1
|
Strzelec K, Dziedzic-Kowalska A, Sieron Ł, Bereta GP, Stepien KL, Ferenc K, Łazarz-Bartyzel K, Olszewska-Czyż I, Rąpalska I, Aptekorz M, Kaczmarzyk T, Cześnikiewicz-Guzik M, Gawron K. Polymorphic Variants of Peptidylarginine Deiminase Gene from P. gingivalis-Searching for Targets for Supportive Therapy of Periodontitis. Int J Mol Sci 2025; 26:1662. [PMID: 40004125 PMCID: PMC11855631 DOI: 10.3390/ijms26041662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Periodontitis (PD), an oral inflammatory disease, is primarily caused by P. gingivalis. Peptidylarginine deiminase (PPAD) is considered an attractive virulence factor because, due to protein citrullination, it may have deleterious effects on host tissues. In this study, the ppad gene sequences from P. gingivalis were analyzed in the context of its impact on bacterial virulence and potential targets for PD therapy. Analyses of ppad sequences from 58 patients with various clinical stages of PD, 20 controls, and 60 sequences from public databases were conducted. Overall, 55 substitutions assigned as polymorphic variants (4), missense mutations (10), or synonymous variants (35) were identified in PD, and 22 synonymous variants were identified in controls. Among them, the G231N, E232T, N235D variant was found in ~25% of P. gingivalis strains from PD samples. It was located close to the catalytic triad and had two-fold higher activity in comparison with reference P. gingivalis, upregulated expression of key inflammatory mediators, and contributed to worsening periodontium conditions in advanced PD, suggesting their unambiguous impact on P. gingivalis virulence. Our results indicate the G231N, E232T, N235D variant of the ppad gene as a potential candidate, opening a path to searching for novel targets for supportive therapy of PD. Further validation of the identified mutations is needed in future studies.
Collapse
Affiliation(s)
- Karolina Strzelec
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.S.); (A.D.-K.); (K.L.S.); (K.F.)
| | - Agata Dziedzic-Kowalska
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.S.); (A.D.-K.); (K.L.S.); (K.F.)
| | - Łukasz Sieron
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Grzegorz P. Bereta
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Karolina L. Stepien
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.S.); (A.D.-K.); (K.L.S.); (K.F.)
| | - Klara Ferenc
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.S.); (A.D.-K.); (K.L.S.); (K.F.)
| | - Katarzyna Łazarz-Bartyzel
- Department of Periodontology, Preventive Dentistry and Oral Pathology, Faculty of Medicine, Medical College, Jagiellonian University, 31-155 Krakow, Poland; (K.Ł.-B.); (I.O.-C.); (M.C.-G.)
| | - Iwona Olszewska-Czyż
- Department of Periodontology, Preventive Dentistry and Oral Pathology, Faculty of Medicine, Medical College, Jagiellonian University, 31-155 Krakow, Poland; (K.Ł.-B.); (I.O.-C.); (M.C.-G.)
| | - Iwona Rąpalska
- Department of Oral Surgery, Medical College, Jagiellonian University, 31-155 Krakow, Poland; (I.R.)
| | - Małgorzata Aptekorz
- Department of Medical Microbiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Tomasz Kaczmarzyk
- Department of Oral Surgery, Medical College, Jagiellonian University, 31-155 Krakow, Poland; (I.R.)
| | - Marta Cześnikiewicz-Guzik
- Department of Periodontology, Preventive Dentistry and Oral Pathology, Faculty of Medicine, Medical College, Jagiellonian University, 31-155 Krakow, Poland; (K.Ł.-B.); (I.O.-C.); (M.C.-G.)
| | - Katarzyna Gawron
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.S.); (A.D.-K.); (K.L.S.); (K.F.)
| |
Collapse
|
2
|
Gorr SU, Chen R, Abrahante JE, Joyce PBM. The oral pathogen Porphyromonas gingivalis gains tolerance to the antimicrobial peptide DGL13K by synonymous mutations in hagA. PLoS One 2024; 19:e0312200. [PMID: 39446776 PMCID: PMC11500903 DOI: 10.1371/journal.pone.0312200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Porphyromonas gingivalis is a keystone pathogen for periodontal disease. The bacteria are black-pigmented and require heme for growth. P. gingivalis exhibit resistance to many antimicrobial peptides, which contributes to their success in the oral cavity. P. gingivalis W50 was resistant to the antimicrobial peptide LGL13K but susceptible to the all-D-amino acid stereoisomer, DGL13K. Upon prolonged exposure to DGL13K, a novel non-pigmented mutant was isolated. Exposure to the L-isomer, LGL13K, did not produce a non-pigmented mutant. The goal of this study was to characterize the genomic and cellular changes that led to the non-pigmented phenotype upon treatment with DGL13K. The non-pigmented mutant showed a low minimum inhibitory concentration and two-fold extended minimum duration for killing by DGL13K, consistent with tolerance to this peptide. The DGL13K-tolerant bacteria exhibited synonymous mutations in the hagA gene. The mutations did not prevent mRNA expression but were predicted to alter mRNA structure. The non-pigmented bacteria were deficient in hemagglutination and hemoglobin binding, suggesting that the HagA protein was not expressed. This was supported by whole cell enzyme-linked immunosorbent assay and gingipain activity assays, which suggested the absence of HagA but not of two closely related gingipains. In vivo virulence was similar for wild type and non-pigmented bacteria in the Galleria mellonella model. The results suggest that, unlike LGL13K, DGL13K can defeat multiple bacterial resistance mechanisms but bacteria can gain tolerance to DGL13K through mutations in the hagA gene.
