1
|
Takafuji M, Ishida M, Nakamura S, Nakata K, Ito H, Kokawa T, Domae K, Araki S, Nakamori S, Ishiura J, Dohi K, Sakuma H. Microvascular Dysfunction in Patients with Idiopathic Dilated Cardiomyopathy: Quantitative Assessment with Phase Contrast Cine MR Imaging of the Coronary Sinus. Magn Reson Med Sci 2025; 24:10-19. [PMID: 37766549 PMCID: PMC11733506 DOI: 10.2463/mrms.mp.2023-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE The purposes of this study were to compare global coronary flow reserve (CFR) between patients with idiopathic dilated cardiomyopathy (DCM) and risk-matched controls using cardiac MRI (CMR), and to evaluate the relationship between global CFR and CMR left ventricular (LV) parameters. METHODS Twenty-six patients with DCM and 26 risk-matched controls who underwent comprehensive CMR examination, including stress-rest coronary sinus flow measurement by phase contrast (PC) cine CMR were retrospectively studied. LV peak global longitudinal, radial, and circumferential strains (GLS, GRS, and GCS) were determined by feature tracking. RESULTS Patients with DCM had significantly lower global CFR compared with the risk-matched controls (2.87 ± 0.86 vs. 4.03 ± 1.47, P = 0.001). Among the parameters, univariate linear regression analyses revealed significant correlation of global CFR with LV end-diastolic volume index (r = -0.396, P = 0.045), LV mass index (r = -0.461, P = 0.018), GLS (r = -0.558, P = 0.003), and GRS (r = 0.392, P = 0.047). Multiple linear regression analysis revealed GLS as the only independent predictor of global CFR (standardized β = -0.558, P = 0.003). CONCLUSION Global CFR was significantly impaired in patients with idiopathic DCM and independently associated with LV GLS, suggesting that microvascular dysfunction may contribute to deterioration of LV function in patients with idiopathic DCM.
Collapse
Affiliation(s)
| | - Masaki Ishida
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| | - Satoshi Nakamura
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| | - Kei Nakata
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| | - Haruno Ito
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| | - Takanori Kokawa
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| | - Kensuke Domae
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| | - Suguru Araki
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| | - Shiro Nakamori
- Department of Cardiology and Nephrology, Mie University Hospital, Tsu, Mie, Japan
| | - Junko Ishiura
- Department of Cardiology and Nephrology, Mie University Hospital, Tsu, Mie, Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Hospital, Tsu, Mie, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| |
Collapse
|
2
|
Dong H, Leach JR, Kao E, Zhou A, Chitiboi T, Zhu C, Ballweber M, Jiang F, Lee YJ, Iannuzzi J, Gasper W, Saloner D, Hope MD, Mitsouras D. Measurement of Abdominal Aortic Aneurysm Strain Using MR Deformable Image Registration: Accuracy and Relationship to Recent Aneurysm Progression. Invest Radiol 2024; 59:425-432. [PMID: 37855728 PMCID: PMC11026303 DOI: 10.1097/rli.0000000000001035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
BACKGROUND Management of asymptomatic abdominal aortic aneurysm (AAA) based on maximum aneurysm diameter and growth rate fails to preempt many ruptures. Assessment of aortic wall biomechanical properties may improve assessment of progression and rupture risk. This study aimed to assess the accuracy of AAA wall strain measured by cine magnetic resonance imaging (MRI) deformable image registration (MR strain) and investigate its relationship with recent AAA progression. METHODS The MR strain accuracy was evaluated in silico against ground truth strain in 54 synthetic MRIs generated from a finite element model simulation of an AAA patient's abdomen for different aortic pulse pressures, tissue motions, signal intensity variations, and image noise. Evaluation included bias with 95% confidence interval (CI) and correlation analysis. Association of MR strain with AAA growth rate was assessed in 25 consecutive patients with >6 months of prior surveillance, for whom cine balanced steady-state free-precession imaging was acquired at the level of the AAA as well as the proximal, normal-caliber aorta. Univariate and multivariate regressions were used to associate growth rate with clinical variables, maximum AAA diameter (D max ), and peak circumferential MR strain through the cardiac cycle. The MR strain interoperator variability was assessed using bias with 95% CI, intraclass correlation coefficient, and coefficient of variation. RESULTS In silico experiments revealed an MR strain bias of 0.48% ± 0.42% and a slope of correlation to ground truth strain of 0.963. In vivo, AAA MR strain (1.2% ± 0.6%) was highly reproducible (bias ± 95% CI, 0.03% ± 0.31%; intraclass correlation coefficient, 97.8%; coefficient of variation, 7.14%) and was lower than in the nonaneurysmal aorta (2.4% ± 1.7%). D max ( β = 0.087) and MR strain ( β = -1.563) were both associated with AAA growth rate. The MR strain remained an independent factor associated with growth rate ( β = -0.904) after controlling for D max . CONCLUSIONS Deformable image registration analysis can accurately measure the circumferential strain of the AAA wall from standard cine MRI and may offer patient-specific insight regarding AAA progression.
