, Alanylglutamine activated the protein expression of P-AMPK/AMPK and inhibited the protein expression of P-mTOR/mTOR, P-P65/P65, P-STAT3/STAT3, P-IKKβ/IKKβ, TGF-β, and IL-1β, with similar effects from butyric acid. CONCLUSION The results indicated that Alanylglutamine might be beneficial for asthma, and its effect was achieved through the regulation on microbiota and the derived metabolites. The therapeutic effects might be associated with AMPK, NF-κB, mTOR, and STAT3 signaling pathways. These findings will help identify effective therapeutic direction to alleviate allergic inflammation of the lungs and airways.
Collapse
Affiliation(s)
- Shao-Kun Liu
- Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Li-Bing Ma
- Department of Respiratory Medicine, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- Institute of Respiratory Diseases, Guilin Medical University, Guilin 541001, China
| | - Yu Yuan
- Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Xiao-Ying Ji
- Department of Respiratory Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518106, China
| | - Wen-Jin Sun
- Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Jia-Xi Duan
- Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Qing-Ping Zeng
- Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Binaya Wasti
- Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Bing Xiao
- Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Jian-Fei Zheng
- Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Ping Chen
- Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Xu-Dong Xiang
- Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
27
|
Abstract
Gut microbiota are known to impact multiple organs including the lung. The cross talk between gut microbes and lungs, termed as the "gut-lung axis," is vital for immune response and homeostasis in the airways. In this chapter, we summarized the coordinated development of microorganisms in the gut and lung, exogenous and endogenous factors related to the cross talk, the mechanisms of the gut-lung axis and their dysbiosis in lung diseases. Although the current understanding of the gut-lung axis is in its infancy, several gut microbiota-associated strategies have been designed to treat and prevent lung diseases.
Collapse
|
28
|
Qv L, Yang Z, Yao M, Mao S, Li Y, Zhang J, Li L. Methods for Establishment and Maintenance of Germ-Free Rat Models. Front Microbiol 2020; 11:1148. [PMID: 32670216 PMCID: PMC7326071 DOI: 10.3389/fmicb.2020.01148] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Numerous studies have demonstrated that the gut microbiota plays a vital role in human health and disease development. Although the number of studies on host–microbiota interactions have increased in recent years, the underlying pathogenesis of dysbiosis-related diseases are still largely unknown. Germ-free (GF) rodent models, with the animals housed in sterile isolators and completely free of microbiota, are useful tools to advance our understanding of host–microbiota relationship in vivo. Although protocols concerning the establishment and maintenance of GF mouse models have previously been reported, the establishment, maintenance and monitoring of GF rodents are labor-intensive, tedious and take experience and skills. The aim of our study was to establish a GF rat model for the following microbiota-related researches and provide an easy-to-use protocol for the establishment and maintenance of GF rat model in detail, including steps to set up the isolator, sterilize the flexible isolator bubble, import food, water and other supplies, and methods to acquire newborn GF rats, hand rearing of suckling GF rats and reproduction of GF offspring. During the hand feeding period, the body weight of suckling GF rats was weighed once a day to ascertain the amount of artificial milk was given. Based on our results, the body weight of suckling GF rats decreased 1 week after birth and then began to increase. Methods for verifying the quality of the model like assessing the sterile status of the rat colony are also described. Moreover, possible difficulties and challenges, especially during gavage, and suggestions to avoid contamination will be discussed. The protocol presented will facilitate the establishment of GF rat models and downstream microbiota-related researches.
Collapse
Affiliation(s)
- Lingling Qv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhenggang Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Mingfei Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Sunbing Mao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jia Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Herman RA. Increasing allergy: are antibiotics the elephant in the room? Allergy Asthma Clin Immunol 2020; 16:35. [PMID: 32426004 PMCID: PMC7218489 DOI: 10.1186/s13223-020-00432-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/04/2020] [Indexed: 01/29/2023] Open
Abstract
Antibiotics cause dramatic changes to the human microbiome. The composition of the microbiome has been associated with changes in the immune system and these changes are beginning to be linked to immune diseases. Thus, antibiotics have been implicated as a significant contributor to the continual rise of allergies and autoimmune disease in developed countries. This recognition will hopefully result in the development of post-antibiotic therapies that restore a healthy microbiome and reduce immune system disorders.