Collapse
Affiliation(s)
- Sven-Ulrik Gorr
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Ruoqiong Chen
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Juan E. Abrahante
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Paul B. M. Joyce
- Department of Chemistry and Biochemistry, Centre for Structural and Functional Genomics, Concordia University, Montréal, Quebec, Canada
| |
Collapse
|
3
|
Surur AK, de Oliveira AB, De Annunzio SR, Ferrisse TM, Fontana CR. Bacterial resistance to antimicrobial photodynamic therapy: A critical update. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112905. [PMID: 38703452 DOI: 10.1016/j.jphotobiol.2024.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
Bacterial antibiotic resistance is one of the most significant challenges for public health. The increase in bacterial resistance, mainly due to microorganisms harmful to health, and the need to search for alternative treatments to contain infections that cannot be treated by conventional antibiotic therapy has been aroused. An alternative widely studied in recent decades is antimicrobial photodynamic therapy (aPDT), a treatment that can eliminate microorganisms through oxidative stress. Although this therapy has shown satisfactory results in infection control, it is still controversial in the scientific community whether bacteria manage to develop resistance after successive applications of aPDT. Thus, this work provides an overview of the articles that performed successive aPDT applications in models using bacteria published since 2010, focusing on sublethal dose cycles, highlighting the main PSs tested, and addressing the possible mechanisms for developing tolerance or resistance to aPDT, such as efflux pumps, biofilm formation, OxyR and SoxRS systems, catalase and superoxide dismutase enzymes and quorum sensing.
Collapse
Affiliation(s)
- Amanda Koberstain Surur
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| | - Analú Barros de Oliveira
- São Paulo State University (UNESP), School of Dentistry, Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil.
| | - Sarah Raquel De Annunzio
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| | - Túlio Morandin Ferrisse
- São Paulo State University (UNESP), School of Dentistry, Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil.
| | - Carla Raquel Fontana
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| |
Collapse
|
4
|
Śmiga M, Ślęzak P, Olczak T. Comparative analysis of Porphyromonas gingivalis A7436 and ATCC 33277 strains reveals differences in the expression of heme acquisition systems. Microbiol Spectr 2024; 12:e0286523. [PMID: 38289063 PMCID: PMC10913741 DOI: 10.1128/spectrum.02865-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/15/2023] [Indexed: 03/06/2024] Open
Abstract
Porphyromonas gingivalis strains exhibit different phenotypes in vitro, different virulence potential in animal models, and different associations with human diseases, with strains classified as virulent/more virulent (e.g., A7436 and W83) or as less virulent/avirulent (e.g., ATCC 33277). In this study, we comparatively analyzed the A7436 and ATCC 33277 strains to better understand their variability. Global gene expression analysis in response to heme and iron limitation revealed more pronounced differences in the A7436 than in the ATCC 33277 strain; however, in both strains, the largest changes were observed in genes encoding hypothetical proteins, genes whose products participate in energy metabolism, and in genes encoding proteins engaged in transport and binding proteins. Our results confirmed that variability between P. gingivalis strains is due to differences in the arrangement of their genomes. Analysis of gene expression of heme acquisition systems demonstrated that not only the availability of iron and heme in the external environment but also the ability to store iron intracellularly can influence the P. gingivalis phenotype. Therefore, we assume that differences in virulence potential may also be due to differences in the production of systems involved in iron and heme acquisition, mainly the Hmu system. In addition, our study showed that hemoglobin, in a concentration-dependent manner, differentially influences the virulence potential of P. gingivalis strains. We conclude that iron and heme homeostasis may add to the variability observed between P. gingivalis strains. IMPORTANCE Periodontitis belongs to a group of multifactorial diseases, characterized by inflammation and destruction of tooth-supporting tissues. P. gingivalis is one of the most important microbial factors involved in the initiation and progression of periodontitis. To survive in the host, the bacterium must acquire heme as a source of iron and protoporphyrin IX. P. gingivalis strains respond differently to changing iron and heme concentrations, which may be due to differences in the expression of systems involved in iron and heme acquisition. The ability to accumulate iron intracellularly, being different in more and less virulent P. gingivalis strains, may influence their phenotypes, production of virulence factors (including proteins engaged in heme acquisition), and virulence potential of this bacterium.