Collapse
Affiliation(s)
- Huiming Dong
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA (H.D., J.L., E.K., A.Z., C.Z., M.B., Y.J.L., D.S., M.H., D.M.); Vascular Imaging Research Center, San Francisco Veteran Affairs Medical Center, San Francisco, CA (H.D., J.L., E.K., A.Z., C.Z., M.B., D.S., M.H., D.M.); Siemens Healthineers (T.C.); Department of Radiology, University of Washington, Seattle, WA (C.Z.); Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA (F.J.); Department of Surgery, University of California, San Francisco, San Francisco, CA (J.I., W. G.); and Department of Vascular Surgery, San Francisco Veteran Affairs Medical Center, San Francisco, CA (J.I., W.G.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Wang F, Pu C, Ma S, Zhou J, Jiang Y, Yu F, Zhang S, Wu Y, Zhang L, He C, Hu H. The effects of flip angle and gadolinium contrast agent on single breath-hold compressed sensing cardiac magnetic resonance cine for biventricular global strain assessment. Front Cardiovasc Med 2024; 11:1286271. [PMID: 38347952 PMCID: PMC10859435 DOI: 10.3389/fcvm.2024.1286271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
Background Due to its potential to significantly reduce scanning time while delivering accurate results for cardiac volume function, compressed sensing (CS) has gained traction in cardiovascular magnetic resonance (CMR) cine. However, further investigation is necessary to explore its feasibility and impact on myocardial strain results. Materials and methods A total of 102 participants [75 men, 46.5 ± 17.1 (SD) years] were included in this study. Each patient underwent four consecutive cine sequences with the same slice localization, including the reference multi-breath-hold balanced steady-state free precession (bSSFPref) cine, the CS cine with the same flip angle as bSSFPref before (CS45) and after (eCS45) contrast enhancement, and the CS cine (eCS70) with a 70-degree flip angle after contrast enhancement. Biventricular strain parameters were derived from cine images. Two-tailed paired t-tests were used for data analysis. Results Global radial strain (GRS), global circumferential strain (GCS), and global longitudinal strain (GLS) were observed to be significantly lower in comparison to those obtained from bSSFPref sequences for both the right and left ventricles (all p < 0.001). No significant difference was observed on biventricular GRS-LAX (long-axis) and GLS values derived from enhanced and unenhanced CS cine sequences with the same flip angle, but remarkable reductions were noted in GRS-SAX (short-axis) and GCS values (p < 0.001). After contrast injection, a larger flip angle caused a significant elevation in left ventricular strain results (p < 0.001) but did not affect the right ventricle. The increase in flip angle appeared to compensate for contrast agent affection on left ventricular GRS-SAX, GCS values, and right ventricular GRS-LAX, GLS values. Conclusion Despite incorporating gadolinium contrast agents and applying larger flip angles, single breath-hold CS cine sequences consistently yielded diminished strain values for both ventricles when compared with conventional cine sequences. Prior to employing this single breath-hold CS cine sequence to refine the clinical CMR examination procedure, it is crucial to consider its impact on myocardial strain results.
Collapse
Affiliation(s)
- Fuyan Wang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cailing Pu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siying Ma
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junjie Zhou
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yangyang Jiang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feidan Yu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | - Yan Wu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lingjie Zhang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chengbin He
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Kubooka M, Ishida M, Takafuji M, Ito H, Kokawa T, Nakamura S, Domae K, Araki S, Ichikawa Y, Murashima S, Sakuma H. Associating the Severity of Emphysema with Coronary Flow Reserve and Left Atrial Conduit Function for the Emphysema Patients with Known or Suspected Coronary Artery Disease. Magn Reson Med Sci 2024; 23:27-38. [PMID: 36517009 PMCID: PMC10838718 DOI: 10.2463/mrms.mp.2022-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/04/2022] [Indexed: 01/05/2024] Open
Abstract
PURPOSE Pulmonary emphysema may associate with ischemic heart disease through systemic microvascular abnormality as a common pathway. Stress cardiovascular MR (CMR) allows for the assessment of global coronary flow reserve (CFR). The purpose of this study was to evaluate the association between the emphysema severity and the multiple MRI parameters in the emphysema patients with known or suspected coronary artery disease (CAD). METHODS A total of 210 patients with known or suspected CAD who underwent both 3.0T CMR including cine CMR, stress and rest perfusion CMR, stress and rest phase-contrast (PC) cine CMR of coronary sinus, and late gadolinium enhancement (LGE) CMR, and lung CT within 6 months were studied. Global CFR, volumes and functions of both ventricles and atria, and presence or absence of myocardial ischemia and infarction were evaluated. Emphysema severity was visually determined on lung CT by Goddard method. RESULT Seventy nine (71.0 ± 7.9 years, 75 male) of 210 patients with known or suspected CAD had emphysema on lung CT. Goddard score was significantly correlated with CFR (r = -0.246, P = 0.029), left ventricular end-diastolic volume index (LV EDVI) (r = -0.230, P = 0.041), right ventricular systolic volume index (RV SVI) (r = -0.280, P = 0.012), left atrial (LA) total emptying volume index (r = -0.269, P = 0.017), LA passive emptying volume index (r = -0.309, P = 0.006), LA systolic strain (Es) (r = -0.244, P = 0.030), and LA conduit strain (Ee) (r = -0.285, P = 0.011) in the patients with emphysema. Multiple linear regression analysis revealed LA conduit function was independently associated with emphysema severity as determined by Goddard method (beta = -0.361, P = 0.006). CONCLUSION LA conduit function independently associates with emphysema severity in the emphysema patients with known or suspected CAD after adjusting age, sex, smoking, and the CMR indexes including CFR. These findings suggest that impairment of LA function predominantly occurs prior to the reduction of the CFR in the emphysema patients with known or suspected CAD.
Collapse
Affiliation(s)
- Makiko Kubooka
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| | - Masaki Ishida
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| | | | - Haruno Ito
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| | - Takanori Kokawa
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| | - Satoshi Nakamura
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| | - Kensuke Domae
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| | - Suguru Araki
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| | | | | | - Hajime Sakuma
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| |
Collapse
|
5
|
Earl CC, Pyle VI, Clark SQ, Annamalai K, Torres PA, Quintero A, Damen FW, Hor KN, Markham LW, Soslow JH, Goergen CJ. Localized strain characterization of cardiomyopathy in Duchenne muscular dystrophy using novel 4D kinematic analysis of cine cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2023; 25:14. [PMID: 36793101 PMCID: PMC9933368 DOI: 10.1186/s12968-023-00922-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/21/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Cardiomyopathy (CMP) is the most common cause of mortality in Duchenne muscular dystrophy (DMD), though the age of onset and clinical progression vary. We applied a novel 4D (3D + time) strain analysis method using cine cardiovascular magnetic resonance (CMR) imaging data to determine if localized strain metrics derived from 4D image analysis would be sensitive and specific for characterizing DMD CMP. METHODS We analyzed short-axis cine CMR image stacks from 43 DMD patients (median age: 12.23 yrs [10.6-16.5]; [interquartile range]) and 25 male healthy controls (median age: 16.2 yrs [13.3-20.7]). A subset of 25 male DMD patients age-matched to the controls (median age: 15.7 yrs [14.0-17.8]) was used for comparative metrics. CMR images were compiled into 4D sequences for feature-tracking strain analysis using custom-built software. Unpaired t-test and receiver operator characteristic area under the curve (AUC) analysis were used to determine statistical significance. Spearman's rho was used to determine correlation. RESULTS DMD patients had a range of CMP severity: 15 (35% of total) had left ventricular ejection fraction (LVEF) > 55% with no findings of myocardial late gadolinium enhancement (LGE), 15 (35%) had findings of LGE with LVEF > 55% and 13 (30%) had LGE with LVEF < 55%. The magnitude of the peak basal circumferential strain, basal radial strain, and basal surface area strain were all significantly decreased in DMD patients relative to healthy controls (p < 0.001) with AUC values of 0.80, 0.89, and 0.84 respectively for peak strain and 0.96, 0.91, and 0.98 respectively for systolic strain rate. Peak basal radial strain, basal radial systolic strain rate, and basal circumferential systolic strain rate magnitude values were also significantly decreased in mild CMP (No LGE, LVEF > 55%) compared to a healthy control group (p < 0.001 for all). Surface area strain significantly correlated with LVEF and extracellular volume (ECV) respectively in the basal (rho = - 0.45, 0.40), mid (rho = - 0.46, 0.46), and apical (rho = - 0.42, 0.47) regions. CONCLUSION Strain analysis of 3D cine CMR images in DMD CMP patients generates localized kinematic parameters that strongly differentiate disease from control and correlate with LVEF and ECV.