Collapse
Affiliation(s)
- Rod A Herman
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN 46268 USA
| |
Collapse
|
30
|
Zolnikova OY, Potskhverashvili ND, Kudryavtseva AV, Krasnov GS, Guvatova ZG, Truhmanov AS, Kokina NI, Ivashkin VT. [Changes in gut microbiota with bronchial asthma]. TERAPEVT ARKH 2020; 92:56-60. [PMID: 32598794 DOI: 10.26442/00403660.2020.03.000554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Indexed: 11/22/2022]
Abstract
AIM To study the intestinal microbiota changes in patients with bronchial asthma (BA). MATERIALS AND METHODS 40 patients and 15 healthy individuals were included for the study. The microbiota study in feces samples was performed by sequencing the 16SpRNA gene. RESULTS It was noted an increasing of theProteobacteriaproportion in the patients with BA. The fractions ofBetaproteobacteriaиGammaproteobacteriawere increased in the patients with allergic BA and at the same time, only theGammaproteobacteriapart was increased in patients with non-allergic form of BA. It was found an increase inBacilliand a decrease in the proportion bacteria forming butyrate (Anaerostipes, Faecalibacterium) and acetate (Alistipes), which was corresponded to a decrease in the proportion of strict anaerobic symbionts and an increase in the proportion of opportunistic facultative anaerobes. The relative bacteria amount was reduced for theNegativicutes Erysipelotrichia, Bacteroidia classes, theErysipelotrichaceae,Pseudomonadaceae, Rhodospirillaceae, Bacillaceae familiesand for the kinds ofBarnesiella, Paraprevotella, Pyrolobus, Bifidobacterium, Pseudomonas, Coprobacter, Bacillusin the allergic asthma patients with syndrome of intensive bacterial overgrowth (SIBO) cases. In the non-allergic asthma case, the presence of SIBO was accompanied by the relative bacteria amount increasing of theBacteroidaceaeand theParaprevotellafamilies and theOdoribacter,Bacteroides, Butyricicoccus, Parasutterellagenera. The bacterial spectrum changes correlated with the main clinical and laboratory manifestations of BA in the patients. CONCLUSION The results have indicated the differences in the intestinal microflora composition of healthy volunteers and patients with bronchial asthma in including the SIBO presence. It is necessary more detail study of the bacterial composition changes in the intestine for the bronchopulmonary pathology case.
Collapse
Affiliation(s)
- O Y Zolnikova
- Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | | | | - A S Truhmanov
- Sechenov First Moscow State Medical University (Sechenov University)
| | - N I Kokina
- Sechenov First Moscow State Medical University (Sechenov University)
| | - V T Ivashkin
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
31
|
Tang HHF, Sly PD, Holt PG, Holt KE, Inouye M. Systems biology and big data in asthma and allergy: recent discoveries and emerging challenges. Eur Respir J 2020; 55:13993003.00844-2019. [PMID: 31619470 DOI: 10.1183/13993003.00844-2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
Asthma is a common condition caused by immune and respiratory dysfunction, and it is often linked to allergy. A systems perspective may prove helpful in unravelling the complexity of asthma and allergy. Our aim is to give an overview of systems biology approaches used in allergy and asthma research. Specifically, we describe recent "omic"-level findings, and examine how these findings have been systematically integrated to generate further insight.Current research suggests that allergy is driven by genetic and epigenetic factors, in concert with environmental factors such as microbiome and diet, leading to early-life disturbance in immunological development and disruption of balance within key immuno-inflammatory pathways. Variation in inherited susceptibility and exposures causes heterogeneity in manifestations of asthma and other allergic diseases. Machine learning approaches are being used to explore this heterogeneity, and to probe the pathophysiological patterns or "endotypes" that correlate with subphenotypes of asthma and allergy. Mathematical models are being built based on genomic, transcriptomic and proteomic data to predict or discriminate disease phenotypes, and to describe the biomolecular networks behind asthma.The use of systems biology in allergy and asthma research is rapidly growing, and has so far yielded fruitful results. However, the scale and multidisciplinary nature of this research means that it is accompanied by new challenges. Ultimately, it is hoped that systems medicine, with its integration of omics data into clinical practice, can pave the way to more precise, personalised and effective management of asthma.