Collapse
Affiliation(s)
- Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Paulina Ślęzak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
5
|
Fernández A, Herrera D, Hoare A, Hernández M, Torres VA. Lipopolysaccharides from Porphyromonas endodontalis and Porphyromonas gingivalis promote angiogenesis via Toll-like-receptors 2 and 4 pathways in vitro. Int Endod J 2023; 56:1270-1283. [PMID: 37461231 DOI: 10.1111/iej.13957] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
AIM Angiogenesis contributes to the development of apical periodontitis, periodontitis, and other oral pathologies; however, it remains unclear how this process is triggered. The aim was to evaluate whether lipopolysaccharide (LPS) from Porphyromonas endodontalis and Porphyromonas gingivalis induced angiogenesis-related effects in vitro via TLR2 and TLR4. METHODOLOGY Porphyromonas endodontalis LPS (ATCC 35406 and clinical isolate) was purified with TRIzol, whereas P. gingivalis LPS was obtained commercially. The effects of the different LPS (24 h) in endothelial cell migration were analysed by Transwell assays, following quantification in an optical microscope (40×). The effects of LPS on FAK Y397 phosphorylation were assessed by Western blotting. Angiogenesis in vitro was determined in an endothelial tube formation assay (14 h) in Matrigel in the absence or presence of either LPS. IL-6 and VEGF-A levels were determined in cell supernatants, following 24 h treatment with LPS, and measured in multiplex bead immunoassay. The involvement of TLR2 and TLR4 was assessed with blocking antibodies. The statistical analysis was performed using STATA 12® (StataCorp LP). RESULTS The results revealed that P. endodontalis LPS, but not P. gingivalis LPS, stimulated endothelial cell migration. Pre-treatment with anti-TLR2 and anti-TLR4 antibodies prevented P. endodontalis LPS-induced cell migration. P. endodontalis LPS promoted FAK phosphorylation on Y397, as observed by an increased p-FAK/FAK ratio. Both P. gingivalis and P. endodontalis LPS (ATCC 35406) induced endothelial tube formation in a TLR-2 and -4-dependent manner, as shown by using blocking antibodies, however, only TLR2 blocking decreased tube formation induced by P. endodontalis (clinical isolate). Moreover, all LPS induced IL-6 and VEGF-A synthesis in endothelial cells. TLR2 and TLR4 were required for IL-6 induction by P. endodontalis LPS (ATCC 35406), while only TLR4 was involved in IL-6 secretion by the other LPS. Finally, VEGF-A synthesis did not require TLR signalling. CONCLUSION Porphyromonas endodontalis and P. gingivalis LPS induced angiogenesis via TLR2 and TLR4. Collectively, these data contribute to understanding the role of LPS from Porphyromonas spp. in angiogenesis and TLR involvement.
Collapse
Affiliation(s)
- Alejandra Fernández
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Faculty of Dentistry, Universidad Andres Bello, Santiago, Chile
| | - Daniela Herrera
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| | - Anilei Hoare
- Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Laboratory of Oral Microbiology and Immunology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Marcela Hernández
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Vicente A Torres
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Veloso P, Fernández A, Astorga J, González-Quintanilla D, Castro A, Escobar A, Hoare A, Hernández M. Lipopolysaccharide from Porphyromonas gingivalis, but Not from Porphyromonas endodontalis, Induces Macrophage M1 Profile. Int J Mol Sci 2022; 23:ijms231710011. [PMID: 36077408 PMCID: PMC9456100 DOI: 10.3390/ijms231710011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Apical Lesions of Endodontic Origin (ALEO) are initiated by polymicrobial endodontic canal infection. Porphyromonas gingivalis (Pg) and Porphyromonas endodontalis (Pe) lipopolysaccharides (LPS) can induce a pro-inflammatory macrophage response through their recognition by TLR2 and TLR4. However, polarization responses induced by Pg and/or Pe LPS in macrophages are not fully understood. We aimed to characterize the polarization profiles of macrophages differentiated from THP-1 cells following Pg and/or Pe LPS stimulation from reference strain and clinical isolates. A modified LPS purification protocol was implemented and the electrophoretic LPS profiles were characterized. THP-1 human monocytes differentiated to macrophages were stimulated with Pg and Pe LPS. Polarization profiles were characterized through cell surface markers and secreted cytokines levels after 24 h of stimulation. TLR2 and TLR4 cell surfaces and transcriptional levels were determined after 24 or 2 h of LPS stimulation, respectively. LPS from Pg induced a predominant M1 profile in macrophages evidenced by changes in the expression of the surface marker CD64 and pro-inflammatory cytokine profiles, TNF-α, IL-1β, IL-6, and IL-12. Pe LPS was unable to induce a significant response. TLR2 and TLR4 expressions were neither modified by Pg or Pe LPS. Pg LPS, but not Pe LPS, induced a macrophage M1 Profile.
