1
|
Al Hageh C, Chacar S, Ghassibe-Sabbagh M, Platt DE, Henschel A, Hamdan H, Gauguier D, El Murr Y, Alefishat E, Chammas E, O’Sullivan S, Abchee A, Nader M, Zalloua PA. Elevated Lp(a) Levels Correlate with Severe and Multiple Coronary Artery Stenotic Lesions. Vasc Health Risk Manag 2023; 19:31-41. [PMID: 36703868 PMCID: PMC9871050 DOI: 10.2147/vhrm.s394134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
Backgrounds and Aims The role of Lipoprotein(a) (Lp(a)) in increasing the risk of cardiovascular diseases is reported in several populations. The aim of this study is to investigate the correlation of high Lp(a) levels with the degree of coronary artery stenosis. Methods Two hundred and sixty-eight patients were enrolled for this study. Patients who underwent coronary artery angiography and who had Lp(a) measurements available were included in this study. Binomial logistic regressions were applied to investigate the association between Lp(a) and stenosis in the four major coronary arteries. The effect of LDL and HDL Cholesterol on modulating the association of Lp(a) with coronary artery disease (CAD) was also evaluated. Multinomial regression analysis was applied to assess the association of Lp(a) with the different degrees of stenosis in the four major coronary arteries. Results Our analyses showed that Lp(a) is a risk factor for CAD and this risk is significantly apparent in patients with HDL-cholesterol ≥35 mg/dL and in non-obese patients. A large proportion of the study patients with elevated Lp(a) levels had CAD even when exhibiting high HDL serum levels. Increased HDL with low Lp(a) serum levels were the least correlated with stenosis. A significantly higher levels of Lp(a) were found in patients with >50% stenosis in at least two major coronary vessels arguing for pronounced and multiple stenotic lesions. Finally, the derived variant (rs1084651) of the LPA gene was significantly associated with CAD. Conclusion Our study highlights the importance of Lp(a) levels as an independent biological marker of severe and multiple coronary artery stenosis.
Collapse
Affiliation(s)
- Cynthia Al Hageh
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Stephanie Chacar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Michella Ghassibe-Sabbagh
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Daniel E Platt
- Computational Biology Center, IBM TJ Watson Research Centre, Yorktown Hgts, NY, USA
| | - Andreas Henschel
- Department of Electrical Engineering and Computer, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Dominique Gauguier
- Université Paris Cité, INSERM UMR 1124, Paris, 75006, France,McGill University and Genome Quebec Innovation Centre, Montreal, QC, H3A 0G1, Canada
| | - Yara El Murr
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Elie Chammas
- School of Medicine, Lebanese University, Beirut, Lebanon
| | - Siobhán O’Sullivan
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Antoine Abchee
- Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| | - Moni Nader
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Pierre A Zalloua
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates,Harvard T.H. Chan School of Public Health, Boston, MA, USA,Correspondence: Pierre A Zalloua; Moni Nader, College of Medicine and Health Sciences, Khalifa University for Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates, Email ;
| |
Collapse
|
2
|
Beyond Statins: Emerging Evidence for HDL-Increasing Therapies and Diet in Treating Cardiovascular Disease. Adv Prev Med 2018; 2018:6024747. [PMID: 30112217 PMCID: PMC6077683 DOI: 10.1155/2018/6024747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/25/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022] Open
Abstract
Coronary heart disease continues to be the leading cause of death in the United States. Current attempts to treat atherosclerosis and coronary artery disease often involve pharmaceutical and surgical treatments. While these treatments are successful in managing the pain from coronary heart disease, they do little to prevent or stop it. There are a number of clinical strategies that are currently being researched to treat atherosclerosis through HDL-increasing therapies. These clinical studies have shown positive effects through nutritional intervention, exercise, stress reduction, and tobacco and alcohol cessation. These treatment options are explored in greater detail, including their potential to halt and even reverse atherosclerosis. The results from these recent studies and how they relate to the mechanism of reverse cholesterol transport are also critically examined. Reverse cholesterol transport is a multistep process resulting in the net movement of cholesterol from peripheral tissues back to the liver via the plasma. The mechanism of reverse cholesterol transport is also further explored in this review.