Collapse
Affiliation(s)
- Howard H F Tang
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia .,Cambridge Baker Systems Genomics Initiative, Dept of Public Health and Primary Care, University of Cambridge, Cambridge, UK.,School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Peter D Sly
- Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Patrick G Holt
- Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Kathryn E Holt
- Dept of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia.,London School of Hygiene and Tropical Medicine, London, UK
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia.,Cambridge Baker Systems Genomics Initiative, Dept of Public Health and Primary Care, University of Cambridge, Cambridge, UK.,School of BioSciences, The University of Melbourne, Parkville, Australia.,The Alan Turing Institute, London, UK
| |
Collapse
|
32
|
Xavier-Santos D, Bedani R, Lima ED, Saad SMI. Impact of probiotics and prebiotics targeting metabolic syndrome. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103666] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
33
|
Tanaka S, Hammond B, Rosin DL, Okusa MD. Neuroimmunomodulation of tissue injury and disease: an expanding view of the inflammatory reflex pathway. Bioelectron Med 2019; 5:13. [PMID: 32232102 PMCID: PMC7098254 DOI: 10.1186/s42234-019-0029-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
Neuroimmunomodulation through peripheral nerve activation is an important therapeutic approach to various disorders. Central to this approach is the inflammatory reflex pathway in which the cholinergic anti-inflammatory pathway represents the efferent limb. Recent studies provide a framework for understanding this control pathway, however our understanding remains incomplete. Genetically modified mice, using optogenetics and pharmacogenomics, have been invaluable resources that will allow investigators to disentangle neural pathways that provide a unifying mechanism by which vagal nerve stimulation (and other means of stimulating the pathway) leads to an anti-inflammatory and tissue protective effect. In this review we describe disease models that contribute to our understanding of how vagal nerve stimulation attenuates inflammation and organ injury: acute kidney injury, rheumatoid arthritis, and inflammatory gastrointestinal disease. The gut microbiota contributes to health and disease and the potential role of the vagus nerve in affecting the relationship between gut microbiota and the immune system and modifying diseases remains an intriguing opportunity to attenuate local and systemic inflammation that undergird disease processes.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia USA
| | | | - Diane L. Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia USA
| | - Mark D. Okusa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia USA
| |
Collapse
|
34
|
Kang Y, Cai Y. Altered Gut Microbiota in HIV Infection: Future Perspective of Fecal Microbiota Transplantation Therapy. AIDS Res Hum Retroviruses 2019; 35:229-235. [PMID: 29877092 DOI: 10.1089/aid.2017.0268] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
HIV infection progressively destroys CD4+ mononuclear cells, leading to profound cellular immune deficiency that manifests as life-threatening opportunistic infections and malignancies (i.e., AIDS). Gut microbiota plays key roles in the modulation of host metabolism and gene expression, maintenance of epithelial integrity, and mediation of inflammatory and immunity. Hence, the normal intestinal microbiota plays a major role in the maintenance of health and disease prevention. In fact, a large number of studies have shown that the alteration of the gut microbiota contributes to the pathogenesis of several diseases, such as inflammatory bowel diseases, irritable bowel syndrome, metabolic diseases, anorexia nervosa, autoimmune diseases, multiple sclerosis, cancer, neuropsychiatric disorders, and cardiovascular diseases. Recently, accumulating evidence has shed light on the association of dysbiosis of gut microbiota with HIV infection. Hence, the modification of gut microbiota may be a potential therapeutic tool. Fecal microbiota transplantation may improve the conditions of patients with HIV infection by manipulating the human intestinal bacteria. However, the relevant research is very limited, and a large amount of scientific research work needs to be done in the near future.