Collapse
Affiliation(s)
- Pablo Veloso
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile
| | - Alejandra Fernández
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile
- Faculty of Dentistry, Universidad Andres Bello, Santiago 8370133, Chile
| | - Jessica Astorga
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile
| | - David González-Quintanilla
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile
- School of Health Sciences, Dentistry, Universidad Viña del Mar, Viña del Mar 2580022, Chile
| | - Alfredo Castro
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile
| | - Alejandro Escobar
- Cellular and Molecular Biology Laboratory, Institute of Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile
| | - Anilei Hoare
- Oral Microbiology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile
| | - Marcela Hernández
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile
- Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile
- Correspondence:
| |
Collapse
|
7
|
Bugueno IM, Benkirane-Jessel N, Huck O. Implication of Toll/IL-1 receptor domain containing adapters in Porphyromonas gingivalis-induced inflammation. Innate Immun 2021; 27:324-342. [PMID: 34018827 PMCID: PMC8186158 DOI: 10.1177/17534259211013087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Periodontitis is induced by periodontal dysbiosis characterized by the predominance of anaerobic species. TLRs constitute the classical pathway for cell activation by infection. Interestingly, the Toll/IL-1 receptor homology domain adapters initiate signaling events, leading to the activation of the expression of the genes involved in the host immune response. The aim of this study was to evaluate the effects of Porphyromonas gingivalis on the expression and protein-protein interactions among five TIR adapters (MAL, MyD88, TRIF, TRAM and SARM) in gingival epithelial cells and endothelial cells. It was observed that P. gingivalis is able to modulate the signaling cascades activated through its recognition by TLR4/2 in gingival epithelial cells and endothelial cells. Indeed, MAL-MyD88 protein-protein interactions associated with TLR4 was the main pathway activated by P. gingivalis infection. When transient siRNA inhibition was performed, cell viability, inflammation, and cell death induced by infection decreased and such deleterious effects were almost absent when MAL or TRAM were targeted. This study emphasizes the role of such TIR adapter proteins in P. gingivalis elicited inflammation and the precise evaluation of TIR adapter protein interactions may pave the way for future therapeutics in both periodontitis and systemic disease with a P. gingivalis involvement, such as atherothrombosis.
Collapse
Affiliation(s)
- Isaac M Bugueno
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Faculté de Chirurgie Dentaire, Université de Strasbourg, France.,Pôle de Médecine et de Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg, France
| |
Collapse
|
8
|
Chigasaki O, Aoyama N, Sasaki Y, Takeuchi Y, Mizutani K, Ikeda Y, Gokyu M, Umeda M, Izumi Y, Iwata T, Aoki A. Porphyromonas gingivalis, the most influential pathogen in red-complex bacteria: A cross-sectional study on the relationship between bacterial count and clinical periodontal status in Japan. J Periodontol 2021; 92:1719-1729. [PMID: 33856713 DOI: 10.1002/jper.21-0011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/16/2021] [Accepted: 04/03/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Porphyromonas gingivalis is a key pathogen in microbiota associated with periodontitis. The purpose of the present study was to assess the association between salivary counts of red-complex bacteria and clinical periodontal status in a Japanese population. METHODS A total of 977 subjects who visited a general dental clinic in Japan from 2003 to 2006 were enrolled in the study. Stimulated saliva was obtained, and the amounts of major periodontal bacteria were measured using real-time polymerase chain reaction. Probing pocket depth (PPD), bleeding on probing (BOP), and each subject's average proximal bone crest level (BCL) on dental radiographs were measured. RESULTS The number of P. gingivalis strongly associated with percentage of 4 mm or more PPD sites, BOP positive percentage, and 1.5 mm or more BCL sites. The detection of P. gingivalis with Treponema denticola and/or Tannerella forsythia showed a high rate of three positive clinical parameters, whereas the only P. gingivalis detected group and those without P. gingivalis had a low rate of three positive clinical parameters. CONCLUSION Among red-complex bacteria, the amount of P. gingivalis showed the strongest association with the severity of periodontal condition, and co-occurrence of P. gingivalis with T. denticola and/or T. forsythia showed heightened progression of periodontitis.
Collapse
Affiliation(s)
- Otofumi Chigasaki
- Tsukuba Health-Care Dental Clinic, Tsukuba, Japan.,Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Norio Aoyama
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan.,Department of Oral Interdisciplinary Medicine, Kanagawa Dental University, Yokosuka, Japan
| | - Yoshiyuki Sasaki
- Department of Maxillofacial Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Yasuo Takeuchi
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Koji Mizutani
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Yuichi Ikeda
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Misa Gokyu
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Hirakata, Japan
| | - Yuichi Izumi
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan.,Oral Care Perio Center, Southern Tohoku General Hospital, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan
| | - Takanori Iwata
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Akira Aoki
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| |
Collapse
|
9
|
