1
|
Ghani R, Chrysostomou D, Roberts LA, Pandiaraja M, Marchesi JR, Mullish BH. Faecal (or intestinal) microbiota transplant: a tool for repairing the gut microbiome. Gut Microbes 2024; 16:2423026. [PMID: 39499189 PMCID: PMC11540080 DOI: 10.1080/19490976.2024.2423026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/07/2024] Open
Abstract
Faecal/intestinal microbiota transplant (FMT/IMT) is an efficacious treatment option for recurrent Clostridioides difficile infection, which has prompted substantial interest in FMT's potential role in the management of a much broader range of diseases associated with the gut microbiome. Despite its promise, the success rates of FMT in these other settings have been variable. This review critically evaluates the current evidence on the impact of clinical, biological, and procedural factors upon the therapeutic efficacy of FMT, and identifies areas that remain nebulous. Due to some of these factors, the optimal therapeutic approach remains unclear; for example, the preferred timing of FMT administration in a heavily antibiotic-exposed hematopoietic cell transplant recipient is not standardized, with arguments that can be made in alternate directions. We explore how these factors may impact upon more informed selection of donors, potential matching of donors to recipients, and aspects of clinical care of FMT recipients. This includes consideration of how gut microbiome composition and functionality may strategically inform donor selection criteria. Furthermore, we review how the most productive advances within the FMT space are those where clinical and translational outcomes are assessed together, and where this model has been used productively in recent years to better understand the contribution of the gut microbiome to human disease, and start the process toward development of more targeted microbiome therapeutics.
Collapse
Affiliation(s)
- Rohma Ghani
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Department of Infectious Diseases, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Despoina Chrysostomou
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Lauren A Roberts
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Madhumitha Pandiaraja
- Department of Gastroenterology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Julian R. Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Benjamin H. Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Department of Hepatology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
2
|
Crost EH, Coletto E, Bell A, Juge N. Ruminococcus gnavus: friend or foe for human health. FEMS Microbiol Rev 2023; 47:fuad014. [PMID: 37015876 PMCID: PMC10112845 DOI: 10.1093/femsre/fuad014] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/06/2023] [Accepted: 04/03/2023] [Indexed: 04/06/2023] Open
Abstract
Ruminococcus gnavus was first identified in 1974 as a strict anaerobe in the gut of healthy individuals, and for several decades, its study has been limited to specific enzymes or bacteriocins. With the advent of metagenomics, R. gnavus has been associated both positively and negatively with an increasing number of intestinal and extraintestinal diseases from inflammatory bowel diseases to neurological disorders. This prompted renewed interest in understanding the adaptation mechanisms of R. gnavus to the gut, and the molecular mediators affecting its association with health and disease. From ca. 250 publications citing R. gnavus since 1990, 94% were published in the last 10 years. In this review, we describe the biological characterization of R. gnavus, its occurrence in the infant and adult gut microbiota and the factors influencing its colonization of the gastrointestinal tract; we also discuss the current state of our knowledge on its role in host health and disease. We highlight gaps in knowledge and discuss the hypothesis that differential health outcomes associated with R. gnavus in the gut are strain and niche specific.