Collapse
Affiliation(s)
- Yongbo Kang
- 1 School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- 2 Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Yue Cai
- 1 School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- 3 Genetics and Pharmacogenomics Laboratory, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
35
|
Skonieczna-Żydecka K, Grochans E, Maciejewska D, Szkup M, Schneider-Matyka D, Jurczak A, Łoniewski I, Kaczmarczyk M, Marlicz W, Czerwińska-Rogowska M, Pełka-Wysiecka J, Dec K, Stachowska E. Faecal Short Chain Fatty Acids Profile is Changed in Polish Depressive Women. Nutrients 2018; 10:E1939. [PMID: 30544489 PMCID: PMC6316414 DOI: 10.3390/nu10121939] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 12/27/2022] Open
Abstract
Short chain fatty acids (SCFAs) being produced during fermentation of non-digestible polysaccharides are regulatory compounds with the potential to influence inflammatory, as well as emotional state and cognition through the gut⁻brain axis. We analyzed the association between stool concentration of SCFAs (acetic acid (C 2:0), propionic acid (C 3:0), isobutyric acid (C 4:0 i), butyric acid (C 4:0 n), isovaleric acid (C 5:0 i) valeric acid (C 5:0 n), isocaproic acid (C 6:0 i), caproic acid, and (C 6:0 n) heptanoic acid (C 7:0)) and depressive symptoms among women and looked for the potential confounders of microbiota byproduct synthesis. We enrolled 116 women aged 52.0 ± 4.7 years and recognized depression in 47 (40.52%). To analyze the emotional state, Beck's Depression Inventory (BDI) was used. We assessed SCFAs content by means of gas chromatography. Fiber intake was estimated using parts of food frequency questionnaire. The content of acetic acid was significantly lowered compared to non-depressed women (median {IQR}: 29.49 {20.81} vs. 34.99 {19.55}, p = 0.04). A tendency toward decreased level of propionic acid was noticed (median {IQR}: 16.88 {9.73} vs. 21.64 {12.17}, p = 0.07), while the concentration of isocaproic acid was significantly increased in (median {IQR}: 0.89 {1.15} vs. 0.56 {0.95}, p < 0.01) comparison to matched healthy subjects. We found negative correlations between acetate, propionate, and Beck's score (r = -0.2, p = 0.03; r = -0.21, p = 0.02, respectively). Statistically significant correlations between acetate and propionate and BDI somatic score (r = -0.21, p = 0.01; r = -0.17, p = 0.03), as well as correlations regarding isocaproic and both cognitive/affective (r = 0.37, p = 0.0001) and somatic (r = 9.37, p < 0.001) scores were found. Women who declared current usage of lipid-lowering and thyroid drugs in the past, had higher content of C6:0-i (Users; median {IQR}: 1.91 {3.62} vs. non-users; 0.55 {0.67}; p = 0.0048).and lower of C2:0 (Users; median {IQR}: 23.07 {12.80} vs. non users 33.73 {21.44}; p = 0.041), respectively. No correlations regarding SCFAs concentration and fiber intake were found. We concluded that SCFAs may potentially contribute to depression phenotype, however, due to the small size of groups suffering from moderately heavy (n = 5) and severe (n = 7) depression, the conclusion should be treated with caution. Pharmacotherapy of hyperlipidemia and thyroid disease might affect SCFAs synthesis. Studies with more participants are required.
Collapse
Affiliation(s)
| | - Elżbieta Grochans
- Department of Nursing, Pomeranian Medical University, 71-210 Szczecin, Poland.
| | - Dominika Maciejewska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, 71-460 Szczecin, Poland.
| | - Małgorzata Szkup
- Department of Nursing, Pomeranian Medical University, 71-210 Szczecin, Poland.
| | | | - Anna Jurczak
- Department of Clinical Nursing, Pomeranian Medical University, 71-210 Szczecin, Poland.
| | - Igor Łoniewski
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, 71-460 Szczecin, Poland.
| | - Mariusz Kaczmarczyk
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, 70-111 Szczecin, Poland.
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University, 71-252 Szczecin, Poland.
| | - Maja Czerwińska-Rogowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, 71-460 Szczecin, Poland.
| | | | - Karolina Dec
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, 71-460 Szczecin, Poland.
| | - Ewa Stachowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, 71-460 Szczecin, Poland.
| |
Collapse
|
36
|
Kim WG, Kang GD, Kim HI, Han MJ, Kim DH. Bifidobacterium longum IM55 and Lactobacillus plantarum IM76 alleviate allergic rhinitis in mice by restoring Th2/Treg imbalance and gut microbiota disturbance. Benef Microbes 2018; 10:55-67. [PMID: 30465441 DOI: 10.3920/bm2017.0146] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study aimed to examine whether probiotics, which suppressed the differentiation of splenic T cells into type 2 helper T (Th2) cells and induced into regulatory T cells in vitro, alleviate allergic rhinitis (AR) and gut microbiota disturbance. We isolated Bifidobacterium longum IM55 and Lactobacillus plantarum IM76 from human faecal microbiota and kimchi, respectively, and examined their effects on ovalbumin (OVA)-induced AR and gut microbiota disturbance in mice. Treatment with IM55, IM76, or their probiotic mixture (PM) significantly reduced OVA-induced allergic nasal symptoms and blood immunoglobulin E (IgE) levels in mice. These also reduced OVA-induced interleukin (IL)-4 and IL-5 levels in nasal tissues and bronchoalveolar lavage fluid (BALF) but increased OVA-suppressed IL-10 levels. Treatment with IM55, IM76, or PM reduced OVA-induced increase in the populations of mast cells, eosinophils, and Th2 cells and increased OVA-suppressed population of regulatory T cells in the BALF. Treatment with IM55, IM76, or PM also inhibited OVA-induced expression of IL-5 in lung and colon tissues and restored OVA-disturbed composition of gut microbiota Proteobacteria, Bacteroidetes, and Actinobacteria. These results suggest that IM55 and IM67 can alleviate AR by restoring Th2/Treg imbalance and gut microbiota disturbance.