Collapse
|
3
|
Effects of Astaxanthin on Reverse Cholesterol Transport and Atherosclerosis in Mice. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4625932. [PMID: 29226138 PMCID: PMC5687128 DOI: 10.1155/2017/4625932] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 11/30/2022]
Abstract
High plasma level of HDL-cholesterol (HDL-C) has been consistently associated with a decreased risk of atherosclerosis (AS); thus, HDL-C is considered to be an antiatherogenic lipoprotein. The development of novel therapies to enhance the atheroprotective properties of HDL may have the possibility of further reducing the residual AS risk. Reverse cholesterol transport (RCT) is believed to be a primary atheroprotective activity of HDL, which has been shown to promote the efflux of excess cholesterol from macrophage-derived foam cells via ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), and scavenger receptor class B type I (SR-BI) and then transport it back to the liver for excretion into bile and eventually into the feces. In the current study, we investigated the effects of astaxanthin on RCT and AS progression in mice. The results showed that short- and long-term supplementation of astaxanthin promote RCT in C57BL/6J and ApoE−/− mice, respectively. Moreover, astaxanthin can relieve the plaque area of the aortic sinus and aortic cholesterol in mice. These findings suggest that astaxanthin is beneficial for boosting RCT and preventing the development of AS.
Collapse
|
4
|
Abstract
Aortic valve stenosis is the most common valvular disease in the elderly population. Presently, there is increasing evidence that aortic stenosis (AS) is an active process of lipid deposition, inflammation, fibrosis and calcium deposition. The pathogenesis of AS shares many similarities to that of atherosclerosis; therefore, it was hypothesized that certain lipid interventions could prevent or slow the progression of aortic valve stenosis. Despite the early enthusiasm that statins may slow the progression of AS, recent large clinical trials did not consistently demonstrate a decrease in the progression of AS. However, some researchers believe that statins may have a benefit early on in the disease process, where inflammation (and not calcification) is the predominant process, in contrast to severe or advanced AS, where calcification (and not inflammation) predominates. Positron emission tomography using 18F-fluorodeoxyglucose and 18F-sodium fluoride can demonstrate the relative contributions of valvular calcification and inflammation in AS, and thus this method might potentially be useful in providing the answer as to whether lipid interventions at the earlier stages of AS would be more effective in slowing the progression of the disease. Currently, there is a strong interest in recombinant apolipoprotein A-1 Milano and in the development of new pharmacological agents, targeting reduction of lipoprotein (a) levels and possibly reduction of the expression of lipoprotein-associated phospholipase A2, as potential means to slow the progression of aortic valvular stenosis.
Collapse
|
5
|
Abstract
Excess intra-abdominal adipose tissue accumulation, often termed visceral obesity, is part of a phenotype including dysfunctional subcutaneous adipose tissue expansion and ectopic triglyceride storage closely related to clustering cardiometabolic risk factors. Hypertriglyceridemia; increased free fatty acid availability; adipose tissue release of proinflammatory cytokines; liver insulin resistance and inflammation; increased liver VLDL synthesis and secretion; reduced clearance of triglyceride-rich lipoproteins; presence of small, dense LDL particles; and reduced HDL cholesterol levels are among the many metabolic alterations closely related to this condition. Age, gender, genetics, and ethnicity are broad etiological factors contributing to variation in visceral adipose tissue accumulation. Specific mechanisms responsible for proportionally increased visceral fat storage when facing positive energy balance and weight gain may involve sex hormones, local cortisol production in abdominal adipose tissues, endocannabinoids, growth hormone, and dietary fructose. Physiological characteristics of abdominal adipose tissues such as adipocyte size and number, lipolytic responsiveness, lipid storage capacity, and inflammatory cytokine production are significant correlates and even possible determinants of the increased cardiometabolic risk associated with visceral obesity. Thiazolidinediones, estrogen replacement in postmenopausal women, and testosterone replacement in androgen-deficient men have been shown to favorably modulate body fat distribution and cardiometabolic risk to various degrees. However, some of these therapies must now be considered in the context of their serious side effects. Lifestyle interventions leading to weight loss generally induce preferential mobilization of visceral fat. In clinical practice, measuring waist circumference in addition to the body mass index could be helpful for the identification and management of a subgroup of overweight or obese patients at high cardiometabolic risk.
Collapse
Affiliation(s)
- André Tchernof
- Endocrinology and Genomics Axis, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | | |
Collapse
|
6
|
Kalanuria AA, Nyquist P, Ling G. The prevention and regression of atherosclerotic plaques: emerging treatments. Vasc Health Risk Manag 2012; 8:549-61. [PMID: 23049260 PMCID: PMC3459726 DOI: 10.2147/vhrm.s27764] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Indexed: 01/21/2023] Open
Abstract
Occlusive vascular diseases, such as sudden coronary syndromes, stroke, and peripheral arterial disease, are a huge burden on the health care systems of developed and developing countries. Tremendous advances have been made over the last few decades in the diagnosis and treatment of atherosclerotic diseases. Intravascular ultrasound has been able to provide detailed information of plaque anatomy and has been used in several studies to assess outcomes. The presence of atherosclerosis disrupts the normal protective mechanism provided by the endothelium and this mechanism has been implicated in the pathophysiology of coronary artery disease and stroke. Efforts are being put into the prevention of atherosclerosis, which has been shown to begin in childhood. This paper reviews the pathophysiology of atherosclerosis and discusses the current options available for the prevention and reversal of plaque formation.