Collapse
Affiliation(s)
- Emmanuelle H Crost
- Quadram Institute Bioscience, Rosalind Franklin Road, Colney, Norwich NR4 7UQ, United Kingdom
| | - Erika Coletto
- Quadram Institute Bioscience, Rosalind Franklin Road, Colney, Norwich NR4 7UQ, United Kingdom
| | - Andrew Bell
- Quadram Institute Bioscience, Rosalind Franklin Road, Colney, Norwich NR4 7UQ, United Kingdom
| | - Nathalie Juge
- Quadram Institute Bioscience, Rosalind Franklin Road, Colney, Norwich NR4 7UQ, United Kingdom
| |
Collapse
|
3
|
Synthetic Microbiomes on the Rise-Application in Deciphering the Role of Microbes in Host Health and Disease. Nutrients 2021; 13:nu13114173. [PMID: 34836426 PMCID: PMC8621464 DOI: 10.3390/nu13114173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
The intestinal microbiota conveys significant benefits to host physiology. Although multiple chronic disorders have been associated with alterations in the intestinal microbiota composition and function, it is still unclear whether these changes are a cause or a consequence. Hence, to translate microbiome research into clinical application, it is necessary to provide a proof of causality of host–microbiota interactions. This is hampered by the complexity of the gut microbiome and many confounding factors. The application of gnotobiotic animal models associated with synthetic communities allows us to address the cause–effect relationship between the host and intestinal microbiota by reducing the microbiome complexity on a manageable level. In recent years, diverse bacterial communities were assembled to analyze the role of microorganisms in infectious, inflammatory, and metabolic diseases. In this review, we outline their application and features. Furthermore, we discuss the differences between human-derived and model-specific communities. Lastly, we highlight the necessity of generating novel synthetic communities to unravel the microbial role associated with specific health outcomes and disease phenotypes. This understanding is essential for the development of novel non-invasive targeted therapeutic strategies to control and modulate intestinal microbiota in health and disease.
Collapse
|
4
|
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease, ulcerative colitis, and pouchitis, are chronic, relapsing intestinal inflammatory disorders mediated by dysregulated immune responses to resident microbiota. Current standard therapies that block immune activation with oral immunosuppressives or biologic agents are generally effective, but each therapy induces a sustained remission in only a minority of patients. Furthermore, these approaches can have severe adverse events. Recent compelling evidence of a role of unbalanced microbiota (dysbiosis) driving immune dysfunction and inflammation in IBD supports the therapeutic rationale for manipulating the dysbiotic microbiota. Traditional approaches using currently available antibiotics, probiotics, prebiotics, and synbiotics have not produced optimal results, but promising outcomes with fecal microbiota transplant provide a proof of principle for targeting the resident microbiota. Rationally designed oral biotherapeutic products (LBPs) composed of mixtures of protective commensal bacterial strains demonstrate impressive preclinical results. Resident microbial-based and microbial-targeted therapies are currently being studied with increasing intensity for IBD primary therapy with favorable early results. This review presents current evidence and therapeutic mechanisms of microbiota modulation, emphasizing clinical studies, and outlines prospects for future IBD treatment using new approaches, such as LBPs, bacteriophages, bacterial function-editing substrates, and engineered bacteria. We believe that the optimal clinical use of microbial manipulation may be as adjuvants to immunosuppressive for accelerated and improved induction of deep remission and as potential safer solo approaches to sustained remission using personalized regimens based on an individual patient's microbial profile.
Collapse
Affiliation(s)
- Akihiko Oka
- Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - R Balfour Sartor
- Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA.
- National Gnotobiotic Rodent Resource Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
5
|
Chiumento S, Roblin C, Kieffer-Jaquinod S, Tachon S, Leprètre C, Basset C, Aditiyarini D, Olleik H, Nicoletti C, Bornet O, Iranzo O, Maresca M, Hardré R, Fons M, Giardina T, Devillard E, Guerlesquin F, Couté Y, Atta M, Perrier J, Lafond M, Duarte V. Ruminococcin C, a promising antibiotic produced by a human gut symbiont. SCIENCE ADVANCES 2019; 5:eaaw9969. [PMID: 31579822 PMCID: PMC6760926 DOI: 10.1126/sciadv.aaw9969] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/27/2019] [Indexed: 05/12/2023]
Abstract
A major public health challenge today is the resurgence of microbial infections caused by multidrug-resistant strains. Consequently, novel antimicrobial molecules are actively sought for development. In this context, the human gut microbiome is an under-explored potential trove of valuable natural molecules, such as the ribosomally-synthesized and post-translationally modified peptides (RiPPs). The biological activity of the sactipeptide subclass of RiPPs remains under-characterized. Here, we characterize an antimicrobial sactipeptide, Ruminococcin C1, purified from the caecal contents of rats mono-associated with Ruminococcus gnavus E1, a human symbiont. Its heterologous expression and post-translational maturation involving a specific sactisynthase establish a thioether network, which creates a double-hairpin folding. This original structure confers activity against pathogenic Clostridia and multidrug-resistant strains but no toxicity towards eukaryotic cells. Therefore, the Ruminococcin C1 should be considered as a valuable candidate for drug development and its producer strain R. gnavus E1 as a relevant probiotic for gut health enhancement.
