1
|
Modesto M, Scarafile D, Vásquez A, Pukall R, Neumann-Schaal M, Pascarelli S, Sgorbati B, Ancora M, Cammà C, Mattarelli P, Olofsson TC. Phylogenetic characterization of Bifidobacterium kimbladii sp. nov., a novel species from the honey stomach of the honeybee Apis mellifera. Syst Appl Microbiol 2025; 48:126579. [PMID: 39764984 DOI: 10.1016/j.syapm.2025.126579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/14/2025]
Abstract
Six novel Bifidobacterium strains H1HS16NT, Bin2N, Hma3N, H6bp22N, H1HS10N, and H6bp9N, were isolated from the honey stomach of Apis mellifera. Cells are Gram-positive, non-motile, non-sporulating, facultatively anaerobic, and fructose 6-phosphate phosphoketolase-positive. Optimal growth conditions occur at 37 °C in anaerobiosis in MRS medium added with 2 % fructose and 0.1 % L-cysteine. The 16S rRNA gene sequences analysis revealed clustering with Bifidobacterium species found in honeybees. Strains Hma3N, H6bp22N, and H1HS16NT showed significant similarity to Bifidobacterium polysaccharolyticum JCM 34588T, with an average similarity of 99.63 %. In contrast, strains Bin2N, H1HS10N, and H6bp9N were closely related to Bifidobacterium apousia JCM 34587T, with an average similarity of 99.22 %. Moreover, strains Hma3N and H6bp22N exhibited ANI values of 96.65 % and 96.53 % when compared to Bifidobacterium polysaccharolyticum JCM 34588T, while strains H1HS16NT, Bin2N, H6bp9N, and H1HS10N revealed ANI values of 94.18 %, 94.33 %, 94.22 %, and 95.50 % respectively when compared to B. apousia JCM 34587T. dDDH analysis confirmed that strains Hma3N and H6bp22N belong to B. polysaccharolyticum, whereas strains H1HS16NT, Bin2N, H6bp9N, and H1HS10N represent a novel species. The peptidoglycan of the novel species is of the A4α type (L-Lys-D-Asp). The main cellular fatty acids of the type strain H1HS16NT are C16:0, C14:0, C19:0 cyclo ω9c, and C18:1 ω9c. The DNA G + C content of the type strain is 60.8 mol%. Genome analyses of the strains were also conducted to determine their biosynthesis-related gene clusters, probiotic features, and ecological distribution patterns. Phenotypic and genotypic characterization show that strain H1HS16NT is distinct from the type strains of other recognized Bifidobacterium species. Thus, Bifidobacterium kimbladii sp. nov. (H1HS16NT = DSM 115187T = CCUG 76695T) is proposed as a novel Bifidobacterium species.
Collapse
Affiliation(s)
- M Modesto
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - D Scarafile
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - A Vásquez
- Department of Laboratory Medicine, Medical Microbiology, Lund University, Medicon Village, SE-223 81 Lund, Sweden.; ConCellae AB, Bårslövsvägen 3, 25373 Helsingborg, Sweden
| | - R Pukall
- Department of Microorganisms and Chemical Analytics and Metabolomics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - M Neumann-Schaal
- Department of Microorganisms and Chemical Analytics and Metabolomics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - S Pascarelli
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Department of Biology, Institute of Molecular Systems Biology, ETH, Zurich, Zurich, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - B Sgorbati
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - M Ancora
- National Reference Center for Whole Genome Sequencing of microbial pathogens: database and bioinformatic analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - C Cammà
- National Reference Center for Whole Genome Sequencing of microbial pathogens: database and bioinformatic analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - P Mattarelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy.
| | - T C Olofsson
- Department of Laboratory Medicine, Medical Microbiology, Lund University, Medicon Village, SE-223 81 Lund, Sweden.; ConCellae AB, Bårslövsvägen 3, 25373 Helsingborg, Sweden
| |
Collapse
|
2
|
Tang-Wing C, Mohanty I, Bryant M, Makowski K, Melendez D, Dorrestein PC, Knight R, Caraballo-Rodríguez AM, Allaband C, Jenné K. Impact of diet change on the gut microbiome of common marmosets ( Callithrix jacchus). mSystems 2024; 9:e0010824. [PMID: 38975760 PMCID: PMC11334461 DOI: 10.1128/msystems.00108-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/01/2024] [Indexed: 07/09/2024] Open
Abstract
Gastrointestinal diseases are the most frequently reported clinical problems in captive common marmosets (Callithrix jacchus), often affecting the health and welfare of the animal and ultimately their use as a research subject. The microbiome has been shown to be intimately connected to diet and gastrointestinal health. Here, we use shotgun metagenomics and untargeted metabolomics in fecal samples of common marmosets collected before, during, and after a dietary transition from a biscuit to a gel diet. The overall health of marmosets, measured as weight recovery and reproductive outcome, improved after the diet transition. Moreover, each marmoset pair had significant shifts in the microbiome and metabolome after the diet transition. In general, we saw a decrease in Escherichia coli and Prevotella species and an increase in Bifidobacterium species. Untargeted metabolic profiles indicated that polyamine levels, specifically cadaverine and putrescine, were high after diet transition, suggesting either an increase in excretion or a decrease in intestinal reabsorption at the intestinal level. In conclusion, our data suggest that Bifidobacterium species could potentially be useful as probiotic supplements to the laboratory marmoset diet. Future studies with a larger sample size will be beneficial to show that this is consistent with the diet change. IMPORTANCE Appropriate diet and health of the common marmoset in captivity are essential both for the welfare of the animal and to improve experimental outcomes. Our study shows that a gel diet compared to a biscuit diet improves the health of a marmoset colony, is linked to increases in Bifidobacterium species, and increases the removal of molecules associated with disease. The diet transition had an influence on the molecular changes at both the pair and time point group levels, but only at the pair level for the microbial changes. It appears to be more important which genes and functions present changed rather than specific microbes. Further studies are needed to identify specific components that should be considered when choosing an appropriate diet and additional supplementary foods, as well as to validate the benefits of providing probiotics. Probiotics containing Bifidobacterium species appear to be useful as probiotic supplements to the laboratory marmoset diet, but additional work is needed to validate these findings.