Díaz-Zúñiga J, More J, Melgar-Rodríguez S, Jiménez-Unión M, Villalobos-Orchard F, Muñoz-Manríquez C, Monasterio G, Valdés JL, Vernal R, Paula-Lima A. Alzheimer's Disease-Like Pathology Triggered by Porphyromonas gingivalis in Wild Type Rats Is Serotype Dependent. Front Immunol 2020; 11:588036. [PMID: 33240277 PMCID: PMC7680957 DOI: 10.3389/fimmu.2020.588036] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/14/2020] [Indexed: 01/18/2023] Open
Abstract
Periodontal disease is a disease of tooth-supporting tissues. It is a chronic disease with inflammatory nature and infectious etiology produced by a dysbiotic subgingival microbiota that colonizes the gingivodental sulcus. Among several periodontal bacteria, Porphyromonas gingivalis (P. gingivalis) highlights as a keystone pathogen. Previous reports have implied that chronic inflammatory response and measurable bone resorption are observed in young mice, even after a short period of periodontal infection with P. gingivalis, which has been considered as a suitable model of experimental periodontitis. Also, encapsulated P. gingivalis strains are more virulent than capsular-defective mutants, causing an increased immune response, augmented osteoclastic activity, and accrued alveolar bone resorption in these rodent experimental models of periodontitis. Recently, P. gingivalis has been associated with Alzheimer’s disease (AD) pathogenesis, either by worsening brain pathology in AD-transgenic mice or by inducing memory impairment and age-dependent neuroinflammation middle-aged wild type animals. We hypothesized here that the more virulent encapsulated P. gingivalis strains could trigger the appearance of brain AD-markers, neuroinflammation, and cognitive decline even in young rats subjected to a short periodontal infection exposure, due to their higher capacity of activating brain inflammatory responses. To test this hypothesis, we periodontally inoculated 4-week-old male Sprague-Dawley rats with K1, K2, or K4 P. gingivalis serotypes and the K1-isogenic non-encapsulated mutant (GPA), used as a control. 45-days after periodontal inoculations with P. gingivalis serotypes, rat´s spatial memory was evaluated for six consecutive days in the Oasis maze task. Following functional testing, the animals were sacrificed, and various tissues were removed to analyze alveolar bone resorption, cytokine production, and detect AD-specific biomarkers. Strikingly, only K1 or K2 P. gingivalis-infected rats displayed memory deficits, increased alveolar bone resorption, pro-inflammatory cytokine production, changes in astrocytic morphology, increased Aβ1-42 levels, and Tau hyperphosphorylation in the hippocampus. None of these effects were observed in rats infected with the non-encapsulated bacterial strains. Based on these results, we propose that the bacterial virulence factors constituted by capsular polysaccharides play a central role in activating innate immunity and inflammation in the AD-like pathology triggered by P. gingivalis in young rats subjected to an acute experimental infection episode.
Collapse
Affiliation(s)
- Jaime Díaz-Zúñiga
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Jamileth More
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile
| | | | - Matías Jiménez-Unión
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | | | | | - Gustavo Monasterio
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - José Luis Valdés
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Mendez KN, Hoare A, Soto C, Bugueño I, Olivera M, Meneses C, Pérez-Donoso JM, Castro-Nallar E, Bravo D. Variability in Genomic and Virulent Properties of Porphyromonas gingivalis Strains Isolated From Healthy and Severe Chronic Periodontitis Individuals. Front Cell Infect Microbiol 2019; 9:246. [PMID: 31355151 PMCID: PMC6635597 DOI: 10.3389/fcimb.2019.00246] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
Porphyromonas gingivalis has been extensively associated with both the onset and progression of periodontitis. We previously isolated and characterized two P. gingivalis strains, one from a patient exhibiting severe chronic periodontitis (CP3) and another from a periodontally healthy individual (H3). We previously showed that CP3 and H3 exhibit differences in virulence since H3 showed a lower resistance to cationic peptides compared with CP3, and a lower ability to induce proliferation in gingival epithelial cells. Here, we aimed to determine whether differences in virulence between these two strains are associated with the presence or absence of specific genes encoding virulence factors. We sequenced the whole genomes of both P. gingivalis CP3 and H3 and conducted a comparative analysis regarding P. gingivalis virulence genetic determinants. To do so, we performed a homology search of predicted protein sequences in CP3 and H3 genomes against the most characterized virulence genes for P. gingivalis available in the literature. In addition, we performed a genomic comparison of CP3 and H3 with all the 62 genomes of P. gingivalis found in NCBI's RefSeq database. This approach allowed us to determine the evolutionary relationships of CP3 and H3 with other virulent and avirulent strains; and additionally, to detect variability in presence/absence of virulence genes among P. gingivalis genomes. Our results show genetic variability in the hemagglutinin genes. While CP3 possesses one copy of hagA and two of hagC, H3 has no hagA and only one copy of hagC. Experimentally, this finding is related to lower in vitro hemmaglutination ability of H3 compared to CP3. Moreover, while CP3 encodes a gene for a major fimbrium subunit FimA type 4 (CP3_00160), H3 possess a FimA type 1 (H3_01400). Such genetic differences are in agreement with both lower biofilm formation ability and less intracellular invasion to oral epithelial cells exhibited by H3, compared with the virulent strain CP3. Therefore, here we provide new results on the genome sequences, comparative genomics analyses, and phenotypic analyses of two P. gingivalis strains. The genomics comparison of these two strains with the other 62 genomes included in the analysis provided relevant results regarding genetic determinants and their association with P. gingivalis virulence.