Collapse
Affiliation(s)
- Steve Chiumento
- Univ. Grenoble Alpes, CEA, CNRS, CBM-UMR5249, 38000 Grenoble, France
| | - Clarisse Roblin
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
- ADISSEO France SAS, Centre d’Expertise et de Recherche en Nutrition, Commentry, France
| | | | - Sybille Tachon
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Chloé Leprètre
- Univ. Grenoble Alpes, CEA, CNRS, CBM-UMR5249, 38000 Grenoble, France
| | - Christian Basset
- Univ. Grenoble Alpes, CEA, CNRS, CBM-UMR5249, 38000 Grenoble, France
| | - Dwi Aditiyarini
- Univ. Grenoble Alpes, CEA, CNRS, CBM-UMR5249, 38000 Grenoble, France
| | - Hamza Olleik
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
| | | | | | - Olga Iranzo
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Marc Maresca
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Renaud Hardré
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Michel Fons
- Unité de Bioénergétique et Ingénierie des Protéines UMR7281, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ., CNRS, Marseille, France
| | - Thierry Giardina
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Estelle Devillard
- ADISSEO France SAS, Centre d’Expertise et de Recherche en Nutrition, Commentry, France
| | | | - Yohann Couté
- Univ. Grenoble Alpes, CEA, INSERM, BGE U1038, 38000 Grenoble, France
| | - Mohamed Atta
- Univ. Grenoble Alpes, CEA, CNRS, CBM-UMR5249, 38000 Grenoble, France
| | - Josette Perrier
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Mickael Lafond
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
- Corresponding author. (M.L.); (V.D.)
| | - Victor Duarte
- Univ. Grenoble Alpes, CEA, CNRS, CBM-UMR5249, 38000 Grenoble, France
- Corresponding author. (M.L.); (V.D.)
| |
Collapse
|
6
|
Ishikawa D, Sasaki T, Takahashi M, Kuwahara-Arai K, Haga K, Ito S, Okahara K, Nakajima A, Shibuya T, Osada T, Hiramatsu K, Watanabe S, Nagahara A. The Microbial Composition of Bacteroidetes Species in Ulcerative Colitis Is Effectively Improved by Combination Therapy With Fecal Microbiota Transplantation and Antibiotics. Inflamm Bowel Dis 2018; 24:2590-2598. [PMID: 30124831 DOI: 10.1093/ibd/izy266] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND We previously reported that fresh fecal microbiota transplantation (FMT) after triple-antibiotic therapy (amoxicillin, fosfomycin, and metronidazole [AFM]; A-FMT) synergistically contributed to the recovery of phylum Bacteroidetes composition associated with the endoscopic severity and treatment efficacy of ulcerative colitis (UC). Here, we performed further microbial analyses using a higher-resolution method to identify the key bacterial species in UC and determine whether viable Bacteroidetes species from donor feces were successfully colonized by A-FMT. METHODS The taxonomic composition of Bacteroidetes in 25 healthy donors and 27 UC patients at baseline was compared at the species level using a heat-shock protein (hsp) 60-based microbiome method. Microbiota alterations before and after treatment of UC patients were also analyzed in 24 cases (n = 17 A-FMT; n = 3 mono-AFM; n = 4 mono-FMT). RESULTS We found species-level dysbiosis within the phylum Bacteroidetes in UC samples, which was associated with reduced species diversity, resulting from hyperproliferation and hypoproliferation of particular species. Moreover, in responders treated with A-FMT, diversity was significantly recovered at 4 weeks after a fresh round of FMT, after which high degrees of similarity in Bacteroidetes species composition among recipients and donors were observed. CONCLUSIONS A-FMT alleviated intestinal dysbiosis, which is caused by the loss of Bacteroidetes species diversity in patients with UC. Eradication of dysbiotic indigenous Bacteroidetes species by AFM pretreatment might promote the colonization of viable Bacteroidetes cells, thereby improving the intestinal microbiota dysbiosis induced by UC. Our findings serve as a basis for further investigations into the mechanisms of FMT.