Collapse
Affiliation(s)
- Cassandra Tang-Wing
- Animal Care Program, University of California, San Diego, La Jolla, California, USA
| | - Ipsita Mohanty
- Skaggs School of Pharmacy, University of California, San Diego, La Jolla, California, USA
| | - MacKenzie Bryant
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Katherine Makowski
- Animal Care Program, University of California, San Diego, La Jolla, California, USA
| | - Daira Melendez
- Bioinformatics Graduate Program, University of California, San Diego, La Jolla, California, USA
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy, University of California, San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, California, USA
| | | | - Celeste Allaband
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Keith Jenné
- Animal Care Program, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
D’Aimmo MR, Satti M, Scarafile D, Modesto M, Pascarelli S, Biagini SA, Luiselli D, Mattarelli P, Andlid T. Folate-producing bifidobacteria: metabolism, genetics, and relevance. MICROBIOME RESEARCH REPORTS 2023; 3:11. [PMID: 38455078 PMCID: PMC10917623 DOI: 10.20517/mrr.2023.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/11/2023] [Accepted: 11/29/2023] [Indexed: 03/09/2024]
Abstract
Folate (the general term for all bioactive forms of vitamin B9) plays a crucial role in the evolutionary highly conserved one-carbon (1C) metabolism, a network including central reactions such as DNA and protein synthesis and methylation of macromolecules. Folate delivers 1C units, such as methyl and formyl, between reactants. Plants, algae, fungi, and many bacteria can naturally produce folate, whereas animals, including humans, must obtain folate from external sources. For humans, folate deficiency is, however, a widespread problem. Bifidobacteria constitute an important component of human and many animal microbiomes, providing various health advantages to the host, such as producing folate. This review focuses on bifidobacteria and folate metabolism and the current knowledge of the distribution of genes needed for complete folate biosynthesis across different bifidobacterial species. Biotechnologies based on folate-trophic probiotics aim to create fermented products enriched with folate or design probiotic supplements that can synthesize folate in the colon, improving overall health. Therefore, bifidobacteria (alone or in association with other microorganisms) may, in the future, contribute to reducing widespread folate deficiencies prevalent among vulnerable human population groups, such as older people, women at child-birth age, and people in low-income countries.
Collapse
Affiliation(s)
| | - Maria Satti
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40127, Italy
| | - Donatella Scarafile
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40127, Italy
| | - Monica Modesto
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40127, Italy
| | - Stefano Pascarelli
- Protein Engineering and Evolution Unit, Okinawa Institute of Science, Technology Graduate University, Okinawa 40-0193, Japan
| | - Simone Andrea Biagini
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Donata Luiselli
- Department for the Cultural Heritage (DBC), University of Bologna, Ravenna 48121, Italy
| | - Paola Mattarelli
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40127, Italy
| | | |
Collapse
|
4
|
Scarafile D, Luise D, Motta V, Spiezio C, Modesto M, Porcu MM, Yitzhak Y, Correa F, Sandri C, Trevisi P, Mattarelli P. Faecal Microbiota Characterisation of Potamochoerus porcus Living in a Controlled Environment. Microorganisms 2023; 11:1542. [PMID: 37375044 DOI: 10.3390/microorganisms11061542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Intestinal bacteria establish a specific relationship with the host animal, which causes the acquisition of gut microbiota with a unique composition classified as the enterotype. As the name suggests, the Red River Hog is a wild member of the pig family living in Africa, in particular through the West and Central African rainforest. To date, very few studies have analysed the gut microbiota of Red River Hogs (RRHs) both housed under controlled conditions and in wild habitats. This study analysed the intestinal microbiota and the distribution of Bifidobacterium species in five Red River Hog (RRH) individuals (four adults and one juvenile), hosted in two different modern zoological gardens (Parco Natura Viva, Verona, and Bioparco, Rome) with the aim of disentangling the possible effects of captive different lifestyle and host genetics. Faecal samples were collected and studied both for bifidobacterial counts and isolation by means of culture-dependent method and for total microbiota analysis through the high-quality sequences of the V3-V4 region of bacterial 16S rRNA. Results showed a host-specific bifidobacterial species distribution. Indeed, B. boum and B. thermoacidophilum were found only in Verona RRHs, whereas B. porcinum species were isolated only in Rome RRHs. These bifidobacterial species are also typical of pigs. Bifidobacterial counts were about 106 CFU/g in faecal samples of all the individuals, with the only exception for the juvenile subject, showing 107 CFU/g. As in human beings, in RRHs a higher count of bifidobacteria was also found in the young subject compared with adults. Furthermore, the microbiota of RRHs showed qualitative differences. Indeed, Firmicutes was found to be the dominant phylum in Verona RRHs whereas Bacteroidetes was the most represented in Roma RRHs. At order level, Oscillospirales and Spirochaetales were the most represented in Verona RRHs compared with Rome RRHs, where Bacteroidales dominated over the other taxa. Finally, at the family level, RRHs from the two sites showed the presence of the same families, but with different levels of abundance. Our results highlight that the intestinal microbiota seems to reflect the lifestyle (i.e., the diet), whereas age and host genetics are the driving factors for the bifidobacterial population.