Collapse
Affiliation(s)
- Atul Ashok Kalanuria
- Division of Neuro Critical Care, Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, USA
| | | | | |
Collapse
|
7
|
Qin S, Kamanna VS, Lai JH, Liu T, Ganji SH, Zhang L, Bachovchin WW, Kashyap ML. Reverse D4F, an apolipoprotein-AI mimetic peptide, inhibits atherosclerosis in ApoE-null mice. J Cardiovasc Pharmacol Ther 2012; 17:334-43. [PMID: 22308547 DOI: 10.1177/1074248411434598] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Synthetic class A amphipathic helical peptide analogs of apolipoprotein-AI (apoAI; with varied phenylalanine residues) are emerging therapeutic approaches under investigation for atherosclerosis. Utilizing retroinverso sequencing, we designed reverse-D4F (Rev-D4F) peptide with 18 d-amino acids containing 4 phenylalanine residues and reverse order that allows the side chain residues to be of exact alignment and superimposable to those of the parent l-amino acid peptide. This study examined the effect of Rev-D4F on atherosclerosis in apolipoprotein E (apoE)-null mice and the underlying mechanisms. MATERIALS/METHODS ApoE-null mice were fed a chow diet and administered water (control), Rev-D4F, or L4F mimetic peptides (0.4 mg/mL, equivalent to 1.6 mg/d) orally in drinking water for 6 weeks. Aortic root atherosclerotic lesion area, lesion macrophage content, and the ability of plasma high-density lipoprotein (HDL) to influence monocyte chemotaxis were measured. RESULTS Rev-D4F significantly decreased aortic sinus atherosclerotic lesion area and lesion macrophage content without affecting plasma total and HDL-cholesterol levels in apoE-null mice. The HDL from Rev-D4F-treated mice showed enhanced anti-inflammatory monocyte chemotactic activity, while low-density lipoprotein (LDL) exhibited reduced proinflammatory activity. In in vitro studies, Rev-D4F inhibited LDL oxidation, endothelial cell vascular cell adhesion molecule 1 (VCAM-1), and monocyte chemotactic factor 1 (MCP-1) expression, and monocyte adhesion to aortic endothelial cells. CONCLUSIONS The Rev-D4F inhibits atherosclerosis by inhibiting endothelial inflammatory/oxidative events and improving HDL function. The data suggest that Rev-D4F may be an effective apoAI mimetic peptide for further development in preventing atherosclerosis.
Collapse
Affiliation(s)
- Shucun Qin
- Department of Veterans Affairs Healthcare System, Atherosclerosis Research Center, Long Beach, CA 90822, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ferrières J. HDL: facteur causal de l’athérosclérose ? Arguments épidémiologiques. ARCHIVES OF CARDIOVASCULAR DISEASES SUPPLEMENTS 2011. [DOI: 10.1016/s1878-6480(11)70782-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Recombinant HDL(Milano) exerts greater anti-inflammatory and plaque stabilizing properties than HDL(wild-type). Atherosclerosis 2011; 220:72-7. [PMID: 22030095 DOI: 10.1016/j.atherosclerosis.2011.10.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 09/29/2011] [Accepted: 10/05/2011] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of this study was to compare the effects of HDL(Milano) and HDL(wild-type), on regression and stabilization of atherosclerosis. METHODS Atherosclerotic New Zealand White rabbits received 2 infusions, 4 days apart, of HDL(Milano) (75mg/kg of apoA-I(Milano)), HDL(wild-type) (75mg/kg apoA-I(wild-type)) or placebo. Pre- and post-treatment plaque volume was assessed by MRI. Markers of plaque vulnerability and inflammation were evaluated. Liver and aortic cholesterol content, aortic ABCA-1 and liver SR-BI were quantified. The effect of apoA-I Milano and wild-type proteins on MCP-1 and COX-2 expression by macrophages was evaluated in vitro. RESULTS Both forms of HDL induced aortic plaque regression (-4.1% and -2.6% vs. pre-treatment in HDL(Milano) and HDL(wild-type) respectively, p<0.001 and p=0.009). A similar reduction in cholesterol content of aorta and liver was observed with both treatments vs. placebo. The expression of aortic ABCA-1 and hepatic SR-BI was significantly higher in both treated groups vs. placebo. A significantly reduced plaque macrophage density was observed in the HDL(Milano) vs. both HDL(wild-type) and placebo groups. Plaque levels of COX-2, MCP-1, Caspase-3 antigen and MMP-2 activity were significantly reduced in the HDL(Milano) vs. both HDL(wild-type) and placebo groups. In vitro studies showed that apoA-I(Milano) protein significantly reduced expression of COX-2 and MCP-1 in oxLDL loaded macrophages vs. apoA-I(wild-type). CONCLUSIONS Despite a similar effect on acute plaque regression, the infusion of HDL(Milano) exerts superior anti-inflammatory and plaque stabilizing effects than HDL(wild-type) in the short term.