Collapse
Affiliation(s)
- Dai Ishikawa
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo Japan
| | - Takashi Sasaki
- Center of Excellence for Infection Control Science, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Animal Research Center, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahito Takahashi
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo Japan
| | - Kyoko Kuwahara-Arai
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Keiichi Haga
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo Japan
| | - Shoko Ito
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo Japan
| | - Koki Okahara
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo Japan
| | - Akihito Nakajima
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo Japan
| | - Tomoyoshi Shibuya
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo Japan
| | - Taro Osada
- Department of Gastroenterology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Keiichi Hiramatsu
- Center of Excellence for Infection Control Science, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Sumio Watanabe
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo Japan
| | - Akihito Nagahara
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo Japan
| |
Collapse
|
7
|
Chiu L, Bazin T, Truchetet ME, Schaeverbeke T, Delhaes L, Pradeu T. Protective Microbiota: From Localized to Long-Reaching Co-Immunity. Front Immunol 2017; 8:1678. [PMID: 29270167 PMCID: PMC5725472 DOI: 10.3389/fimmu.2017.01678] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/15/2017] [Indexed: 12/17/2022] Open
Abstract
Resident microbiota do not just shape host immunity, they can also contribute to host protection against pathogens and infectious diseases. Previous reviews of the protective roles of the microbiota have focused exclusively on colonization resistance localized within a microenvironment. This review shows that the protection against pathogens also involves the mitigation of pathogenic impact without eliminating the pathogens (i.e., “disease tolerance”) and the containment of microorganisms to prevent pathogenic spread. Protective microorganisms can have an impact beyond their niche, interfering with the entry, establishment, growth, and spread of pathogenic microorganisms. More fundamentally, we propose a series of conceptual clarifications in support of the idea of a “co-immunity,” where an organism is protected by both its own immune system and components of its microbiota.
Collapse
Affiliation(s)
- Lynn Chiu
- University of Bordeaux, CNRS, ImmunoConcept, UMR 5164, Bordeaux, France
| | - Thomas Bazin
- University of Bordeaux, INRA, Mycoplasmal and Chlamydial Infections in Humans, EA 3671, Bordeaux, France.,Department of Hepato-Gastroenterology, Bordeaux Hospital University Center, Pessac, France
| | | | - Thierry Schaeverbeke
- University of Bordeaux, INRA, Mycoplasmal and Chlamydial Infections in Humans, EA 3671, Bordeaux, France.,Department of Rheumatology, Bordeaux Hospital University Center, Bordeaux, France
| | - Laurence Delhaes
- Department of Parasitology and Mycology, Bordeaux Hospital University Center, Bordeaux, France.,University of Bordeaux, INSERM, Cardio-Thoracic Research Centre of Bordeaux, U1045, Bordeaux, France
| | - Thomas Pradeu
- University of Bordeaux, CNRS, ImmunoConcept, UMR 5164, Bordeaux, France
| |
Collapse
|
8
|