Collapse
Affiliation(s)
- Donatella Scarafile
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Vincenzo Motta
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Caterina Spiezio
- Department of Animal Health Care and Management, Parco Natura Viva-Garda Zoological Park, 37012 Bussolengo, Italy
| | - Monica Modesto
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Marzia Mattia Porcu
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Yadid Yitzhak
- Fondazione Bioparco di Roma, Viale del Giardino Zoologico, 00100 Rome, Italy
| | - Federico Correa
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Camillo Sandri
- Department of Animal Health Care and Management, Parco Natura Viva-Garda Zoological Park, 37012 Bussolengo, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Paola Mattarelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| |
Collapse
|
5
|
Captive Common Marmosets (Callithrix jacchus) Are Colonized throughout Their Lives by a Community of Bifidobacterium Species with Species-Specific Genomic Content That Can Support Adaptation to Distinct Metabolic Niches. mBio 2021; 12:e0115321. [PMID: 34340536 PMCID: PMC8406136 DOI: 10.1128/mbio.01153-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The common marmoset (Callithrix jacchus) is an omnivorous New World primate whose diet in the wild includes large amounts of fruit, seeds, flowers, and a variety of lizards and invertebrates. Marmosets also feed heavily on tree gums and exudates, and they have evolved unique morphological and anatomical characteristics to facilitate gum feeding (gummivory). In this study, we characterized the fecal microbiomes of adult and infant animals from a captive population of common marmosets at the Callitrichid Research Center at the University of Nebraska at Omaha under their normal dietary and environmental conditions. The microbiomes of adult animals were dominated by species of Bifidobacterium, Bacteroides, Prevotella, Phascolarctobacterium, Megamonas, and Megasphaera. Culturing and genomic analysis of the Bifidobacterium populations from adult animals identified four known marmoset-associated species (B. reuteri, B. aesculapii, B. myosotis, and B. hapali) and three unclassified taxa of Bifidobacterium that are phylogenetically distinct. Species-specific quantitative PCR (qPCR) confirmed that these same species of Bifidobacterium are abundant members of the microbiome throughout the lives of the animals. Genomic loci in each Bifidobacterium species encode enzymes to support growth and major marmoset milk oligosaccharides during breastfeeding; however, metabolic islands that can support growth on complex polysaccharide substrates in the diets of captive adults (pectin, xyloglucan, and xylan), including loci in B. aesculapii that can support its unique ability to grow on arabinogalactan-rich tree gums, were species-specific.
Collapse
|
6
|
Sheh A. The Gastrointestinal Microbiota of the Common Marmoset (Callithrix jacchus). ILAR J 2021; 61:188-198. [PMID: 33620078 DOI: 10.1093/ilar/ilaa025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 10/06/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
The microbiota is heavily involved in both health and disease pathogenesis, but defining a normal, healthy microbiota in the common marmoset has been challenging. The aim of this review was to systematically review recent literature involving the gastrointestinal microbiome of common marmosets in health and disease. Twelve sources were included in this review. The gut microbiome composition was reviewed across institutions worldwide, and taxonomic shifts between healthy individuals were described. Unlike the human gut microbiome, which is dominated by Firmicutes and Bacteroidetes, the marmoset gut microbiome shows great plasticity across institutions, with 5 different phyla described as dominant in different healthy cohorts. Genera shared across institutions include Anaerobiospirillum, Bacteroides, Bifidobacterium, Collinsella, Fusobacterium, Megamonas, Megasphaera, Phascolarctobacterium, and Prevotella. Shifts in the abundance of Prevotella or Bifidobacterium or invasion by pathogens like Clostridium perfringens may be associated with disease. Changes in microbial composition have been described in healthy and diseased marmosets, but factors influencing the severe changes in microbial composition have not been established. Multi-institutional, prospective, and longitudinal studies that utilize multiple testing methodologies are required to determine sources of variability in the reporting of marmoset microbiomes. Furthermore, methods of microbial manipulation, whether by diet, enrichment, fecal microbiome transplantation, etc, need to be established to modulate and maintain robust and resilient microbiome communities in marmoset colonies and reduce the incidence of idiopathic gastrointestinal disease.