Collapse
Affiliation(s)
- W-G Kim
- 1 Department of Food and Nutrition, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - G-D Kang
- 2 Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - H I Kim
- 1 Department of Food and Nutrition, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - M J Han
- 1 Department of Food and Nutrition, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - D-H Kim
- 2 Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.,3 Neurobiota Research Center, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
37
|
Acordi Menezes LA, Matias de Almeida CA, Mattarugo NMDS, Ferri EAV, Bittencourt PRS, Colla E, Drunkler DA. Soy extract and maltodextrin as microencapsulating agents for Lactobacillus acidophilus: a model approach. J Microencapsul 2018; 35:705-719. [PMID: 30719943 DOI: 10.1080/02652048.2019.1579264] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022]
Abstract
The present study aimed to optimise the microencapsulation of Lactobacillus acidophilus La-05 by spray drying, using soy extract and maltodextrin as encapsulants. Air inlet temperature, maltodextrin/soy extract ratio and feed flow rate were investigated through Central Composite Rotational Design (CCRD). Probiotic viability increased with increasing the proportion of soy extract. Temperature and feed flow rate had a negative effect. Particle diameter ranged from 4.97 to 8.82 μm, water activity from 0.25 to 0.52 and moisture from 2.30 to 7.01 g.100g-1 Particles produced following the optimised conditions (air temperature of 87 °C, maltodextrin/soy extract ratio of 2:3 w.w-1, feed flow rate of 0.54 L.h-1) reached Encapsulation yield (EY) of 83%. Thermogravimetry and FTIR analysis suggested that microcapsules could protect L. acidophilus cells against dehydration and heating. During storage, microencapsulated probiotic had high cell viability (reductions ranged between 0.12 and 1.72 log cycles). Soy extract/maltodextrin presented well-encapsulating properties of Lactobacillus acidophilus La-05.
Collapse
Affiliation(s)
| | | | | | - Elídia A Vetter Ferri
- c Chemistry Department , Federal Technological University of Paraná , Pato Branco , Brazil
| | | | - Eliane Colla
- a Post Graduate Program in Food Technology , Federal Technological University of Paraná , Medianeira , Brazil
| | - Deisy Alessandra Drunkler
- a Post Graduate Program in Food Technology , Federal Technological University of Paraná , Medianeira , Brazil
| |
Collapse
|
38
|
Kang Y, Cai Y. The development of probiotics therapy to obesity: a therapy that has gained considerable momentum. Hormones (Athens) 2018; 17:141-151. [PMID: 29858841 DOI: 10.1007/s42000-018-0003-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/06/2018] [Indexed: 02/06/2023]
Abstract
Obesity is a growing epidemic worldwide. The most frequent cause leading to the development of obesity is an imbalance between energy intake and energy expenditure. The gut microbiota is an environmental factor involved in obesity and metabolic disorders which reveals that obese animal and human subjects present alterations in the composition of the gut microbiota compared to their lean counterparts. Furthermore, evidence has so far demonstrated that the gut microbiota, which influences whole-body metabolism, by affecting energy balance, but also inflammation and gut barrier function, integrates peripheral and central food intake regulatory signals, thereby altering body weight. At the same time, these data suggest that species of intestinal commensal bacteria may play either a pathogenic or a protective role in the development of obesity. Though still a relatively nascent field of research, evidence to date suggests that manipulating the gut microbiome may represent effective treatment for the prevention or management of obesity. Various studies have described the beneficial effects of specific bacteria on the characteristics of obesity. However, the available data in this field remain limited and the relevant scientific work has only recently begun. This review aims to summarize the notable advances and contributions in the field that may prove useful for identifying probiotics that target obesity and its related disorders.