Collapse
|
10
|
Mineo C, Shaul PW. PON-dering differences in HDL function in coronary artery disease. J Clin Invest 2011; 121:2545-8. [PMID: 21701074 DOI: 10.1172/jci57671] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
HDL cholesterol activates endothelial cell production of the atheroprotective signaling molecule NO, and it promotes endothelial repair. In this issue of the JCI, Besler et al. provide new data indicating that HDL from stable coronary artery disease (CAD) or acute coronary syndrome patients inhibits rather than stimulates endothelial NO synthesis and endothelial repair. This may be related to decreased HDL-associated paraoxonase 1 (PON1) activity. These observations support the concept that the cardiovascular impact of HDL is not simply related to its abundance, and the translation of the present findings to prospective studies of CAD risk and to evaluations of HDL-targeted therapeutics is a logical future goal.
Collapse
Affiliation(s)
- Chieko Mineo
- Division of Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9063, USA
| | | |
Collapse
|
11
|
Eandi M. Drug Therapy and Follow-Up. ATHEROSCLEROSIS DISEASE MANAGEMENT 2011:563-631. [DOI: 10.1007/978-1-4419-7222-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
12
|
Development of a Novel Sandwich ELISA for Measuring Cell Lysate ABCA1 Protein Levels. Lipids 2010; 45:757-64. [DOI: 10.1007/s11745-010-3448-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 06/30/2010] [Indexed: 10/19/2022]
|
13
|
Recombinant apolipoprotein A-I Milano rapidly reverses aortic valve stenosis and decreases leaflet inflammation in an experimental rabbit model. Eur Heart J 2010; 31:2049-57. [DOI: 10.1093/eurheartj/ehq064] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
14
|
Chen W, Jarzyna PA, van Tilborg GAF, Nguyen VA, Cormode DP, Klink A, Griffioen AW, Randolph GJ, Fisher EA, Mulder WJM, Fayad ZA. RGD peptide functionalized and reconstituted high-density lipoprotein nanoparticles as a versatile and multimodal tumor targeting molecular imaging probe. FASEB J 2010; 24:1689-99. [PMID: 20075195 DOI: 10.1096/fj.09-139865] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High density lipoprotein (HDL), an endogenous nanoparticle, transports fat throughout the body and is capable of transferring cholesterol from atheroma in the vessel wall to the liver. In the present study, we utilized HDL as a multimodal nanoparticle platform for tumor targeting and imaging via nonspecific accumulation and specific binding to angiogenically activated blood vessels. We reconstituted HDL (rHDL) with amphiphilic gadolinium chelates and fluorescent dyes. To target angiogenic endothelial cells, rHDL was functionalized with alphavbeta3-integrin-specific RGD peptides (rHDL-RGD). Nonspecific RAD peptides were conjugated to rHDL nanoparticles as a control (rHDL-RAD). It was observed in vitro that all 3 nanoparticles were phagocytosed by macrophages, while alphavbeta3-integrin-specific rHDL-RGD nanoparticles were preferentially taken up by endothelial cells. The uptake of nanoparticles in mouse tumors was evaluated in vivo using near infrared (NIR) and MR imaging. All nanoparticles accumulated in tumors but with very different accumulation/binding kinetics as observed by NIR imaging. Moreover, confocal microscopy revealed rHDL-RGD to be associated with tumor endothelial cells, while rHDL and rHDL-RAD nanoparticles were mainly found in the interstitial space. This study demonstrates the ability to reroute HDL from its natural targets to tumor blood vessels and its potential for multimodal imaging of tumor-associated processes.