Collapse
Affiliation(s)
- Conner C Earl
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Victoria I Pyle
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
| | - Sydney Q Clark
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Karthik Annamalai
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
| | - Paula A Torres
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
| | - Alejandro Quintero
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
| | - Frederick W Damen
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kan N Hor
- The Heart Center, Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Larry W Markham
- Division of Pediatric Cardiology, Riley Children's Hospital at Indiana University Health, Indianapolis, IN, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jonathan H Soslow
- Division of Pediatric Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA.
- Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
6
|
Chew JD, George-Durrett K, Acheampong B, Weiner JG, Slaughter JC, Parra DA, Soslow JH. Comparison of Strain-Encoding and Feature-Tracking Derived Myocardial Deformation Assessment of Left Ventricular Function in a Pediatric and Adult Congenital Heart Disease Cohort. Pediatr Cardiol 2022; 43:1338-1348. [PMID: 35238958 DOI: 10.1007/s00246-022-02856-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/21/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cardiac magnetic resonance (CMR) strain can be assessed with feature-tracking (FT), which utilizes a post-processing algorithm to quantify myocardial deformation on routine cine images, and strain-encoding magnetic resonance imaging (SENC), which uses parallel magnetization tags combined with out-of-plane phase-encoding gradients to quantify deformation. Assessing agreement is critical to determine whether results can be translated between methods. We compared SENC to FT in the assessment of left ventricle (LV) global longitudinal strain (GLS) and global circumferential strain (GCS) in a cohort of pediatric and adult congenital heart disease (ACHD) patients. METHODS Pediatric subjects and ACHD patients underwent CMR on 1.5 T Siemens scanners, including balanced steady-state-free precession (bSSFP) cine imaging and SENC acquisitions in apical two and four chamber, left ventricular outflow tract, and short axis views. bSSFP cine imaging FT analysis was completed with Medis QStrain. Myocardial Solutions MyoStrain was used to analyze SENC. Correlation was assessed by Spearman's rank correlation coefficient. Agreement between techniques was assessed with concordance correlation coefficient (CCC) and Bland-Altman. RESULTS The cohort included 134 patients, 75 with congenital heart disease (56%). The median age was 16.3 years (IQR 13.7, 19.5). Median LV ejection fraction was 57% (IQR 54.4, 61.6). SENC and FT were in poor agreement for GLS (Spearman's ρ = 0.58, p < 0.001; CCC 0.24) and GCS (Spearman's ρ = 0.29, p < 0.001; CCC 0.03). CONCLUSION There was poor agreement between SENC and FT derived GLS and GCS in a cohort of pediatric and ACHD patients, suggesting that SENC and FT cannot be used interchangeably.
Collapse
Affiliation(s)
- Joshua D Chew
- Division of Pediatric Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, Suite 5230, Doctor's Office Tower, Nashville, TN, 37232, USA.
| | - Kristen George-Durrett
- Division of Pediatric Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, Suite 5230, Doctor's Office Tower, Nashville, TN, 37232, USA
| | - Benjamin Acheampong
- Division of Pediatric Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, Suite 5230, Doctor's Office Tower, Nashville, TN, 37232, USA
| | - Jeffrey G Weiner
- Division of Pediatric Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, Suite 5230, Doctor's Office Tower, Nashville, TN, 37232, USA
| | - James C Slaughter
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David A Parra
- Division of Pediatric Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, Suite 5230, Doctor's Office Tower, Nashville, TN, 37232, USA
| | - Jonathan H Soslow
- Division of Pediatric Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, Suite 5230, Doctor's Office Tower, Nashville, TN, 37232, USA
| |
Collapse
|
7
|
Mella H, Mura J, Sotelo J, Uribe S. A comprehensive comparison between shortest-path HARP refinement, SinMod, and DENSEanalysis processing tools applied to CSPAMM and DENSE images. Magn Reson Imaging 2021; 83:14-26. [PMID: 34242693 DOI: 10.1016/j.mri.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/26/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
We addressed comprehensively the performance of Shortest-Path HARP Refinement (SP-HR), SinMod, and DENSEanalysis using 2D slices of synthetic CSPAMM and DENSE images with realistic contrasts obtained from 3D phantoms. The three motion estimation techniques were interrogated under ideal and no-ideal conditions (with MR induced artifacts, noise, and through-plane motion), considering several resolutions and noise levels. Under noisy conditions, and for isotropic pixel sizes of 1.5 mm and 3.0 mm in CSPAMM and DENSE images respectively, the nRMSE obtained for the circumferential and radial strain components were 10.7 ± 10.8% and 25.5 ± 14.8% using SP-HR, 11.9 ± 2.5% and 29.3 ± 6.5% using SinMod, and 6.4 ± 2.0% and 18.2 ± 4.6% using DENSEanalysis. Overall, the results showed that SP-HR tends to fail for large tissue motions, whereas SinMod and DENSEanalysis gave accurate displacement and strain field estimations, being the last which performed the best.