Collapse
Affiliation(s)
- Alexander Sheh
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
7
|
Sandri C, Correa F, Spiezio C, Trevisi P, Luise D, Modesto M, Remy S, Muzungaile MM, Checcucci A, Zaborra CA, Mattarelli P. Fecal Microbiota Characterization of Seychelles Giant Tortoises ( Aldabrachelys gigantea) Living in Both Wild and Controlled Environments. Front Microbiol 2020; 11:569249. [PMID: 33193160 PMCID: PMC7641630 DOI: 10.3389/fmicb.2020.569249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
A microbiome is defined as a complex collection of microorganisms and their genetic material. Studies regarding gut microbiomes of different animals have provided ecological and evolutionary information showing a strong link between health and disease. Very few studies have compared the gut microbiota of animals housed under controlled conditions and those in wild habitats. Little research has been performed on the reptile gut microbiota, and what studies do exist are mainly focused on carnivorous reptiles. The aim of this study was first to describe the overall microbiota structure of Aldabra giant tortoises (Aldabrachelys gigantea) and, second, to compare the microbiota of tortoises living under natural conditions and tortoises living in controlled environments, such as zoological and botanical parks, in Italy and in the Seychelles. Seventeen fecal samples were collected from giant tortoises located on Curieuse Island (CI, n = 8), at the Botanical Garden (BG, n = 3) in Mahé (Seychelles Islands) and at Parco Natura Viva-Garda Zoological Park (PNV, n = 6) in Verona (Italy). The V3-V4 region of the 16S rRNA gene was amplified in order to characterize the gut microbiota profile. Overall, the major phyla identified were Bacteroidetes 42%, Firmicutes 32%, and Spirochaetes 9%. A higher microbial diversity (alpha indices) was observed for the BG samples as compared to the PNV samples (Shannon: 5.39 vs. 4.43; InvSimpson: 80.7 vs. 25; Chao1: 584 vs. 377 p < 0.05). The results in the present study showed a significant difference in beta diversity between the samples from CI, BG, and PNV (p = 0.001), suggesting a different bacterial fecal profile of giant tortoises at the different habitats. This study provided novel insights into the effects of different environmental conditions on the gut microbial communities of giant tortoises. In particular, differences were reported regarding the bacterial gut community structure between tortoises in natural and in controlled environments. These results could help to improve the management of giant tortoises under human care, thus enhancing ex-situ conservation efforts far from the species geographic range.
Collapse
Affiliation(s)
- Camillo Sandri
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
- Department of Animal Health Care and Management, Parco Natura Viva – Garda Zoological Park, Verona, Italy
| | - Federico Correa
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Caterina Spiezio
- Department of Animal Health Care and Management, Parco Natura Viva – Garda Zoological Park, Verona, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Diana Luise
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Monica Modesto
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Selby Remy
- Seychelles National Parks Authority, Victoria, Seychelles
| | - Marie-May Muzungaile
- Biodiversity Conservation and Management Division, Ministry of Environment, Energy and Climate Change, Victoria, Seychelles
| | - Alice Checcucci
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Cesare Avesani Zaborra
- Department of Animal Health Care and Management, Parco Natura Viva – Garda Zoological Park, Verona, Italy
| | - Paola Mattarelli
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Modesto M, Satti M, Watanabe K, Scarafile D, Huang CH, Liou JS, Tamura T, Saito S, Watanabe M, Mori K, Huang L, Sandri C, Spiezio C, Arita M, Mattarelli P. Phylogenetic characterization of two novel species of the genus Bifidobacterium: Bifidobacterium saimiriisciurei sp. nov. and Bifidobacterium platyrrhinorum sp. nov. Syst Appl Microbiol 2020; 43:126111. [PMID: 32847786 DOI: 10.1016/j.syapm.2020.126111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/25/2022]
Abstract
Three bifidobacterial Gram-stain-positive, non-spore forming and fructose-6-phosphate phosphoketolase-positive strains, SMA1T, SMB2 and SMA15T were isolated from the faeces of two adult males of the squirrel monkey (Saimiri sciureus). On the basis of 16S rRNA gene sequence similarities, the type strain of Bifidobacterium primatium DSM 100687T (99.3%; similarity) was the closest neighbour to strains SMA1T and SMB2, whereas the type strain of Bifidobacterium stellenboschense DSM 23968T (96.5%) was the closest neighbour to strain SMA15T. The average nucleotide identity (ANI) values of SMA1T and SAM15T with the closely related type strains were 93.7% and 88.1%, respectively. The in silico DNA‒DNA hybridization values with the closest neighbours were 53.1% and 36.9%, respectively. GC contents of strains SMA1T and SMA15T were 63.6 and 66.4 mol%, respectively. Based on the phylogenetic, genotypic and phenotypic data obtained, the strains SMA1T and SMA15T clearly represent two novel taxa within the genus Bifidobacterium for which the names Bifidobacterium saimiriisciurei sp. nov. (type strain SMA1T = BCRC 81223T = NBRC 114049T = DSM 106020T) and Bifidobacterium platyrrhinorum sp. nov. (type strain SMA15T = BCRC 81224T = NBRC 114051T = DSM 106029T) are proposed.