Collapse
Affiliation(s)
- Yongbo Kang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China.
- Medical Faculty, Kunming University of Science and Technology, No.727 South Jingming Rd. Chenggong District, Kunming, 650500, China.
- Genetics and Pharmacogenomics Laboratory, Kunming University of Science and Technology, Kunming, Yunnan, China.
| | - Yue Cai
- Medical Faculty, Kunming University of Science and Technology, No.727 South Jingming Rd. Chenggong District, Kunming, 650500, China
- Pathogen Biology Laboratory, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
39
|
Kang Y, Cai Y, Pan W. Change in gut microbiota for eczema: Implications for novel therapeutic strategies. Allergol Immunopathol (Madr) 2018; 46:281-290. [PMID: 29279259 DOI: 10.1016/j.aller.2017.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023]
Abstract
Eczema is one of the most common inflammatory diseases, often constituting a lifelong burden for afflicted individuals. The complex interaction of host genetic and multiple environmental factors contribute to its pathogenesis. A relationship between maladjustment of gut microbiota and eczema has been brought into the light of day in most previous studies. In eczema preclinical models, specific intestinal microbial species have been demonstrated to prohibit or dwindle immune responsiveness, indicating that these strains among commensal gut bacteria may exert either a morbific or phylactic function in eczema progression. As such, oral probiotics can serve as a medicinal approach for eczema therapy. Given that relative scientific work is still at the early stage, only limited data are available in the field. New sequencing techniques have been fortunately performed to gain access to an extended research on the relationship between gut bacterial flora and human diseases. In the current review, we identified the role of intestinal microbiota in the development of eczema and how specific bacterial strains adjust the immune responsiveness in the midst of disease progression. Probiotics as an applicable treatment for eczema were evaluated in other threads as well.
Collapse
Affiliation(s)
- Y Kang
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China.
| | - Y Cai
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - W Pan
- Faculty of Foreign Languages and Cultures, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
40
|
Kang Y, Cai Y. Future prospect of faecal microbiota transplantation as a potential therapy in asthma. Allergol Immunopathol (Madr) 2018; 46:307-309. [PMID: 28803667 DOI: 10.1016/j.aller.2017.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/17/2017] [Accepted: 04/20/2017] [Indexed: 02/08/2023]
Abstract
There is convincing evidence from both human and animal studies suggesting that the gut microbiota plays an important role in regulating immune responses associated with the development of asthma. Certain intestinal microbial strains have been demonstrated to suppress or impair immune responsiveness in asthma experimental models, suggesting that specific species among gut commensal microbiota may play either a morbific or phylactic role in the progression of asthma. Evidence to date suggests that the intestinal microbiota represent fertile targets for prevention or management of asthma. The faecal microbiota transplantation (FMT) is a rather straightforward therapy that manipulates the human gastrointestinal (GI) microbiota, by which a healthy donor microbiota is transferred into an existing but disturbed microbial ecosystem. The FMT may therefore represent a therapeutic approach for asthma treatment in the foreseeable future. At present, FMT therapy for asthma is very limited and should be actively studied. Considerable efforts are needed to increase our knowledge in the field of FMT therapy for asthma. In this review, we aimed to provide several insights into the development of FMT therapy for asthma.
Collapse
Affiliation(s)
- Y Kang
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China; Genetics and Pharmacogenomics Laboratory, Kunming University of Science and Technology, Kunming, Yunnan, China.