Collapse
Affiliation(s)
- Hernán Mella
- Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile; Biomedical Imaging Centre, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile.
| | - Joaquín Mura
- Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Santiago, Chile; Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile.
| | - Julio Sotelo
- School of Biomedical Engineering, Universidad de Valparaíso, Valparaíso, Chile; Biomedical Imaging Centre, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile.
| | - Sergio Uribe
- Department of Radiology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Biomedical Imaging Centre, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile.
| |
Collapse
|
8
|
Ishiyama M, Kurita T, Nakamura S, Omori T, Nakamori S, Ishida M, Fujimoto N, Kitagawa K, Sakuma H, Ito M, Dohi K. Prognostic importance of acute phase extracellular volume evaluated by cardiac magnetic resonance imaging for patients with acute myocardial infarction. Int J Cardiovasc Imaging 2021; 37:3285-3297. [PMID: 34191203 DOI: 10.1007/s10554-021-02321-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022]
Abstract
Myocardial extracellular volume (ECV) by cardiac magnetic resonance (CMR) in the acute phase of acute myocardial infarction (MI) more precisely predicts the functional recovery of infarct-related wall motion abnormalities and left ventricular (LV) remodeling than late gadolinium enhancement (LGE). The purpose of this study was to evaluate the prognostic importance of acute phase ECV in patients with AMI. We evaluated 61 consecutive AMI patients using 3.0 T CMR. CMR examination was performed median 10 days (7-15 days) after PCI. Primary endpoint was defined as major adverse cardiac event (MACE). The median follow-up duration was 3.1 years, and MACE occurred in 11 (18%) patients. Although LVEF and % infarct LGE volume were not associated with MACE in this study population, higher infarct ECV predicted the MACE with a hazard ratio (HR) of 4.04 (P = 0.02). High global ECV, which was a combined assessment of infarct ECV and remote ECV, also predicted MACE with a HR of 5.24 (P = 0.035). The addition of infarct ECV to remote ECV (global chi-squared score: 1.4) resulted in a significantly increased global chi-squared score (6.7; P = 0.017). Furthermore, after adjusting for the calculated propensity score for high global ECV, it remained an independent predictor of MACE with HR of 5.10 (P = 0.04). The quantification of ECV in the acute phase among AMI patients may provide an incremental prognostic value for predicting MACE beyond that of clinical, angiographic, and functional variables.
Collapse
Affiliation(s)
- Masaki Ishiyama
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Tairo Kurita
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Satoshi Nakamura
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Taku Omori
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Shiro Nakamori
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masaki Ishida
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Naoki Fujimoto
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kakuya Kitagawa
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masaaki Ito
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kaoru Dohi
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
9
|
Kihlberg J, Gupta V, Haraldsson H, Sigfridsson A, Sarvari SI, Ebbers T, Engvall JE. Clinical validation of three cardiovascular magnetic resonance techniques to measure strain and torsion in patients with suspected coronary artery disease. J Cardiovasc Magn Reson 2020; 22:83. [PMID: 33280612 PMCID: PMC7720468 DOI: 10.1186/s12968-020-00684-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 10/29/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Several cardiovascular magnetic resonance (CMR) techniques can measure myocardial strain and torsion with high accuracy. The purpose of this study was to compare displacement encoding with stimulated echoes (DENSE), tagging and feature tracking (FT) for measuring circumferential and radial myocardial strain and myocardial torsion in order to assess myocardial function and infarct scar burden both at a global and at a segmental level. METHOD 116 patients with a high likelihood of coronary artery disease (European SCORE > 15%) underwent CMR examination including cine images, tagging, DENSE and late gadolinium enhancement (LGE) in the short axis direction. In total, 97 patients had signs of myocardial disease and 19 had no abnormalities in terms of left ventricular (LV) wall mass index, LV ejection fraction, wall motion, LGE or a history of myocardial infarction. Thirty-four patients had myocardial infarct scar with a transmural LGE extent (transmurality) that exceeded 50% of the wall thickness in at least one segment. Global circumferential strain (GCS) and global radial strain (GRS) was analyzed using FT of cine loops, deformation of tag lines or DENSE displacement. RESULTS DENSE and tagging both showed high sensitivity (82% and 71%) at a specificity of 80% for the detection of segments with > 50% LGE transmurality, and receiver operating characteristics (ROC) analysis showed significantly higher area under the curve-values (AUC) for DENSE (0.87) than for tagging (0.83, p < 0.001) and FT (0.66, p = 0.003). GCS correlated with global LGE when determined with DENSE (r = 0.41), tagging (r = 0.37) and FT (r = 0.15). GRS had a low but significant negative correlation with LGE; DENSE r = - 0.10, FT r = - 0.07 and tagging r = - 0.16. Torsion from DENSE and tagging had a weak correlation (- 0.20 and - 0.22 respectively) with global LGE. CONCLUSION Circumferential strain from DENSE detected segments with > 50% scar with a higher AUC than strain determined from tagging and FT at a segmental level. GCS and torsion computed from DENSE and tagging showed similar correlation with global scar size, while when computed from FT, the correlation was lower.