Collapse
Affiliation(s)
- Monica Modesto
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy.
| | - Maria Satti
- Department of Genetics, SOKENDAI University (National Institute of Genetics), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Koichi Watanabe
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Donatella Scarafile
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Jong-Shian Liou
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Tomohiko Tamura
- Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Satomi Saito
- Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Mizuki Watanabe
- Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Koji Mori
- Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Lina Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Camillo Sandri
- Department of Animal Health Care and Management, Parco Natura Viva - Garda Zoological Park, Bussolengo, Verona, Italy
| | - Caterina Spiezio
- Department of Animal Health Care and Management, Parco Natura Viva - Garda Zoological Park, Bussolengo, Verona, Italy
| | - Masanori Arita
- RIKEN Centerfor Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 2230-0045, Japan; Bioinformation and DDBJ Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Paola Mattarelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| |
Collapse
|
9
|
Bahmani S, Azarpira N, Moazamian E. Anti-colon cancer activity of Bifidobacterium metabolites on colon cancer cell line SW742. TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 30:835-842. [PMID: 31530527 DOI: 10.5152/tjg.2019.18451] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIMS Bacteria species, which are used as probiotics, are lactic acid bacteria. The majority of them are under the genera Bifidobacterium and Lactobacillus. The aim of the present study was to isolate and identify Bifidobacterium and to evaluate the effects of their 24 h and 120 h cell-free supernatants (CFS) from both cultures on colon cancer cell line. MATERIALS AND METHODS In the present study, 84 samples of dairy products, infant feces, and probiotic capsule were collected, and Bifidobacterium was isolated. Gram stain, biochemical tests, and molecular identification were done for the isolation and identification of Bifidobacterium. Cytotoxicity effects of CFS derived from both cultures of isolated Bifidobacterium were assessed on colon cancer cell lines. RESULTS In the present study, 17 isolates of Bifidobacterium were identified. The results show that Bifidobacterium was most frequently associated with infant feces and dairy products, whereas the lowest rate was associated with local milk. After the effects of CFS on colon cancer cell line, two isolates were identified from infant feces and probiotic capsule; they had the highest ability in inhibiting the growth of cancer cells. Bifidobacterium bifidum was effective in combating cancer cells and was associated with a substantial improvement in gastrointestinal cancer. CONCLUSION The study has shown that the regular ingested probiotics could prevent the development of colorectal cancer. During the present study, the produced CFS could inhibit the growth of colon cancer cells. In conclusion, probiotics have good potential to be introduced as a new approach to colon cancer treatment.
Collapse
Affiliation(s)
- Sepideh Bahmani
- Department of Microbiology, Islamic Azad University School of Science, Fars, Iran; Young Researchers and Elite Club, Islamic Azad University, Shiraz, Iran
| | - Negar Azarpira
- Organ Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Moazamian
- Young Researchers and Elite Club, Islamic Azad University, Shiraz, Iran
| |
Collapse
|
10
|
Brown CJ, Mtui D, Oswald BP, Van Leuven JT, Vallender EJ, Schultz‐Darken N, Ross CN, Tardif SD, Austad SN, Forney LJ. Comparative genomics of Bifidobacterium species isolated from marmosets and humans. Am J Primatol 2019; 81:e983. [PMID: 31062394 PMCID: PMC6900142 DOI: 10.1002/ajp.22983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/08/2019] [Accepted: 04/14/2019] [Indexed: 12/15/2022]
Abstract
The genus Bifidobacterium is purported to have beneficial consequences for human health and is a major component of many gastrointestinal probiotics. Although species of Bifidobacterium are generally at low relative frequency in the adult human gastrointestinal tract, they can constitute high proportions of the gastrointestinal communities of adult marmosets. To identify genes that might be important for the maintenance of Bifidobacterium in adult marmosets, ten strains of Bifidobacterium were isolated from the feces of seven adult marmosets, and their genomes were sequenced. There were six B. reuteri strains, two B. callitrichos strains, one B. myosotis sp. nov. and one B. tissieri sp. nov. among our isolates. Phylogenetic analysis showed that three of the four species we isolated were most closely related to B. bifidum, B. breve and B. longum, which are species found in high abundance in human infants. There were 1357 genes that were shared by at least one strain of B. reuteri, B. callitrichos, B. breve, and B. longum, and 987 genes that were found in all strains of the four species. There were 106 genes found in B. reuteri and B. callitrichos but not in human bifidobacteria, and several of these genes were involved in nutrient uptake. These pathways for nutrient uptake appeared to be specific to Bifidobacterium from New World monkeys. Additionally, the distribution of Bifidobacterium in fecal samples from captive adult marmosets constituted as much as 80% of the gut microbiome, although this was variable between individuals and colonies. We suggest that nutrient transporters may be important for the maintenance of Bifidobacterium during adulthood in marmosets.