Collapse
Affiliation(s)
- Wei Chen
- Translational and Molecular Imaging Institute, Department of Radiology and Medicine, Mt. Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chen W, Vucic E, Leupold E, Mulder WJM, Cormode DP, Briley-Saebo KC, Barazza A, Fisher EA, Dathe M, Fayad ZA. Incorporation of an apoE-derived lipopeptide in high-density lipoprotein MRI contrast agents for enhanced imaging of macrophages in atherosclerosis. CONTRAST MEDIA & MOLECULAR IMAGING 2009; 3:233-42. [PMID: 19072768 DOI: 10.1002/cmmi.257] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Magnetic resonance (MR) imaging is becoming a pivotal diagnostic method to identify and characterize vulnerable atherosclerotic plaques. We previously reported a reconstituted high-density lipoprotein (rHDL) nanoparticle platform enriched with Gd-based amphiphiles as a plaque-specific MR imaging contrast agent. Further modification can be accomplished by inserting targeting moieties into this platform to potentially allow for improved intraplaque macrophage uptake. Since studies have indicated that intraplaque macrophage density is directly correlated to plaque vulnerability, modification of the rHDL platform may allow for better detection of vulnerable plaques. In the current study we incorporated a carboxyfluoresceine-labeled apolipoprotein E-derived lipopeptide, P2fA2, into rHDL. The in vitro macrophage uptake and in vivo MR efficacy were demonstrated using murine J774A.1 macrophages and the apolipoprotein E knock-out (apoE(-/-)) mouse model of atherosclerosis. The in vitro studies indicated enhanced association of murine macrophages to P2fA2 enriched rHDL (rHDL-P2A2) nanoparticles, relative to rHDL, using optical techniques and MR imaging. The in vivo studies showed a more pronounced and significantly higher signal enhancement of the atherosclerotic wall 24 h after the 50 micromol Gd/kg injection of rHDL-P2A2 relative to administration of rHDL. The normalized enhancement ratio for atherosclerotic wall of rHDL-P2A2 contrast agent injection was 90%, while that of rHDL was 53% 24 h post-injection. Confocal laser scanning microscopy revealed that rHDL-P2A2 nanoparticles co-localized primarily with intraplaque macrophages. The results of the current study confirm the hypothesis that intraplaque macrophage uptake of rHDL may be enhanced by the incorporation of the P2fA2 peptide into the modified HDL particle.
Collapse
Affiliation(s)
- Wei Chen
- Translational and Molecular Imaging Institute, Imaging Science Laboratories, Departments of Radiology and Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Use of conventional and -omics based methods for health claims of dietary antioxidants: a critical overview. Br J Nutr 2009; 99 E Suppl 1:ES3-52. [PMID: 18503734 DOI: 10.1017/s0007114508965752] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article describes the principles and limitations of methods used to investigate reactive oxygen species (ROS) protective properties of dietary constituents and is aimed at providing a better understanding of the requirements for science based health claims of antioxidant (AO) effects of foods. A number of currently used biochemical measurements aimed of determining the total antioxidant capacity and oxidised lipids and proteins are carried out under unphysiological conditions and are prone to artefact formation. Probably the most reliable approaches are measurements of isoprostanes as a parameter of lipid peroxidation and determination of oxidative DNA damage. Also the design of the experimental models has a strong impact on the reliability of AO studies: the common strategy is the identification of AO by in vitro screening with cell lines. This approach is based on the assumption that protection towards ROS is due to scavenging, but recent findings indicate that activation of transcription factors which regulate genes involved in antioxidant defence plays a key role in the mode of action of AO. These processes are not adequately represented in cell lines. Another shortcoming of in vitro experiments is that AO are metabolised in vivo and that most cell lines are lacking enzymes which catalyse these reactions. Compounds with large molecular configurations (chlorophylls, anthocyans and polyphenolics) are potent AO in vitro, but weak or no effects were observed in animal/human studies with realistic doses as they are poorly absorbed. The development of -omics approaches will improve the scientific basis for health claims. The evaluation of results from microarray and proteomics studies shows that it is not possible to establish a general signature of alterations of transcription and protein patterns by AO. However, it was shown that alterations of gene expression and protein levels caused by experimentally induced oxidative stress and ROS related diseases can be normalised by dietary AO.
Collapse
|
17
|
Pikuleva IA. Cholesterol-metabolizing cytochromes P450: implications for cholesterol lowering. Expert Opin Drug Metab Toxicol 2008; 4:1403-14. [PMID: 18950282 PMCID: PMC2957831 DOI: 10.1517/17425255.4.11.1403] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cardiovascular disease (CVD) continues to be a leading cause of death worldwide. Elevated serum cholesterol is one of the classical risk factors for CVD, which also include age, hypertension, smoking, diabetes mellitus, obesity and family history. Several therapeutic drug classes have been developed to treat hypercholesterolemia; yet, an important percentage of patients do not reach their treatment goals. Therefore, new cholesterol-lowering medications that have sites of action different from that of drugs available at present need to be developed. This review summarizes new information about cytochrome P450 enzymes 7A1, 27A1 and 46A1. These enzymes play key roles in cholesterol elimination and have the potential to serve as targets for cholesterol-lowering.