Collapse
Affiliation(s)
- Johan Kihlberg
- Department of Radiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
| | - Vikas Gupta
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Henrik Haraldsson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Andreas Sigfridsson
- Department of Clinical Physiology & Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Sebastian I Sarvari
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, 0316, Oslo, Norway
| | - Tino Ebbers
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Jan E Engvall
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Clinical Physiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
10
|
Ito H, Ishida M, Makino W, Goto Y, Ichikawa Y, Kitagawa K, Omori T, Dohi K, Ito M, Sakuma H. Cardiovascular magnetic resonance feature tracking for characterization of patients with heart failure with preserved ejection fraction: correlation of global longitudinal strain with invasive diastolic functional indices. J Cardiovasc Magn Reson 2020; 22:42. [PMID: 32498688 PMCID: PMC7271439 DOI: 10.1186/s12968-020-00636-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 05/08/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Left ventricular (LV) diastolic dysfunction is the main cause of heart failure with preserved ejection fraction (HFpEF), and is characterized by LV stiffness and relaxation. Abnormal LV global longitudinal strain (GLS) is frequently observed l in HFpEF, and was shown to be useful in identifying HFpEF patients at high risk for a cardiovascular event. Cardiovascular magnetic resonance (CMR) feature tracking (CMR-FT) enables the reproducible and non-invasive assessment of global strain from cine CMR images. However, the association between GLS and invasively measured parameters of diastolic function has not been investigated. We sought to determine the prevalence and severity of GLS impairment in patients with HFpEF by using CMR-FT, and to evaluate the correlation between GLS measured by CMR-FT and that measured by invasive diastolic functional indices. METHODS Eighteen patients with HFpEF and 18 age- and sex-matched healthy control subjects were studied. All subjects underwent cine, pre- and post-contrast T1 mapping and late gadolinium-enhancement CMR. In the HFpEF patients, invasive pressure-volume loops were obtained to evaluate LV diastolic properties. GLS was quantified from cine CMR, and extracellular volume fraction (ECV) was quantified from pre- and post-contrast T1 mapping as a known imaging biomarker for predicting LV stiffness. RESULTS GLS was significantly impaired in patients with HFpEF (- 14.8 ± 3.3 vs.-19.5 ± 2.8%, p < 0.001). Thirty nine percent (7/18) of HFpEF patients showed impaired GLS with a cut-off of - 13.9%. Statistically significant difference was found in ECV between HFpEF patients and controls (32.2 ± 3.8% vs. 29.9 ± 2.6%, p = 0.044). In HFpEF patients, the time constant of active LV relaxation (Tau) was strongly correlated with GLS (r = 0.817, p < 0.001), global circumferential strain (GCS) (r = 0.539, p = 0.021) and global radial strain (GRS) (r = - 0.552, p = 0.017). Multiple linear regression analysis revealed GLS as the only independent predictor of altered Tau (beta = 0.817, p < 0.001) among age, LV end-diastolic volume index, LV end-systolic volume index, LV mass index, GCS, GRS and GLS. CONCLUSIONS CMR-FT is a noninvasive approach that enables identification of the subgroup of HFpEF patients with impaired GLS. CMR LV GLS independently predicts abnormal invasive LV relaxation index Tau measurements in HFpEF patients. These findings suggest that feature-tracking CMR analysis in conjunction with ECV, may enable evaluation of diastolic dysfunction in patients with HFpEF.
Collapse
Affiliation(s)
- Haruno Ito
- Departments of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masaki Ishida
- Departments of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Wakana Makino
- Departments of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoshitaka Goto
- Departments of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yasutaka Ichikawa
- Departments of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kakuya Kitagawa
- Departments of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Taku Omori
- Departments of Cardiology and Nephrology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kaoru Dohi
- Departments of Cardiology and Nephrology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masaaki Ito
- Departments of Cardiology and Nephrology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hajime Sakuma
- Departments of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
11
|
Stathogiannis K, Mor-Avi V, Rashedi N, Lang RM, Patel AR. Regional myocardial strain by cardiac magnetic resonance feature tracking for detection of scar in ischemic heart disease. Magn Reson Imaging 2020; 68:190-196. [PMID: 32084516 DOI: 10.1016/j.mri.2020.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/23/2019] [Accepted: 02/18/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Although cardiac magnetic resonance (CMR) can accurately quantify global left ventricular strain using feature tracking (FT), it has been suggested that FT cannot reliably quantify regional strain. We aimed to determine whether abnormalities in regional strain measured using FT can be detected within areas of myocardial scar and to determine the extent to which the regional strain measurement is impacted by LV ejection fraction (EF). METHODS We retrospectively studied 96 patients (46 with LVEF ≤ 40%, 50 with LVEF > 40%) with coronary artery disease and a late gadolinium enhancement (LGE) pattern consistent with myocardial infarction, who underwent CMR imaging (1.5T). Regional peak systolic longitudinal and circumferential strains (RLS, RCS) were measured within LGE and non-LGE areas. Linear regression analysis was performed for strain in both areas against LVEF to determine whether the relationship between strain and LGE holds across the LV function spectrum. Receiver-operating curve (ROC) analysis was performed in 33 patients (derivation cohort) to optimize strain cutoff, which was tested in the remaining 63 patients (validation cohort) for its ability to differentiate LGE from non-LGE areas. RESULTS Both RLS and RCS magnitudes were reduced in LGE areas: RLS = -10.4 ± 6.2% versus -21.0 ± 8.5% (p < 0.001); RCS = -10.4 ± 6.0% versus -18.9 ± 8.6%, respectively (p < 0.001), but there was considerable overlap between LGE and non-LGE areas. Linear regression revealed that it was partially driven by the natural dependence between strain and EF, suggesting that EF-corrected strain cutoff is needed to detect LGE. ROC analysis showed the ability of both RLS and RCS to differentiate LGE from non-LGE areas: area under curve 0.95 and 0.89, respectively. In the validation cohort, optimal cutoffs of RLS/EF = 0.36 and RCS/EF = 0.37 yielded sensitivity, specificity and accuracy 0.74-0.78. CONCLUSION Abnormalities in RLS and RCS within areas of myocardial scar can be detected using CMR-FT; however, LVEF must be accounted for.
Collapse
Affiliation(s)
- Konstantinos Stathogiannis
- Department of Medicine, University of Chicago Medicine, Chicago, IL, USA; First Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | - Victor Mor-Avi
- Department of Medicine, University of Chicago Medicine, Chicago, IL, USA.
| | - Nina Rashedi
- Department of Medicine, University of Chicago Medicine, Chicago, IL, USA.
| | - Roberto M Lang
- Department of Medicine, University of Chicago Medicine, Chicago, IL, USA.
| | - Amit R Patel
- Department of Medicine, University of Chicago Medicine, Chicago, IL, USA.