Collapse
Affiliation(s)
- Celeste J. Brown
- Department of Biological ScienceUniversity of IdahoMoscowIdaho
- Center for Modeling Complex InteractionsUniversity of IdahoMoscowIdaho
- Institute for Bioinformatics and Evolutionary StudiesUniversity of IdahoMoscowIdaho
| | - Dorah Mtui
- Department of Biological ScienceUniversity of IdahoMoscowIdaho
| | - Benjamin P. Oswald
- Department of Biological ScienceUniversity of IdahoMoscowIdaho
- Institute for Bioinformatics and Evolutionary StudiesUniversity of IdahoMoscowIdaho
| | | | - Eric J. Vallender
- New England Primate Research CenterHarvard Medical SchoolSouthboroughMassachusetts
| | - Nancy Schultz‐Darken
- Wisconsin National Primate Research CenterUniversity of WisconsinMadisonWisconsin
| | - Corinna N. Ross
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTexas
- Department of Science and MathematicsTexas A&M UniversitySan AntonioTexas
| | - Suzette D. Tardif
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTexas
| | - Steven N. Austad
- Department of Cellular and Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Larry J. Forney
- Department of Biological ScienceUniversity of IdahoMoscowIdaho
- Institute for Bioinformatics and Evolutionary StudiesUniversity of IdahoMoscowIdaho
| |
Collapse
|
11
|
Sarquis MA, Siroli L, Modesto M, Patrignani F, Lanciotti R, Mattarelli P, Reinheimer J, Burns P. Novel bifidobacteria strains isolated from nonconventional sources. Technological, antimicrobial and biological characterization for their use as probiotics. J Appl Microbiol 2019; 127:1207-1218. [PMID: 31260157 DOI: 10.1111/jam.14367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/23/2019] [Accepted: 06/26/2019] [Indexed: 11/29/2022]
Abstract
AIM To characterize four novel autochthonous bifidobacteria isolated from monkey faeces and a Bifidobacterium lactis strain isolated from chicken faeces by evaluating their technological and biological/functional potential to be used as probiotics. Different stressors, including food process parameters and storage, can affect their viability and functionality. METHODS AND RESULTS The resistance to frozen storage, tolerance to lyophilization and viability during storage, thermal, acidic and simulated gastric resistance, surface hydrophobicity and antimicrobial activity against pathogens were studied. Bifidobacterium lactis Bb12 and INL1 were used as reference strains. The results obtained demonstrated that the new isolates presented strain-dependent behaviour. Good results were obtained for thermal resistance, frozen storage at -80°C and lyophilized powders maintained at 5°C. Cell viability during refrigerated storage was higher when the strains were resuspended in milk at pH 5·0 than at 4·5. The surface hydrophobicity ranged between 7 and 98% depending on the strain. The simulated gastric resistance was improved for the strains incorporated in cheese. Regarding antimicrobial activity, bifidobacteria isolated from monkey presented higher inhibitory capacity than the reference strains. CONCLUSION This research provides a deeper insight into new strains of bifidobacteria isolated from primates and chicken that have not been previously characterized for their potential use in dairy products and confirm the most robust stress tolerance of B. lactis. SIGNIFICANCE AND IMPACT OF THE STUDY The possibility of expanding the available bifidobacteria with the potential to be added to a probiotic food necessarily implies characterizing them from different points of view, especially when considering unknown species. For monkey isolates (which showed higher antimicrobial activity against pathogens), more in-depth knowledge is needed before applying strategies to improve their performance. On the contrary, the chicken isolate B. lactis P32/1 showed similar behaviour to the references B. lactis strains; therefore, it could be considered as a potential probiotic candidate.
Collapse
Affiliation(s)
- M A Sarquis
- Facultad de Ingeniería Química, Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - L Siroli
- Facultad de Ingeniería Química, Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina.,Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), Campus Scienze degli Alimenti, Cesena, Italia
| | - M Modesto
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), Alma Mater Studiorum, Università di Bologna, Bologna, Italia
| | - F Patrignani
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), Campus Scienze degli Alimenti, Cesena, Italia
| | - R Lanciotti
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), Campus Scienze degli Alimenti, Cesena, Italia
| | - P Mattarelli
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), Alma Mater Studiorum, Università di Bologna, Bologna, Italia
| | - J Reinheimer
- Facultad de Ingeniería Química, Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - P Burns
- Facultad de Ingeniería Química, Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
12
|
Modesto M, Watanabe K, Arita M, Satti M, Oki K, Sciavilla P, Patavino C, Cammà C, Michelini S, Sgorbati B, Mattarelli P. Bifidobacterium jacchi sp. nov., isolated from the faeces of a baby common marmoset (Callithrix jacchus). Int J Syst Evol Microbiol 2019; 69:2477-2485. [PMID: 31180316 DOI: 10.1099/ijsem.0.003518] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A novel Bifidobacterium strain, MRM 9.3T, was isolated from a faecal sample of a baby common marmoset (Callithrixjacchus). Cells were Gram-stain-positive, non-motile, non-sporulating, non-haemolytic, facultatively anaerobic and fructose 6-phosphate phosphoketolase-positive. Phylogenetic analyses based on 16S rRNA genes as well as multilocus sequences (representing hsp60, rpoB, clpC, dnaJ and dnaG genes) and the core genomes revealed that strain MRM 9.3T exhibited phylogenetic relatedness to Bifidobacterium myosotis DSM 100196T. Comparative analysis of 16S rRNA gene sequences confirmed the phylogenetic results showing the highest gene sequence identity with strain B.ifidobacterium myosotis DSM 100196T (95.6 %). The average nucleotide identity, amino acid average identity and in silico DNA-DNA hybridization values between MRM 9.3T and DSM 100196T were 79.9, 72.1 and 28.5 %, respectively. Phenotypic and genotypic features clearly showed that the strain MRM 9.3T represents a novel species, for which the name Bifidobacterium jacchi sp. nov. is proposed. The type strain is MRM 9.3T (=DSM 103362T =JCM 31788T).