Collapse
Affiliation(s)
- Katterinne N Mendez
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Anilei Hoare
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Cristopher Soto
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Isaac Bugueño
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Marcela Olivera
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Santiago, Chile
| | - Jose Manuel Pérez-Donoso
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Denisse Bravo
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| |
Collapse
|
11
|
Śmiga M, Stępień P, Olczak M, Olczak T. PgFur participates differentially in expression of virulence factors in more virulent A7436 and less virulent ATCC 33277 Porphyromonas gingivalis strains. BMC Microbiol 2019; 19:127. [PMID: 31185896 PMCID: PMC6558696 DOI: 10.1186/s12866-019-1511-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/04/2019] [Indexed: 12/19/2022] Open
Abstract
Background Porphyromonas gingivalis is considered a keystone pathogen responsible for chronic periodontitis. Although several virulence factors produced by this bacterium are quite well characterized, very little is known about regulatory mechanisms that allow different strains of P. gingivalis to efficiently survive in the hostile environment of the oral cavity, a typical habitat characterized by low iron and heme concentrations. The aim of this study was to characterize P. gingivalis Fur homolog (PgFur) in terms of its role in production of virulence factors in more (A7436) and less (ATCC 33277) virulent strains. Results Expression of a pgfur depends on the growth phase and iron/heme concentration. To better understand the role played by the PgFur protein in P. gingivalis virulence under low- and high-iron/heme conditions, a pgfur-deficient ATCC 33277 strain (TO16) was constructed and its phenotype compared with that of a pgfur A7436-derived mutant strain (TO6). In contrast to the TO6 strain, the TO16 strain did not differ in the growth rate and hemolytic activity compared with the ATCC 33277 strain. However, both mutant strains were more sensitive to oxidative stress and they demonstrated changes in the production of lysine- (Kgp) and arginine-specific (Rgp) gingipains. In contrast to the wild-type strains, TO6 and TO16 mutant strains produced larger amounts of HmuY protein under high iron/heme conditions. We also demonstrated differences in production of glycoconjugates between the A7436 and ATCC 33277 strains and we found evidence that PgFur protein might regulate glycosylation process. Moreover, we revealed that PgFur protein plays a role in interactions with other periodontopathogens and is important for P. gingivalis infection of THP-1-derived macrophages and survival inside the cells. Deletion of the pgfur gene influences expression of many transcription factors, including two not yet characterized transcription factors from the Crp/Fnr family. We also observed lower expression of the CRISPR/Cas genes. Conclusions We show here for the first time that inactivation of the pgfur gene exerts a different influence on the phenotype of the A7436 and ATCC 33277 strains. Our findings further support the hypothesis that PgFur regulates expression of genes encoding surface virulence factors and/or genes involved in their maturation. Electronic supplementary material The online version of this article (10.1186/s12866-019-1511-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14A St, 50-383, Wrocław, Poland
| | - Paulina Stępień
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14A St, 50-383, Wrocław, Poland
| | - Mariusz Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14A St, 50-383, Wrocław, Poland
| | - Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14A St, 50-383, Wrocław, Poland.
| |
Collapse
|
12
|
Bisignano C, Ginestra G, Smeriglio A, La Camera E, Crisafi G, Franchina FA, Tranchida PQ, Alibrandi A, Trombetta D, Mondello L, Mandalari G. Study of the Lipid Profile of ATCC and Clinical Strains of Staphylococcus aureus in Relation to Their Antibiotic Resistance. Molecules 2019; 24:molecules24071276. [PMID: 30986911 PMCID: PMC6480324 DOI: 10.3390/molecules24071276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/22/2019] [Accepted: 03/29/2019] [Indexed: 11/16/2022] Open
Abstract
A number of reports have indicated a relationship between bacterial resistance to antibiotics and their lipid composition. In the present study, we characterized the lipid profiles of American Type Culture Collection (ATCC) and clinical strains of Staphylococcus aureus and its correlation with antibiotic resistance and hydrophobicity. The following strains were used: S. aureus ATCC 6538P, S. aureus ATCC 43300 (MRSA), seven clinical strains from the pharynges, two strains from duodenal ulcers, four strains from hip prostheses, and one strain from the conjunctiva. Lipid-related differentiation was observed across the S. aureus strains: the higher abundance of anteiso-pentadecanoic acid (anteiso-C15:0) and anteiso-heptadecanoic acid (anteiso-C17:0), followed by iso-pentadecanoic acid (iso-C15:0), suggested that these were common lipids. Iso-tridecanoic acid (iso-C13:0) and anteiso-tridecanoic acid (anteiso-C13:0), iso-hexadecanoic acid (iso-C16:0) and anteiso-hexadecanoic acid (anteiso-C16:0), and all forms of octadecanoic acid (C18:0) were usually detected in low abundance. Strains isolated from pharynges showed the highest ratio of branched/straight chains. A distinction in two clusters based on the amount and type of bacterial lipids identified was obtained, which correlated to the antibiotic resistance, the strains origin, and the cell-surface hydrophobicity. We report a potential correlation between the lipid profile of S. aureus strains, site of infection, antibiotic resistance, and cell-surface hydrophobicity. These results, which still need further insights, could be a first step to identifying antibiotic resistance in response to environmental adaptation.
Collapse
Affiliation(s)
- Carlo Bisignano
- Department of Biomedical, Dental, Morphological and Functional Images Sciences, University of Messina, Via C. Valeria, 98125 Messina, Italy.
| | - Giovanna Ginestra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168 Messina, Italy.
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168 Messina, Italy.
| | - Erminia La Camera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168 Messina, Italy.
| | - Giuseppe Crisafi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168 Messina, Italy.
| | - Flavio A Franchina
- Chromaleont c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168 Messina, Italy.
- School of Engineering at Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA.