| |
Collapse
|
12
|
Erley J, Genovese D, Tapaskar N, Alvi N, Rashedi N, Besser SA, Kawaji K, Goyal N, Kelle S, Lang RM, Mor-Avi V, Patel AR. Echocardiography and cardiovascular magnetic resonance based evaluation of myocardial strain and relationship with late gadolinium enhancement. J Cardiovasc Magn Reson 2019; 21:46. [PMID: 31391036 PMCID: PMC6686365 DOI: 10.1186/s12968-019-0559-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/01/2019] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES We sought to: (1) determine the agreement in cardiovascular magnetic resonance (CMR) and speckle tracking echocardiography (STE) derived strain measurements, (2) compare their reproducibility, (3) determine which approach is best related to CMR late gadolinium enhancement (LGE). BACKGROUND While STE-derived strain is routinely used to assess left ventricular (LV) function, CMR strain measurements are not yet standardized. Strain can be measured using dedicated pulse sequences (strain-encoding, SENC), or post-processing of cine images (feature tracking, FT). It is unclear whether these measurements are interchangeable, and whether strain can be used as an alternative to LGE. METHODS Fifty patients underwent 2D echocardiography and 1.5 T CMR. Global longitudinal strain (GLS) was measured by STE (Epsilon), FT (NeoSoft) and SENC (Myocardial Solutions) and circumferential strain (GCS) by FT and SENC. RESULTS GLS showed good inter-modality agreement (r-values: 0.71-0.75), small biases (< 1%) but considerable limits of agreement (- 7 to 8%). The agreement between the CMR techniques was better for GLS than GCS (r = 0.81 vs 0.67; smaller bias). Repeated measurements showed low intra- and inter-observer variability for both GLS and GCS (intraclass correlations 0.86-0.99; coefficients of variation 3-13%). LGE was present in 22 (44%) of patients. Both SENC- and FT-derived GLS and GCS were associated with LGE, while STE-GLS was not. Irrespective of CMR technique, this association was stronger for GCS (AUC 0.77-0.78) than GLS (AUC 0.67-0.72) and STE-GLS (AUC = 0.58). CONCLUSION There is good inter-technique agreement in strain measurements, which were highly reproducible, irrespective of modality or analysis technique. GCS may better reflect the presence of underlying LGE than GLS.
Collapse
Affiliation(s)
- Jennifer Erley
- Department of Internal Medicine / Cardiology, German Heart Center, Berlin, Germany
| | - Davide Genovese
- Department of Medicine, University of Chicago Medical Center, 5758 S. Maryland Avenue, MC9067, Chicago, IL 60637 USA
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Natalie Tapaskar
- Department of Medicine, University of Chicago Medical Center, 5758 S. Maryland Avenue, MC9067, Chicago, IL 60637 USA
| | - Nazia Alvi
- Department of Medicine, University of Chicago Medical Center, 5758 S. Maryland Avenue, MC9067, Chicago, IL 60637 USA
- Department of Cardiology, Riverside Medical Center, Kankakee, IL USA
| | - Nina Rashedi
- Department of Medicine, University of Chicago Medical Center, 5758 S. Maryland Avenue, MC9067, Chicago, IL 60637 USA
| | - Stephanie A. Besser
- Department of Medicine, University of Chicago Medical Center, 5758 S. Maryland Avenue, MC9067, Chicago, IL 60637 USA
| | - Keigo Kawaji
- Department of Medicine, University of Chicago Medical Center, 5758 S. Maryland Avenue, MC9067, Chicago, IL 60637 USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL USA
| | - Neha Goyal
- Department of Medicine, University of Chicago Medical Center, 5758 S. Maryland Avenue, MC9067, Chicago, IL 60637 USA
| | - Sebastian Kelle
- Department of Internal Medicine / Cardiology, German Heart Center, Berlin, Germany
- Department of Internal Medicine/Cardiology, Charité Campus Virchow Klinikum, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Roberto M. Lang
- Department of Medicine, University of Chicago Medical Center, 5758 S. Maryland Avenue, MC9067, Chicago, IL 60637 USA
| | - Victor Mor-Avi
- Department of Medicine, University of Chicago Medical Center, 5758 S. Maryland Avenue, MC9067, Chicago, IL 60637 USA
| | - Amit R. Patel
- Department of Medicine, University of Chicago Medical Center, 5758 S. Maryland Avenue, MC9067, Chicago, IL 60637 USA
| |
Collapse
|
13
|
Burkhardt BEU, Kellenberger CJ, Franzoso FD, Geiger J, Oxenius A, Valsangiacomo Buechel ER. Right and Left Ventricular Strain Patterns After the Atrial Switch Operation for D-Transposition of the Great Arteries-A Magnetic Resonance Feature Tracking Study. Front Cardiovasc Med 2019; 6:39. [PMID: 31024933 PMCID: PMC6465947 DOI: 10.3389/fcvm.2019.00039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/21/2019] [Indexed: 12/02/2022] Open
Abstract
Introduction: Adult survivors of the atrial switch operation for transposition of the great arteries present with a systemic morphologic right ventricle and a subpulmonary morphologic left ventricle. This physiology can be considered a model for the effects of long-term right ventricular pressure overload and of decreased left ventricular afterload. We aimed to determine the impact of these chronically altered loading conditions on myocardial deformation of the ventricles. Materials and methods: Two-dimensional steady state free precession cine images of 29 patients after atrial repair (age 29 ± 7 years) and 19 controls (24 ± 10 years; n.s.) were post-processed with feature tracking software (TomTec 2D CPA). Volumes, ejection fractions, global and free wall longitudinal and circumferential strains of both ventricles were compared between both groups. Results: Systemic right ventricular global longitudinal strain was decreased in patients compared to controls (−12.9 ± 3.3% vs. −18.9 ± 4.6%, p < 0.001), while right ventricular circumferential strain was unchanged (−15.8 ± 3.4% vs. −15.1 ± 5%; n.s.). Left ventricular longitudinal strain was similar in both groups (−17 ± 5.6% vs. −17.5 ± 4.6%; n.s.), but global left ventricular circumferential strain was lower in patients (−20.7 ± 4.1% vs. −27.3 ± 4.5%, p < 0.001). The systemic right ventricle, compared to the systemic left ventricle, showed decreased global longitudinal (p < 0.001) and circumferential strain (p < 0.001). The subpulmonary left ventricle, compared to the subpulmonary right ventricle, demonstrated similar longitudinal (p = 0.223) but higher circumferential strain (p < 0.001). Conclusions: In patients after atrial switch repair for transposition of the great arteries, the systemic right ventricle shows poor longitudinal strain, but maintains normal right ventricular circumferential strain. The left ventricle shows higher circumferential strain than the right ventricle, in both systemic and subpulmonary positions.