Collapse
Affiliation(s)
- Monica Modesto
- Department of Agricultural and Food Sciences, University of Bologna, Italy
| | - Koichi Watanabe
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC.,Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - Masanori Arita
- Department of Genetics, SOKENDAI University (National Institute of Genetics), Yata 1111, Mishima, Shizuoka 411-8540, Japan.,RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Maria Satti
- Department of Genetics, SOKENDAI University (National Institute of Genetics), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Kaihei Oki
- Yakult Honsha European Research Center for Microbiology ESV, Technologiepark 94, 9052 Zwijnaarde, Belgium
| | - Piero Sciavilla
- Department of Agricultural and Food Sciences, University of Bologna, Italy
| | - Claudio Patavino
- National Reference Center for Whole Genome Sequencing of microbial pathogens: database and bioinformatic analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100, Teramo, Italy
| | - Cesare Cammà
- National Reference Center for Whole Genome Sequencing of microbial pathogens: database and bioinformatic analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100, Teramo, Italy
| | - Samanta Michelini
- Department of Agricultural and Food Sciences, University of Bologna, Italy.,The Microsoft Research - University of Trento Centre for Computational and Systems Biology Piazza della Manifattura 1, 38068 Rovereto (TN), Italy
| | - Barbara Sgorbati
- Department of Agricultural and Food Sciences, University of Bologna, Italy.,School of Pharmacy, Biotechnology and Sport Science, 40100 Bologna, Italy
| | - Paola Mattarelli
- Department of Agricultural and Food Sciences, University of Bologna, Italy
| |
Collapse
|
13
|
Modesto M, Puglisi E, Bonetti A, Michelini S, Spiezio C, Sandri C, Sgorbati B, Morelli L, Mattarelli P. Bifidobacterium primatium sp. nov., Bifidobacterium scaligerum sp. nov., Bifidobacterium felsineum sp. nov. and Bifidobacterium simiarum sp. nov.: Four novel taxa isolated from the faeces of the cotton top tamarin (Saguinus oedipus) and the emperor tamarin (Saguinus imperator). Syst Appl Microbiol 2018; 41:593-603. [DOI: 10.1016/j.syapm.2018.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 01/14/2023]
|
14
|
Albert K, Rani A, Sela DA. The comparative genomics of Bifidobacterium callitrichos reflects dietary carbohydrate utilization within the common marmoset gut. Microb Genom 2018; 4. [PMID: 29906260 PMCID: PMC6096940 DOI: 10.1099/mgen.0.000183] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bifidobacterium is a diverse genus of anaerobic, saccharolytic bacteria that colonize many animals, notably humans and other mammals. The presence of these bacteria in the gastrointestinal tract represents a potential coevolution between the gut microbiome and its mammalian host mediated by diet. To study the relationship between bifidobacterial gut symbionts and host nutrition, we analyzed the genome of two bifidobacteria strains isolated from the feces of a common marmoset (Callithrix jacchus), a primate species studied for its ability to subsist on host-indigestible carbohydrates. Whole genome sequencing identified these isolates as unique strains of Bifidobacterium callitrichos. All three strains, including these isolates and the previously described type strain, contain genes that may enable utilization of marmoset dietary substrates. These include genes predicted to contribute to galactose, arabinose, and trehalose metabolic pathways. In addition, significant genomic differences between strains suggest that bifidobacteria possess distinct roles in carbohydrate metabolism within the same host. Thus, bifidobacteria utilize dietary components specific to their host, both humans and non-human primates alike. Comparative genomics suggests conservation of possible coevolutionary relationships within the primate clade.
Collapse
Affiliation(s)
- Korin Albert
- 1Department of Food Science, University of Massachusetts, Amherst, MA, USA.,2Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA, USA
| | - Asha Rani
- 1Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - David A Sela
- 1Department of Food Science, University of Massachusetts, Amherst, MA, USA.,2Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA, USA.,3Department of Microbiology, University of Massachusetts, Amherst, MA, USA.,4Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
15
|
Modesto M, Michelini S, Oki K, Biavati B, Watanabe K, Mattarelli P. Bifidobacterium catulorum sp. nov., a novel taxon from the faeces of the baby common marmoset (Callithrix jacchus). Int J Syst Evol Microbiol 2018; 68:575-581. [PMID: 29300153 DOI: 10.1099/ijsem.0.002545] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In our previous study based on hsp60 PCR-restriction fragment length polymorphism and 16S rRNA gene sequencing, we stated that the bifidobacterial strains isolated from the individual faecal samples of five baby common marmosets constituted different phylogenetically isolated groups of the genus Bifidobacterium. In that study, we also proposed that these isolated groups potentially represented novel species of the genus Bifidobacterium. Out of them, Bifidobacterium aesculapii, Bifidobacterium myosotis, Bifidobacterium tissieri and Bifidobacterium hapali, have been described recently. Another strain, designated MRM 8.19T, has been classified as member of the genus Bifidobacterium on the basis of positive results for fructose-6-phosphate phosphoketolase activity and analysis of partial 16S rRNA, hsp60, clpC, dnaJ, dnaG and rpoB gene sequences. Analysis of 16S rRNA and hsp60 gene sequences revealed that strain MRM 8.19T was related to B. tissieri DSM 100201T (95.8 %) and to Bifidobacterium bifidum ATCC 29521T (93.7 %), respectively. The DNA G+C composition was 63.7 mol% and the peptidoglycan structure was l-Orn(Lys)-l-Ser. Based on the phylogenetic, genotypic and phenotypic data reported, strain MRM 8.19T represents a novel taxon within the genus Bifidobacterium for which the name Bifidobacterium catulorum sp. nov. (type strain MRM 8.19T=DSM 103154T=JCM 31794T) is proposed.