Changes in Intestinal Microbiota Following Combination Therapy with Fecal Microbial Transplantation and Antibiotics for Ulcerative Colitis. Inflamm Bowel Dis 2017; 23:116-125. [PMID: 27893543 DOI: 10.1097/mib.0000000000000975] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) is a potential therapeutic approach to restore normal intestinal microbiota in patients with ulcerative colitis (UC), which is associated with dysbiosis; however, treatment efficacy remains unclear. Hence, we studied the impact of antibiotic pretreatment with amoxicillin, fosfomycin, and metronidazole (AFM therapy) and FMT versus AFM alone. METHODS AFM therapy was administered to patients for 2 weeks until 2 days before FMT. Patients' spouses or relatives were selected as donor candidates. Donor fecal samples were collected on the day of administration and transferred into the patient's colon by colonoscopy within 6 hours. Microbiome analysis was performed by 16S rRNA next-generation sequencing. RESULTS Patients with mild-to-severe active UC (combination-therapy group, n = 21; AFM monotherapy group, n = 20) were included. Thirty-six patients completed this assessment (combination-therapy group, n = 17; AFM monotherapy group, n = 19). A higher clinical response was observed after combination therapy compared with AFM monotherapy at 4 weeks after treatment. After the 2-week AFM therapy, the Bacteroidetes composition was nearly abolished. The Bacteroidetes proportion recovered in clinical responders at 4 weeks after FMT was not observed in the AFM monotherapy group. Persistent antimicrobial-associated dysbiosis found in the AFM monotherapy group was reversed by FMT. The recovery rate of Bacteroidetes at 4 weeks after FMT correlated with endoscopic severity. CONCLUSIONS FMT following antimicrobial bowel cleansing synergistically contributes to the recovery of the Bacteroidetes composition, which is associated with clinical response and UC severity. Thus, this therapeutic protocol may be useful for managing UC.
Collapse
|
9
|
The mouse gut microbiome revisited: From complex diversity to model ecosystems. Int J Med Microbiol 2016; 306:316-327. [DOI: 10.1016/j.ijmm.2016.03.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 02/06/2023] Open
|
10
|
Abdul-Mutalib NA, Amin Nordin S, Osman M, Muhaimin Roslan A, Ishida N, Sakai K, Tashiro Y, Tashiro K, Maeda T, Shirai Y. The prevalence of foodborne pathogenic bacteria on cutting boards and their ecological correlation with background biota. AIMS Microbiol 2016. [DOI: 10.3934/microbiol.2016.2.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
11
|
Leslie JL, Young VB. The rest of the story: the microbiome and gastrointestinal infections. Curr Opin Microbiol 2014; 23:121-5. [PMID: 25461582 DOI: 10.1016/j.mib.2014.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 02/06/2023]
Abstract
Bacterial infectious diseases are studied primarily as a host-pathogen dyad. However it is increasingly apparent that the gut microbial community is an important participant in these interactions. The gut microbiota influences bacterial infections in a number of ways, including via bacterial metabolism, stimulation of host immunity and direct bacterial antagonism. This review focuses on recent findings highlighting the interplay between the gastrointestinal microbiota, its host and bacterial pathogens; and emphasizes how these interactions ultimately impact our understanding of infectious diseases.