Collapse
Affiliation(s)
- Barbara Elisabeth Ursula Burkhardt
- Department of Surgery, Pediatric Cardiology, Pediatric Heart Center, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Christian Johannes Kellenberger
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Department of Diagnostic Imaging, University Children's Hospital Zurich, Zurich, Switzerland
| | - Francesca Daniela Franzoso
- Department of Surgery, Pediatric Cardiology, Pediatric Heart Center, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Julia Geiger
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Department of Diagnostic Imaging, University Children's Hospital Zurich, Zurich, Switzerland
| | - Angela Oxenius
- Department of Surgery, Pediatric Cardiology, Pediatric Heart Center, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Emanuela Regina Valsangiacomo Buechel
- Department of Surgery, Pediatric Cardiology, Pediatric Heart Center, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Cai X, Epstein FH. Free-breathing cine DENSE MRI using phase cycling with matchmaking and stimulated-echo image-based navigators. Magn Reson Med 2018; 80:1907-1921. [PMID: 29607538 PMCID: PMC6107388 DOI: 10.1002/mrm.27199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/19/2018] [Accepted: 03/06/2018] [Indexed: 01/17/2023]
Abstract
PURPOSE This study aimed to develop a self-navigated method for free-breathing spiral cine displacement encoding with stimulated echoes (DENSE), a myocardial strain imaging technique that uses phase-cycling for artifact suppression. The method needed to address 2 consequences of motion for DENSE: striping artifacts from incomplete suppression of the T1 -relaxation echo and blurring. METHODS The method identifies phase-cycled spiral interleaves at matched respiratory phases by minimizing the residual signal due to T1 relaxation after phase-cycling subtraction. Next, the method reconstructs image-based navigators from matched phase-cycled interleaves that are comprised of the stimulated echo (ste-iNAVs). Ste-iNAVs are used for motion estimation and compensation of k-space data. The method was demonstrated in phantoms and compared to diaphragm-based navigator (dNAV) and conventional iNAV (c-iNAV) methods for the reconstruction of free-breathing volunteer data sets (N = 10). RESULTS Phantom experiments demonstrated that the proposed method removes striping artifacts and blurring due to motion. Volunteer results showed that respiratory motion measured by ste-iNAVs was better correlated than c-iNAVs to dNAV data (R2 = 0.82 ± 0.03 vs. 0.70 ± 0.05, P < 0.05). Match-making reconstructions of free-breathing data sets achieved lower residual T1 -relaxation echo energy (1.04 ± 0.01 vs. 1.18 ± 0.04 for dNAV and 1.18 ± 0.03 for c-iNAV, P < 0.05), higher apparent SNR (11.93 ± 1.05 vs. 10.68 ± 1.06 for dNAV and 10.66 ± 0.99 for c-iNAV, P < 0.05), and better phase quality (0.147 ± 0.012 vs. 0.166 ± 0.017 for dNAV, P = 0.06, and 0.168 ± 0.015 for c-iNAV, P < 0.05) than dNAV and c-iNAV methods. CONCLUSION For free-breathing cine DENSE, the proposed method addresses both types of breathing-induced artifacts and provides better quality images than conventional dNAV and iNAV methods.
Collapse
Affiliation(s)
- Xiaoying Cai
- Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Frederick H. Epstein
- Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
- Radiology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
15
|
Nii M, Ishida M, Dohi K, Tanaka H, Kondo E, Ito M, Sakuma H, Ikeda T. Myocardial tissue characterization and strain analysis in healthy pregnant women using cardiovascular magnetic resonance native T1 mapping and feature tracking technique. J Cardiovasc Magn Reson 2018; 20:52. [PMID: 30068369 PMCID: PMC6090929 DOI: 10.1186/s12968-018-0476-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/19/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Peripartum cardiomyopathy is a life-threatening condition that occurs during the peripartum period in previously healthy women. Cardiovascular magnetic resonance (CMR) T1 mapping permits sensitive detection of tissue edema and fibrosis, and it may be useful in identifying altered myocardial tissue characteristics in peripartum cardiomyopathy. However, left ventricular (LV) volumes and mass increase considerably even in normal pregnancy, and it is not known whether altered tissue characteristics can be found in normal pregnancy. The aim of this study was to investigate whether the LV remodeling observed in normal pregnancy is associated with altered tissue characteristics determined by CMR. METHODS Twelve normal pregnant women and 15 non pregnant women underwent cine CMR and myocardial T1 measurement at 1.5 T. Pregnant women were scanned three times, in the 2nd and 3rd trimesters of pregnancy and at 1 month postpartum. LV volumes, LV mass (LVM), and global longitudinal strain (GLS) were analyzed by cine CMR. Native myocardial T1 was determined using modified Look-Locker inversion recovery (MOLLI) images. RESULTS LV end-diastolic volume (EDV) was significantly greater in the 3rd trimester (126 ± 22 mL) than in non-pregnant women (108 ± 14 mL, p < 0.05). LVM was significantly greater in the 3rd trimester (88.7 ± 11.8 g) than at 1 month postpartum (70.0 ± 9.8 g, p < 0.05) and in non-pregnant women (66.3 ± 13.9 g, p < 0.05). Myocardial native T1 among the 2nd and 3rd trimesters, 1 month postpartum, and non-pregnant women were similar (1133 ± 55 ms, 1138 ± 86 ms, 1105 ± 45 ms, and 1129 ± 52 ms, respectively, p = 0.59) as were GLS (- 19.5 ± 1.8, - 19.7% ± 2.2, - 19.0% ± 2.0%, and - 19.3% ± 1.9%, respectively, p = 0.66). CONCLUSIONS LV remodeling during normal pregnancy is associated with myocardial hypertrophy, but not with edema or diffuse fibrosis of the myocardium or LV contractile dysfunction. These results observed in normal pregnancy will serve as an important basis for identifying myocardial abnormalities in patients with peripartum cardiomyopathy and other pregnancy-related myocardial diseases.