Collapse
Affiliation(s)
- Irina A Pikuleva
- Case Western Reserve University, University Hospitals Case Medical Center, Department of Ophthalmology and Visual Sciences, Cleveland, OH 44106, USA.
| |
Collapse
|
18
|
Venkatesh PK, Caskey D, Reddy PC. Therapies to increase high-density lipoprotein cholesterol and their effect on cardiovascular outcomes and regression of atherosclerosis. Am J Med Sci 2008; 336:64-8. [PMID: 18626239 DOI: 10.1097/maj.0b013e31815d4419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epidemiological studies have shown that decreased level of high-density lipoprotein (HDL) cholesterol (C) is an independent inverse predictor of coronary artery disease (CAD) even in patients with normal levels of low-density lipoprotein (LDL)-C. There is an abundance of evidence in favor of statins and aggressive LDL-C lowering therapy for both primary and secondary prevention of CAD. In contrast, the evidence for reduction of CAD risk with HDL-C raising therapy is relatively thin, partly due to the paucity of effective and safe drugs for increasing HDL-C level. However, there are emerging new therapies for raising HDL-C level and growing evidence in favor of pharmacologic therapies to raise HDL-C level. We present in this article a review of pharmacologic therapies that are currently available to increase HDL-C level, their safety and efficacy in relation to cardiovascular endpoints.
Collapse
Affiliation(s)
- Prasanna K Venkatesh
- Department of Medicine, Cardiology Division, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA.
| | | | | |
Collapse
|
19
|
van der Hoorn JWA, de Haan W, Berbée JFP, Havekes LM, Jukema JW, Rensen PCN, Princen HMG. Niacin increases HDL by reducing hepatic expression and plasma levels of cholesteryl ester transfer protein in APOE*3Leiden.CETP mice. Arterioscler Thromb Vasc Biol 2008; 28:2016-22. [PMID: 18669886 DOI: 10.1161/atvbaha.108.171363] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Niacin potently decreases plasma triglycerides and LDL-cholesterol. In addition, niacin is the most potent HDL-cholesterol-increasing drug used in the clinic. In the present study, we aimed at elucidation of the mechanism underlying its HDL-raising effect. METHODS AND RESULTS In APOE*3Leiden transgenic mice expressing the human CETP transgene, niacin dose-dependently decreased plasma triglycerides (up to -77%, P<0.001) and total cholesterol (up to -66%, P<0.001). Concomitantly, niacin dose-dependently increased HDL-cholesterol (up to +87%, P<0.001), plasma apoAI (up to +72%, P<0.001), as well as the HDL particle size. In contrast, in APOE*3Leiden mice, not expressing CETP, niacin also decreased total cholesterol and triglycerides but did not increase HDL-cholesterol. In fact, in APOE*3Leiden.CETP mice, niacin dose-dependently decreased the hepatic expression of CETP (up to -88%; P<0.01) as well as plasma CETP mass (up to -45%, P<0.001) and CETP activity (up to -52%, P<0.001). Additionally, niacin dose-dependently decreased the clearance of apoAI from plasma and reduced the uptake of apoAI by the kidneys (up to -90%, P<0.01). CONCLUSIONS Niacin markedly increases HDL-cholesterol in APOE*3Leiden.CETP mice by reducing CETP activity, as related to lower hepatic CETP expression and a reduced plasma (V)LDL pool, and increases HDL-apoAI by decreasing the clearance of apoAI from plasma.