| | - Y Cai
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China; Pathogen Biology Laboratory, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
41
|
Rosa MJ, Lee A, Wright RJ. Evidence establishing a link between prenatal and early-life stress and asthma development. Curr Opin Allergy Clin Immunol 2018; 18:148-158. [PMID: 29369067 PMCID: PMC5835351 DOI: 10.1097/aci.0000000000000421] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW The objective of this review is to provide an update on our evolving understanding of the effects of stress in pregnancy and during early development on the onset of asthma-related phenotypes across childhood, adolescence, and into early adulthood. RECENT FINDINGS Accumulating evidence over the past 2 decades has established that prenatal and early-life psychological stress and stress correlates (e.g., maternal anxiety or depression) increase the risk for childhood respiratory disorders. Recent systematic reviews and meta-analyses including numerous prospective epidemiological and case-control studies substantiate a significant effect of prenatal stress and stress in early childhood on the development of wheeze, asthma, and other atopic-related disorders (eczema and allergic rhinitis), with many studies showing an exposure-response relationship. Offspring of both sexes are susceptible to perinatal stress, but effects differ. The impact of stress on child wheeze/asthma can also be modified by exposure timing. Moreover, coexposure to prenatal stress can enhance the effect of chemical stressors, such as prenatal traffic-related air pollution, on childhood respiratory disease risk. Understanding complex interactions among exposure dose, timing, child sex, and concurrent environmental exposures promises to more fully characterize stress effects and identify susceptible subgroups. Although the link between perinatal stress and childhood asthma-related phenotypes is now well established, pathways by which stress predisposes children to chronic respiratory disorders are not as well delineated. Mechanisms central to the pathophysiology of wheeze/asthma and lung growth and development overlap and involve a cascade of events that include disrupted immune, neuroendocrine, and autonomic function as well as oxidative stress. Altered homeostatic functioning of these integrated systems during development can enhance vulnerability to asthma and altered lung development. SUMMARY Mechanistic studies that more comprehensively assess biomarkers reflecting alterations across interrelated stress response systems and associated regulatory processes, in both pregnant women and young children, could be highly informative. Leveraging high-throughput systems-wide technologies to include epigenomics (e.g., DNA methylation, microRNAs), transcriptomics, and microbiomics as well as integrated multiomics are needed to advance this field of science. Understanding stress-induced physiological changes occurring during vulnerable life periods that contribute to chronic respiratory disease risk could lead to the development of preventive strategies and novel therapeutic interventions.
Collapse
Affiliation(s)
- Maria José Rosa
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison Lee
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rosalind J. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pediatrics, Kravis Children’s Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
42
|
Kang Y, Cai Y. Gut microbiota and hypertension: From pathogenesis to new therapeutic strategies. Clin Res Hepatol Gastroenterol 2018; 42:110-117. [PMID: 29102544 DOI: 10.1016/j.clinre.2017.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/07/2017] [Accepted: 09/29/2017] [Indexed: 02/08/2023]
Abstract
Hypertension (HTN) has become a global public health concern and a major risk factor for cardiovascular, cerebrovascular, and kidney diseases. The complex interplay of genetic and environmental influences is important for the development of the disease. Accumulating evidence has illustrated the association of dysbiosis of gut microbiota with hypertension. Certain gut microbial strains may play either a pathogenic or a protective role in the development of hypertension. Oral probiotics can therefore represent a therapeutic approach for hypertension treatment. However, the relevant scientific work has only just begun, and the available data in this field remain limited. Fortunately, recent technological developments that permit identification of microbes and their products using culture-independent molecular detection techniques. In this review, we summarize the role of gut microbiota in hypertension progression, and probiotics in the treatment of hypertension.
Collapse
Affiliation(s)
- Yongbo Kang
- Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Genetics and Pharmacogenomics Laboratory, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Yue Cai
- Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Pathogen biology Laboratory, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| |
Collapse
|
43
|
Kang Y, Cai Y. Gut microbiota and hepatitis-B-virus-induced chronic liver disease: implications for faecal microbiota transplantation therapy. J Hosp Infect 2017; 96:342-348. [PMID: 28545829 DOI: 10.1016/j.jhin.2017.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/09/2017] [Indexed: 02/08/2023]
Abstract
Hepatitis B is one of the most common infectious diseases globally. It has been estimated that there are 350 million chronic hepatitis B virus (HBV) carriers worldwide. The liver is connected to the small intestine by the bile duct, which carries bile formed in the liver to the intestine. Nearly all of the blood that leaves the stomach and intestines must pass through the liver. Human intestines contain a wide diversity of microbes, collectively termed the 'gut microbiota'. Gut microbiota play a significant role in host metabolic processes and host immune modulation, and influence host development and physiology (organ development). Altered gut microbiota is a common complication in liver disease. Changes in intestinal microbiota seem to play an important role in induction and promotion of HBV-induced chronic liver disease progression, and specific species among the intestinal commensal bacteria may play either a pathogenic or a protective role in the development of HBV-induced chronic liver disease. Thus, the gut microbiome may represent fertile targets for prevention or management of HBV-induced chronic liver disease. Faecal microbiota transplantation (FMT) may be a useful therapy for HBV-related disease in the future. However, the data available in this field remain limited, and relevant scientific work has only just commenced. New technologies have enabled systematic studies of gut microbiota, and provided more realistic information about its composition and pathological variance. This review summarizes the cutting edge of research into the relationship between gut microbiota and HBV-induced chronic liver disease, and the future prospects of FMT therapy.