Collapse
Affiliation(s)
- Masafumi Nii
- Department of Obstetrics and Gynecology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Masaki Ishida
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Hiroaki Tanaka
- Department of Obstetrics and Gynecology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Eiji Kondo
- Department of Obstetrics and Gynecology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Masaaki Ito
- Department of Cardiology and Nephrology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| |
Collapse
|
16
|
Wang J, Li W, Sun J, Liu H, Kang Y, Yang D, Yu L, Greiser A, Zhou X, Han Y, Chen Y. Improved segmental myocardial strain reproducibility using deformable registration algorithms compared with feature tracking cardiac MRI and speckle tracking echocardiography. J Magn Reson Imaging 2017; 48:404-414. [PMID: 29283466 DOI: 10.1002/jmri.25937] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/09/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Segmental myocardial strain using feature tracking (FT) cardiac MRI is not acceptable due to poor reproducibility. PURPOSE To assess the reproducibility of left ventricle (LV) segmental myocardial strain measured by deformation registration algorithm (DRA). STUDY TYPE Prospective clinical trial. SUBJECTS Sixteen healthy volunteers and 28 hypertrophic cardiomyopathy (HCM) patients. FIELD STRENGTH/SEQUENCE Retrospective ECG gating cardiac MRI imaging was performed at 3.0T with a steady-state free precession (SSFP) sequence. ASSESSMENT LV global and segmental myocardial strains were analyzed by DRA, FT, and speckle tracking echocardiography (STE) by two experienced observers and the reproducibility of global and segmental strains were compared. STATISTICAL TESTS Reproducibility was tested by coefficient of variation (COV) and intraclass correlation coefficient (ICC). Receiver operator curves as well as comparison of areas under the curve (AUC) were analyzed. RESULTS DRA showed the best observer agreement on segmental strain evaluated by ICC, LS (longitudinal strain): intraobserver variability range (0.98,1.00), interobserver variability range (0.83,0.92), CS (circumferential strain): intraobserver variability range (0.90,0.99), interobserver variability range (0.80,0.97), RS (radial strain): intraobserver variability range (0.84,0.99), interobserver variability range (0.85,0.99). Segmental LS, CS, and RS agreements evaluated by COV for FT and STE were poor. LV global myocardial strain of HCM was significantly lower than controls for all applied techniques, but global CS by DRA had better accuracy compared to FT or STE for distinguishing HCM from healthy subjects: AUC 0.880 (DRA) vs. 0.577 (FT) or 0.736 (STE), P < 0.05. DATA CONCLUSIONS DRA is a reliable and robust analysis tool for segmental myocardial strain. Global CS by DRA allows discrimination between HCM and normal controls with better accuracy compared with FT and STE. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2018;48:404-414.
Collapse
Affiliation(s)
- Jie Wang
- Department of Cadiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weihao Li
- Department of Cadiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiayu Sun
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Liu
- Department of Cadiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Kang
- Department of Cadiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Yang
- Department of Cadiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liuyu Yu
- Department of Cadiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | | | - Yuchi Han
- Department of Medicine (Cardiovascular Division), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yucheng Chen
- Department of Cadiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Mangion K, McComb C, Auger DA, Epstein FH, Berry C. Magnetic Resonance Imaging of Myocardial Strain After Acute ST-Segment-Elevation Myocardial Infarction: A Systematic Review. Circ Cardiovasc Imaging 2017; 10:CIRCIMAGING.117.006498. [PMID: 28733364 DOI: 10.1161/circimaging.117.006498] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this systematic review is to provide a clinically relevant, disease-based perspective on myocardial strain imaging in patients with acute myocardial infarction or stable ischemic heart disease. Cardiac magnetic resonance imaging uniquely integrates myocardial function with pathology. Therefore, this review focuses on strain imaging with cardiac magnetic resonance. We have specifically considered the relationships between left ventricular (LV) strain, infarct pathologies, and their associations with prognosis. A comprehensive literature review was conducted in accordance with the PRISMA guidelines. Publications were identified that (1) described the relationship between strain and infarct pathologies, (2) assessed the relationship between strain and subsequent LV outcomes, and (3) assessed the relationship between strain and health outcomes. In patients with acute myocardial infarction, circumferential strain predicts the recovery of LV systolic function in the longer term. The prognostic value of longitudinal strain is less certain. Strain differentiates between infarcted versus noninfarcted myocardium, even in patients with stable ischemic heart disease with preserved LV ejection fraction. Strain recovery is impaired in infarcted segments with intramyocardial hemorrhage or microvascular obstruction. There are practical limitations to measuring strain with cardiac magnetic resonance in the acute setting, and knowledge gaps, including the lack of data showing incremental value in clinical practice. Critically, studies of cardiac magnetic resonance strain imaging in patients with ischemic heart disease have been limited by sample size and design. Strain imaging has potential as a tool to assess for early or subclinical changes in LV function, and strain is now being included as a surrogate measure of outcome in therapeutic trials.
Collapse
Affiliation(s)
- Kenneth Mangion
- From the British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, United Kingdom (K.M., C.M., C.B.); Department of Clinical Physics, NHS Greater Glasgow and Clyde, United Kingdom (C.M.); and Department of Biomedical Engineering, University of Virginia, Charlottesville (D.A.A., F.H.E.)
| | - Christie McComb
- From the British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, United Kingdom (K.M., C.M., C.B.); Department of Clinical Physics, NHS Greater Glasgow and Clyde, United Kingdom (C.M.); and Department of Biomedical Engineering, University of Virginia, Charlottesville (D.A.A., F.H.E.)
| | - Daniel A Auger
- From the British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, United Kingdom (K.M., C.M., C.B.); Department of Clinical Physics, NHS Greater Glasgow and Clyde, United Kingdom (C.M.); and Department of Biomedical Engineering, University of Virginia, Charlottesville (D.A.A., F.H.E.)
| | - Frederick H Epstein
- From the British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, United Kingdom (K.M., C.M., C.B.); Department of Clinical Physics, NHS Greater Glasgow and Clyde, United Kingdom (C.M.); and Department of Biomedical Engineering, University of Virginia, Charlottesville (D.A.A., F.H.E.)
| | - Colin Berry
- From the British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, United Kingdom (K.M., C.M., C.B.); Department of Clinical Physics, NHS Greater Glasgow and Clyde, United Kingdom (C.M.); and Department of Biomedical Engineering, University of Virginia, Charlottesville (D.A.A., F.H.E.).
| |
Collapse
|