Collapse
Affiliation(s)
- José W A van der Hoorn
- Netherlands Organization for Applied Scientific Research-Quality of Life, Gaubius Laboratory, Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
20
|
Brown WM, Chiacchia FS. Therapies to Increase ApoA-I and HDL-Cholesterol Levels. Drug Target Insights 2008. [DOI: 10.4137/dti.s447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- William M. Brown
- Resverlogix Corp., 202, 279 Midpark Way SE, Calgary, AB T2X 1M2, Canada
| | | |
Collapse
|
21
|
Troutt JS, Alborn WE, Mosior MK, Dai J, Murphy AT, Beyer TP, Zhang Y, Cao G, Konrad RJ. An apolipoprotein A-I mimetic dose-dependently increases the formation of preβ1 HDL in human plasma. J Lipid Res 2008; 49:581-7. [DOI: 10.1194/jlr.m700385-jlr200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Parolini C, Marchesi M, Lorenzon P, Castano M, Balconi E, Miragoli L, Chaabane L, Morisetti A, Lorusso V, Martin BJ, Bisgaier CL, Krause B, Newton RS, Sirtori CR, Chiesa G. Dose-Related Effects of Repeated ETC-216 (Recombinant Apolipoprotein A-IMilano/1-Palmitoyl-2-Oleoyl Phosphatidylcholine Complexes) Administrations on Rabbit Lipid-Rich Soft Plaques. J Am Coll Cardiol 2008; 51:1098-103. [DOI: 10.1016/j.jacc.2007.12.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Revised: 11/08/2008] [Accepted: 12/02/2008] [Indexed: 11/28/2022]
|
23
|
Ballantyne CM, Davidson MH, McKenney JM, Keller LH, Bajorunas DR, Karas RH. Comparison of the efficacy and safety of a combination tablet of niacin extended-release and simvastatin with simvastatin 80 mg monotherapy: the SEACOAST II (high-dose) study. J Clin Lipidol 2008; 2:79-90. [PMID: 21291724 DOI: 10.1016/j.jacl.2008.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 02/12/2008] [Indexed: 11/26/2022]
Abstract
BACKGROUND The number of patients with multiple lipid abnormalities is increasing. Lipid treatment guidelines are established for low-density lipoprotein cholesterol (LDL-C) and non-high-density lipoprotein cholesterol (non-HDL-C). The importance of treating HDL-C and triglycerides is gaining recognition. OBJECTIVE To determine, in patients who had been treated previously with simvastatin 40 mg/day, the efficacy, safety, and tolerability of two regimens of a combination of proprietary niacin, extended-release core, coated with 40 mg/day simvastatin (NER/S), compared to 80 mg/day simvastatin monotherapy (S80). METHODS High-risk patients (n = 343) with dyslipidemia were treated for 24 weeks with NER/S (1000/40 mg/day or 2000/40 mg/day) or S80. RESULTS Median percentage change from baseline to week 24 in non-HDL-C in either NER/S group was noninferior to S80 (-11.3%, -17.1%, and -10.1%, respectively). Changes in LDL-C were comparable (-8.6%, -11.6%, and -12.7%, respectively). Doubling the dose of simvastatin (S80) did not alter HDL-C, triglycerides, or lipoprotein(a); however, both NER/S doses resulted in significant improvements in all three parameters (+21.9%, -31.8%, and -21.0%, respectively, for NER/S 2000/40 mg/day). The safety of NER/S was consistent with the safety profile of each individual component. Treatment with both doses of NER/S was well tolerated; 59% of patients experienced flushing, 78% of flushing was mild or moderate in intensity, 49% of those who flushed during dose titration did not flush during weeks 13 to 24, and only 4.6% of patients discontinued because of flushing. CONCLUSION NER/S provides similar reductions in non-HDL-C and LDL-C compared to doubling the simvastatin dose to 80 mg; however, only NER/S resulted in improvements in HDL-C, triglycerides, and lipoprotein(a).
Collapse
Affiliation(s)
- Christie M Ballantyne
- Baylor College of Medicine and Methodist DeBakey Heart & Vascular Center, 6565 Fannin, MS A-601, Suite A656, Houston, TX, 77030, USA
| | | | | | | | | | | |
Collapse
|
24
|
van der Steeg WA, Holme I, Boekholdt SM, Larsen ML, Lindahl C, Stroes ES, Tikkanen MJ, Wareham NJ, Faergeman O, Olsson AG, Pedersen TR, Khaw KT, Kastelein JJ. High-Density Lipoprotein Cholesterol, High-Density Lipoprotein Particle Size, and Apolipoprotein A-I: Significance for Cardiovascular Risk. J Am Coll Cardiol 2008; 51:634-42. [DOI: 10.1016/j.jacc.2007.09.060] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 09/13/2007] [Accepted: 09/24/2007] [Indexed: 10/22/2022]
|
25
|
Abstract
Epidemiologic studies show an inverse relation between high-density lipoprotein (HDL) cholesterol levels and coronary artery disease, and proof-of-concept experimental studies suggest that HDL and its apolipoproteins, specifically apolipoprotein (apo) A-I , have atheroprotective effects. Atheroprotective effects of HDL are attributed to its ability to remove macrophage cholesterol by stimulating reverse cholesterol transport as well as anti-inflammatory and antioxidant effects. Several different strategies are currently being pursued to exploit the vascular-protective effects of HDL. One such approach involves direct administration of synthetic reconstituted HDL made from linking phospholipid carriers with recombinant mutant apoA-I or plasma-derived wild-type apoA-I.