Collapse
Affiliation(s)
- Y Kang
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China; Genetics and Pharmacogenomics Laboratory, Kunming University of Science and Technology, Kunming, Yunnan, China.
| | - Y Cai
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China; Pathogen Biology Laboratory, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
44
|
Accumulated evidence on Helicobacter pylori infection and the risk of asthma: A meta-analysis. Ann Allergy Asthma Immunol 2017. [PMID: 28634020 DOI: 10.1016/j.anai.2017.05.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Helicobacter pylori (H pylori) infection has been suggested to be related to a decreased risk of asthma, but findings in the literature are inconsistent. OBJECTIVE To quantitatively summarize the existing evidence on the association between H pylori infection and asthma risk. METHODS The PubMed database was searched for observational studies of H pylori infection in relation to the risk of asthma published in English through May 2017. Measurements of association were pooled using a meta-analytic approach and expressed as odds ratios (ORs) with 95% confidence intervals (95% CIs). RESULTS Twenty-four studies were identified in this meta-analysis, including 8 case-control studies composed of 1,247 cases and 2,410 controls, and 16 cross-sectional studies composed of 50,290 participants (4,185 cases and 46,105 noncases). The average H pylori infection rates were 40.01% and 48.74% in case-control and cross-sectional studies, respectively. Five studies subcategorized H pylori infection according to CagA status, in which 59.37% of H pylori-infected participants were identified as having CagA positivity. Helicobacter pylori infection was significantly inversely associated with the risk of asthma in case-control studies (OR 0.83, 95% CI 0.71-0.98) but was borderline significant in cross-sectional studies (OR 0.88, 95% CI 0.76-1.02). The observed inverse association persisted for CagA-positive H pylori infection (OR 0.77, 95% CI 0.63-0.93, P for interaction = .03) but not for CagA-negative strains (OR 1.08, 95% CI 0.66-1.78). No significant difference was observed across age or region subgroups. CONCLUSION The accumulated evidence supports that H pylori infection, especially CagA-positive H pylori infection, is inversely associated with the risk of asthma.
Collapse
|
45
|
Hałasa M, Maciejewska D, Baśkiewicz-Hałasa M, Machaliński B, Safranow K, Stachowska E. Oral Supplementation with Bovine Colostrum Decreases Intestinal Permeability and Stool Concentrations of Zonulin in Athletes. Nutrients 2017; 9:E370. [PMID: 28397754 PMCID: PMC5409709 DOI: 10.3390/nu9040370] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 03/28/2017] [Accepted: 04/05/2017] [Indexed: 12/20/2022] Open
Abstract
Increased intestinal permeability has been implicated in various pathologies, has various causes, and can develop during vigorous athletic training. Colostrum bovinum is a natural supplement with a wide range of supposed positive health effects, including reduction of intestine permeability. We assessed influence of colostrum supplementation on intestinal permeability related parameters in a group of 16 athletes during peak training for competition. This double-blind placebo-controlled study compared supplementation for 20 days with 500 mg of colostrum bovinum or placebo (whey). Gut permeability status was assayed by differential absorption of lactulose and mannitol (L/M test) and stool zonulin concentration. Baseline L/M tests found that six of the participants (75%) in the colostrum group had increased intestinal permeability. After supplementation, the test values were within the normal range and were significantly lower than at baseline. The colostrum group Δ values produced by comparing the post-intervention and baseline results were also significantly lower than the placebo group Δ values. The differences in stool zonulin concentration were smaller than those in the L/M test, but were significant when the Δ values due to intervention were compared between the colostrum group and the placebo group. Colostrum bovinum supplementation was safe and effective in decreasing of intestinal permeability in this series of athletes at increased risk of its elevation.
Collapse
Affiliation(s)
- Maciej Hałasa
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin 70-204, Poland.
| | - Dominika Maciejewska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin 70-204, Poland.
| | | | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Szczecin 70-111, Poland.
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin 70-111, Poland.
| | - Ewa Stachowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin 70-204, Poland.
| |
Collapse
|