- University of Liège, Molecular System Organic & Biological Analytical Chemistry, 11 Allée du Six Août, 4000 Liège, Belgium.
| | - Peter Q Tranchida
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168 Messina, Italy.
| | - Angela Alibrandi
- Department of Economics, Unit of Statistical and Mathematical Sciences, University of Messina, 98125 Messina, Italy.
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168 Messina, Italy.
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168 Messina, Italy.
- Chromaleont c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168 Messina, Italy.
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168 Messina, Italy.
| |
Collapse
|
13
|
Hu X, Huang YY, Wang Y, Wang X, Hamblin MR. Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections. Front Microbiol 2018; 9:1299. [PMID: 29997579 PMCID: PMC6030385 DOI: 10.3389/fmicb.2018.01299] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Biofilm describes a microbially-derived sessile community in which microbial cells are firmly attached to the substratum and embedded in extracellular polymeric matrix. Microbial biofilms account for up to 80% of all bacterial and fungal infections in humans. Biofilm-associated pathogens are particularly resistant to antibiotic treatment, and thus novel antibiofilm approaches needed to be developed. Antimicrobial Photodynamic therapy (aPDT) had been recently proposed to combat clinically relevant biofilms such as dental biofilms, ventilator associated pneumonia, chronic wound infections, oral candidiasis, and chronic rhinosinusitis. aPDT uses non-toxic dyes called photosensitizers (PS), which can be excited by harmless visible light to produce reactive oxygen species (ROS). aPDT is a multi-stage process including topical PS administration, light irradiation, and interaction of the excited state with ambient oxygen. Numerous in vitro and in vivo aPDT studies have demonstrated biofilm-eradication or substantial reduction. ROS are produced upon photo-activation and attack adjacent targets, including proteins, lipids, and nucleic acids present within the biofilm matrix, on the cell surface and inside the microbial cells. Damage to non-specific targets leads to the destruction of both planktonic cells and biofilms. The review aims to summarize the progress of aPDT in destroying biofilms and the mechanisms mediated by ROS. Finally, a brief section provides suggestions for future research.
Collapse
Affiliation(s)
- Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
| | - Ying-Ying Huang
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
| | - Yuguang Wang
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Michael R. Hamblin
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States
| |
Collapse
|
14
|
How KY, Song KP, Chan KG. Porphyromonas gingivalis: An Overview of Periodontopathic Pathogen below the Gum Line. Front Microbiol 2016; 7:53. [PMID: 26903954 PMCID: PMC4746253 DOI: 10.3389/fmicb.2016.00053] [Citation(s) in RCA: 455] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/12/2016] [Indexed: 01/12/2023] Open
Abstract
Periodontal disease represents a group of oral inflammatory infections initiated by oral pathogens which exist as a complex biofilms on the tooth surface and cause destruction to tooth supporting tissues. The severity of this disease ranges from mild and reversible inflammation of the gingiva (gingivitis) to chronic destruction of connective tissues, the formation of periodontal pocket and ultimately result in loss of teeth. While human subgingival plaque harbors more than 500 bacterial species, considerable research has shown that Porphyromonas gingivalis, a Gram-negative anaerobic bacterium, is the major etiologic agent which contributes to chronic periodontitis. This black-pigmented bacterium produces a myriad of virulence factors that cause destruction to periodontal tissues either directly or indirectly by modulating the host inflammatory response. Here, this review provides an overview of P. gingivalis and how its virulence factors contribute to the pathogenesis with other microbiome consortium in oral cavity.
Collapse
Affiliation(s)
- Kah Yan How
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Keang Peng Song
- School of Science, Monash University Sunway Campus Subang Jaya, Malaysia
| | - Kok Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Bae E, Kim H, Rajwa B, Thomas JG, Robinson JP. Current status and future prospects of using advanced computer-based methods to study bacterial colonial morphology. Expert Rev Anti Infect Ther 2015; 14:207-18. [PMID: 26582139 DOI: 10.1586/14787210.2016.1122524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite the advancement of recent molecular technologies, culturing is still considered the gold standard for microbial sample analysis. Here we review three different bacterial colony-based screening modalities that provide significant information beyond the simple shape and color of the colony. The plate imaging technique provides numeration and quantitative spectral reflectance information for each colony, while Raman spectroscopic analysis of bacteria colonies relates the Raman-shifted peaks to specific chemical bonding. Finally, the elastic-light-scatter technique provides a volumetric interaction of the whole colony through laser-bacteria interactions, instantly capturing the morphological traits of the colony and allowing quantitative classifications.