Collapse
Affiliation(s)
- Prediman K Shah
- Division of Cardiology & Atherosclerosis Research Center, Cedars Sinai Medical Center, Los Angeles, California 90048, USA.
| |
Collapse
|
26
|
Kuykendall JR, Cox R, Kinder D. 1-Methylnicotinamide stimulates cell growth and inhibits hemoglobin synthesis in differentiating murine erythroleukemia cells. Toxicol In Vitro 2007; 21:1656-62. [PMID: 17826027 DOI: 10.1016/j.tiv.2007.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 05/10/2007] [Accepted: 05/11/2007] [Indexed: 01/21/2023]
Abstract
Exposure of murine erythroleukemia cells (MELCs) to nicotinamide (NA) or its synthetic analog N'-methylnicotinamide (N'-MN) reduces cell growth and induces terminal differentiation, marked by increased heme and globin accumulation. On the contrary, 1-methylnicotinamide (1-MN), the primary metabolite of excess NA, was found to stimulate cell growth and reduce spontaneous differentiation of cultured MELCs. Log phase MELCs exhibited up to 50% higher cell density above untreated cells when cultured for up to 96 h with 2.5 mM 1-MN. When combined with NA or several chemically-unrelated inducers of hemoglobin synthesis in cultured MELCs, 1-MN reduced the globin mRNA levels and heme accumulation by 40-80%. 1-MN was able to inhibit heme production if present during only the first 24-48 h after NA exposure. Pre-treatment with 1-MN could not confer resistance of cells to effects of NA, suggesting the inhibition is reversible. Commitment to differentiate in semisolid medium by the most potent inducer, 5mM N'-MN, was inhibited up to 95% by 2.5mM concentrations of 1-MN. It appears that 1-MN has opposing effects on growth and induction of differentiation than those seen in MELC cultures exposed to NA or N'-MN.
Collapse
Affiliation(s)
- Jim R Kuykendall
- Raabe College of Pharmacy, Department of Pharmaceutical and Biomedical Sciences, Ohio Northern University, 525 South Main, Ada, OH 45810, USA.
| | | | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Inflammation contributes to the formation and progression of atherosclerosis and the therapeutic potential of some anti-inflammatory drugs has been evaluated for possible antiatherosclerotic effects. This review will briefly describe the mechanisms underlying the inflammation-atherosclerosis connection, the effect of various anti-inflammatory therapies on atherosclerotic disease and a sampling of the potential targets and agents under evaluation. RECENT FINDINGS Some agents with anti-inflammatory properties appear to have beneficial effects on atherosclerosis or subsequent risk for cardiovascular events, while others have been disappointing. The anti-inflammatory actions of statins have been linked retrospectively with their favorable effects on atherosclerosis progression and clinical outcomes. The cardiovascular safety of COX-2 inhibitors is being assessed prospectively in patients with atherosclerosis. Potential new therapeutic agents targeting other inflammatory mechanisms and oxidative stress are being evaluated in animal models and clinical trials. SUMMARY Due to the contributory inflammatory pathways in atherosclerosis, the properties of existing and novel anti-inflammatory agents are being carefully and actively evaluated in cardiovascular disease. Advances in our understanding of both atherosclerosis and the inflammatory contributors may play an important role in future strategies to decrease the incidence of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Sami P Moubayed
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Coronary artery thrombosis superimposed on a disrupted atherosclerotic plaque initiates abrupt arterial occlusion and is the proximate event responsible for 60-80% cases of acute coronary syndromes. This article provides a concise update on the evolving concepts in the pathophysiology of plaque rupture and thrombosis. RECENT FINDINGS Over the past several years, the critical role of plaque composition rather than plaque size or stenosis severity, in plaque rupture and thrombosis have been recognized. The necrotic lipid core and plaque inflammation appear to be key factors. Extracellular matrix loss in the fibrous cap, a prelude to rupture, is attributed to matrix degrading enzymes as well as to death of matrix synthesizing smooth muscle cells; inflammation appears to play a critical role in both these processes. Inflammatory cell derived tissue factor is a key contributor to plaque thrombogenicity. Inflammation has also been implicated in plaque neovascularity, intraplaque hemorrhage and plaque expansion. Recent observations have also highlighted the important modulatory role of immune system in atherosclerosis and plaque composition. SUMMARY Improved understanding of mechanisms causing plaque instability should provide novel insights into prevention of athero-thrombotic cardiovascular events.
Collapse
Affiliation(s)
- Prediman K Shah
- Division of Cardiology and Atherosclerosis Research Center, Burns and Allen Research Institute and Department of Medicine, Cedars Sinai Medical Center and UCLA School of Medicine, Los Angeles, California 90048, USA.
| |
Collapse
|
29
|
|
30
|
|
31
|
|