Collapse
Affiliation(s)
- Jhansi L Leslie
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Allaart JG, van Asten AJ, Gröne A. Predisposing factors and prevention of Clostridium perfringens-associated enteritis. Comp Immunol Microbiol Infect Dis 2013; 36:449-64. [DOI: 10.1016/j.cimid.2013.05.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 04/10/2013] [Accepted: 05/02/2013] [Indexed: 12/22/2022]
|
13
|
Aga1, the first alpha-Galactosidase from the human bacteria Ruminococcus gnavus E1, efficiently transcribed in gut conditions. Res Microbiol 2011; 163:14-21. [PMID: 22036918 DOI: 10.1016/j.resmic.2011.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 09/14/2011] [Indexed: 11/23/2022]
Abstract
Differential gene expression analysis was performed in monoxenic mice colonized with Ruminococcus gnavus strain E1, a major endogenous member of the gut microbiota. RNA arbitrarily primed-PCR fingerprinting assays allowed to specifically detect the in vivo expression of the aga1 gene, which was further confirmed by RT-PCR. The aga1 gene encoded a protein of 744 residues with calculated molecular mass of 85,207 Da. Aga1 exhibited significant similarity with previously characterized α-Galactosidases of the GH 36 family. Purified recombinant protein demonstrated high catalytic activity (104 ± 7 U mg(-1)) and efficient p-nitrophenyl-α-d-galactopyranoside hydrolysis [k(cat)/K(m) = 35.115 ± 8.82 s(-1) mM(-1) at 55 °C and k(cat)/K(m) = 17.48 ± 4.25 s(-1) mM(-1) at 37 °C].
Collapse
|
14
|
Pujol A, Crost EH, Simon G, Barbe V, Vallenet D, Gomez A, Fons M. Characterization and distribution of the gene cluster encoding RumC, an anti-Clostridium perfringens bacteriocin produced in the gut. FEMS Microbiol Ecol 2011; 78:405-15. [PMID: 22092178 DOI: 10.1111/j.1574-6941.2011.01176.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/08/2011] [Accepted: 07/11/2011] [Indexed: 11/26/2022] Open
Abstract
Ruminococcin C (RumC) is a trypsin-dependent bacteriocin produced by Ruminococcus gnavus E1, a gram-positive strict anaerobic strain isolated from human feces. It consists of at least three similar peptides active against Clostridium perfringens. In this article, a 15-kb region from R. gnavus E1 chromosome, containing the biosynthetic gene cluster of RumC was characterized. It harbored 17 open reading frames (called rum(c) genes) with predicted functions in bacteriocin biosynthesis and post-translational modification, signal transduction regulation, and immunity. An unusual feature of the locus is the presence of five genes encoding highly homologous, but nonidentical RumC precursors. The transcription levels of the rum(c) genes were quantified. The rumC genes were found to be highly expressed in vivo, when R. gnavus E1 colonized the digestive tract of mono-contaminated rats, whereas the amount of corresponding transcripts was below detection level when it grew in liquid culture medium. Moreover, the rumC-like genes were disseminated among 10 strains (R. gnavus or related species) previously isolated from human fecal samples and selected for their capability to produce a trypsin-dependant anti-C. perfringens compound. All harbored at least a rumC1-like copy, four exhibited rumC1-5 genes identical to those of strain E1.
Collapse
Affiliation(s)
- Ange Pujol
- ISM2/BiosCiences UMR CNRS 6263, Service 342, Faculté des Sciences et Techniques de St. Jérôme, Université Paul Cézanne Aix-Marseille III, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Stecher B, Hardt WD. Mechanisms controlling pathogen colonization of the gut. Curr Opin Microbiol 2010; 14:82-91. [PMID: 21036098 DOI: 10.1016/j.mib.2010.10.003] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 02/07/2023]
Abstract
The intestinal microbiota can protect efficiently against colonization by many enteric pathogens ('colonization resistance', CR). This phenomenon has been known for decades, but the mechanistic basis of CR is incompletely defined. At least three mechanisms seem to contribute, that is direct inhibition of pathogen growth by microbiota-derived substances, nutrient depletion by microbiota growth and microbiota-induced stimulation of innate and adaptive immune responses. In spite of CR, intestinal infections are well known to occur. In these cases, the multi-faceted interactions between the microbiota, the host and the pathogen are shifted in favor of the pathogen. We are discussing recent progress in deciphering the underlying molecular mechanisms in health and disease.
Collapse
Affiliation(s)
- Bärbel Stecher
- Max von Pettenkofer Institut, Pettenkoferstrasse 9a, 80336 München, Germany.
| | | |
Collapse
|