Collapse
Affiliation(s)
- Euiwon Bae
- a School of Mechanical Engineering , Purdue University , West Lafayette , IN , USA
| | - Huisung Kim
- a School of Mechanical Engineering , Purdue University , West Lafayette , IN , USA
| | - Bartek Rajwa
- b Bindley Bioscience Center , Purdue University , West Lafayette , IN , USA
| | - John G Thomas
- c Microbiology Laboratory, Department of Laboratory Medicine , Allegheny Health Network , Pittsburgh , PA , USA
| | - J Paul Robinson
- d School of Veterinary Medicine , Purdue University , West Lafayette , IN , USA.,e Weldon School of Biomedical Engineering , Purdue University , West Lafayette , IN , USA
| |
Collapse
|
16
|
Soto C, Bugueño I, Hoare A, Gonzalez S, Venegas D, Salinas D, Melgar-Rodríguez S, Vernal R, Gamonal J, Quest AFG, Pérez-Donoso JM, Bravo D. The Porphyromonas gingivalis O antigen is required for inhibition of apoptosis in gingival epithelial cells following bacterial infection. J Periodontal Res 2015; 51:518-28. [PMID: 26530544 DOI: 10.1111/jre.12331] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Porphyromonas gingivalis infection induces apoptosis inhibition in gingival epithelial cells; however, it is not fully understood which bacterial effectors are involved in this process. The aim of this study is to evaluate whether the P. gingivalis lipopolysaccharide (LPS), specifically the O-antigen region, affects adherence, invasion, viability and apoptosis of gingival epithelial cells. MATERIAL AND METHODS Gingival epithelial cells (OKF6/TERT2 line) were infected by different freshly prepared P. gingivalis clinical isolates, obtained from subjects with chronic periodontitis (CP3 and CP4) and healthy individuals (H1 and H3). Periodontitis and healthy isolates show differences in O-antigen production, as healthy isolates lack the O-antigen region. In addition, cells were infected by a site-specific mutant lacking the O-antigen portion. After 24 h postinfection, cell proliferation, viability and apoptosis were evaluated by Trypan blue, MTS and annexin V assays, respectively. Bacterial invasion, adhesion and proliferation were measured by gentamicin/metronidazole protection assays. Finally, toll-like receptor (TLR)2 and TLR4 mRNA expression was evaluated by quantitative reverse transcription-polymerase chain reaction. Statistical analysis was performed using ANOVA, Tukey's or Dunnett's tests (p < 0.05). RESULTS At 24 h postinfection, strains lacking the O-antigen region (healthy isolates and O-antigen ligase-deficient strain) were unable to increase proliferation and viability, or decrease apoptosis as compared with strains producing intact LPS (periodontitis isolates and reference strain). However, the presence of the O-antigen neither contributed to changes in the ability of the bacteria to adhere to or invade cells, nor to intracellular survival. The presence of O-antigen also increased the expression of TLR4 (nearly sixfold), which correlated with inhibition of apoptosis. CONCLUSION The O-antigen region of P. gingivalis LPS is required to increase gingival epithelial cell viability upon infection by bacteria and this increase is attributable to a reduction in apoptosis. Moreover, although bacterial internalization is required, the effects observed are not due to alterations in P. gingivalis adherence, invasion or intracellular survival. Interestingly, inhibition of apoptosis correlates with increased TLR4 expression, suggesting a role for TLR4 in this process.
Collapse
Affiliation(s)
- C Soto
- Oral Microbiology Laboratory, Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - I Bugueño
- Oral Microbiology Laboratory, Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - A Hoare
- Oral Microbiology Laboratory, Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - S Gonzalez
- Oral Microbiology Laboratory, Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - D Venegas
- Oral Microbiology Laboratory, Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - D Salinas
- Oral Microbiology Laboratory, Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - S Melgar-Rodríguez
- Laboratory of Periodontal Biology, Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - R Vernal
- Laboratory of Periodontal Biology, Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - J Gamonal
- Laboratory of Periodontal Biology, Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - A F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile.,Laboratory of Cell Communication, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - J M Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Biological Sciences, Universidad Andres Bello, Santiago, Chile
| | - D Bravo
- Oral Microbiology Laboratory, Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| |
Collapse
|
17
|
Shoji M, Nakayama K. Glycobiology of the oral pathogen Porphyromonas gingivalis and related species. Microb Pathog 2015; 94:35-41. [PMID: 26456570 DOI: 10.1016/j.micpath.2015.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
Abstract
Until recently, glycoproteins had only been described in eukaryotes. However, advances in detection methods and genome analyses have allowed the discovery of N-linked or O-linked glycoproteins, similar to those found in eukaryotes, in some bacterial species. These prokaryotic glycoproteins play roles in adhesion, solubility, formation of protein complexes, protection from protein degradation, and changes in antigenicity. Periodontal pathogen Porphyromonas gingivalis secretes virulence proteins via the type IX secretion system, some of which localize on the cell surface by binding to lipopolysaccharide (LPS). These virulence proteins have a conserved C-terminal domain (CTD) region, which is used as a secretion signal. However, it is still uncertain how the secreted proteins on the cell surface bind to LPS. In this review, we discuss the synthesis of P. gingivalis O polysaccharide, which plays a role in anchoring the CTD protein on the cell surface, and recent discoveries of glycoproteins in P. gingivalis as well as other species in the phylum Bacteroidetes.
Collapse
Affiliation(s)
- Mikio Shoji
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Koji Nakayama
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan.
| |
Collapse
|
18
|
Effect of negative pressure on growth, secretion and biofilm formation of Staphylococcus aureus. Antonie van Leeuwenhoek 2015; 108:907-17. [DOI: 10.1007/s10482-015-0545-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/20/2015] [Indexed: 02/07/2023]
|