Collapse
Affiliation(s)
- Monica Modesto
- Department of Agricultural Sciences, University of Bologna, Italy
| | - Samanta Michelini
- Department of Agricultural Sciences, University of Bologna, Italy.,The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Piazza della Manifattura 1, 38068 Rovereto, TN, Italy
| | - Kaihei Oki
- Yakult Honsha European Research Center for Microbiology ESV, Technologiepark 4, 9052 Zwijnaarde, Belgium
| | - Bruno Biavati
- Division of Rural Sciences and Food Systems, Institute of Earth Systems, University of Malta, Msida, Malta
| | - Koichi Watanabe
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC.,Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - Paola Mattarelli
- Department of Agricultural Sciences, University of Bologna, Italy
| |
Collapse
|
16
|
Cheng WH, Huang KY, Huang PJ, Lee CC, Yeh YM, Ku FM, Lin R, Cheng ML, Chiu CH, Tang P. γ-Carboxymuconolactone decarboxylase: a novel cell cycle-related basal body protein in the early branching eukaryote Trichomonas vaginalis. Parasit Vectors 2017; 10:443. [PMID: 28950916 PMCID: PMC5615479 DOI: 10.1186/s13071-017-2381-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND γ-Carboxymuconolactone decarboxylase (CMD) participates in the β-ketoadipate pathway, which catalyzes aromatic compounds to produce acetyl- or succinyl-CoA, in prokaryotes and yeast. Our previous study demonstrated that expression of a CMD homologue that contains two signatures (dualCMD) is negatively regulated by iron in Trichomonas vaginalis. However, we were not able to identify the components of the β-ketoadipate pathway in the parasite's genome. These observations prompted us to investigate the biological functions of this novel CMD homologue in T. vaginalis. METHODS The specific anti-TvCMD1 antibody was generated, and the expression of TvCMD1 in T. vaginalis cultured under iron-rich and iron-deficient were evaluated. Phylogenetic, metabolomic and substrate induction (protocatechuate and benzoate) analysis were conducted to clarify the function of dualCMD in trichomonad cells. Subcellular localization of TvCMD1 was observed by confocal microscopy. The cell cycle-related role of TvCMD1 was assessed by treating cells with G2/M inhibitor nocodazole. RESULTS We confirmed that T. vaginalis is not able to catabolize the aromatic compounds benzoate and protocatechuate, which are known substrates of the β-ketoadipate pathway. Using immunofluorescence microscopy, we found that TvCMD1 is spatially associated with the basal body, a part of the cytoskeletal organizing center in T. vaginalis. TvCMD1 accumulated upon treatment with the G2/M inhibitor nocodazole. Additionally, TvCMD1 was expressed and transported to/from the basal body during cytokinesis, suggesting that TvCMD1 plays a role in cell division. CONCLUSION We demonstrated that TvCMD1 is unlikely to participate in the β-ketoadipate pathway and demonstrated that it is a novel basal body-localizing (associated) protein. This model sheds light on the importance of genes that are acquired laterally in the coevolution of ancient protists, which surprisingly functions in cell cycle regulation of T. vaginalis.
Collapse
Affiliation(s)
- Wei-Hung Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan
| | - Po-Jung Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Bioinformatics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Chi-Ching Lee
- Department and Graduate Institute of Computer Science and Information Engineering, College of Engineering, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yuan-Ming Yeh
- Bioinformatics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Fu-Man Ku
- Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Rose Lin
- Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| | - Petrus Tang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Bioinformatics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
17
|
Yamazaki Y, Kawarai S, Morita H, Kikusui T, Iriki A. Faecal transplantation for the treatment of Clostridium difficile infection in a marmoset. BMC Vet Res 2017; 13:150. [PMID: 28569200 PMCID: PMC5452355 DOI: 10.1186/s12917-017-1070-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 05/23/2017] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The common marmoset has been used as an experimental animal for various purposes. Because its average weight ranges from 250 to 500 g, weight loss quickly becomes critical for sick animals. Therefore, effective and non-stressful treatment for chronic diseases, including diarrhoea, is essential. CASE PRESENTATION We report a case in which faecal microbiota transplantation (FMT) led to immediate recovery from chronic and recurrent diarrhoea caused by Clostridium difficile infection. A male common marmoset experienced chronic diarrhoea after antibiotic treatments. The animal experienced severe weight loss, and a faecal sample was confirmed to be C. difficile-positive but was negative for protozoa. Metronidazole was partially effective at the first administration but not after the recurrence of the clinical signs. Then, oral FMT was administered to the subject by feeding fresh faeces from healthy individuals mixed with the marmoset's usual food. We monitored the faeces by categorization into four groups: normal, loose, diarrhoea, and watery. After the first day of FMT treatment, the marmoset underwent a remarkable recovery from diarrhoea, and after the fourth day of treatment, a test for C. difficile was negative. The clinical signs did not recur. The marmoset recovered from sinusitis and bilateral dacryocystitis, which also did not recur, as a by-product of the improvement in its general health caused by the cessation of diarrhoea after the FMT. CONCLUSION This is the first reported case of successful treatment of a marmoset using oral FMT. As seen in human patients, FMT was effective for the treatment of recurrent C. difficile infection in a captive marmoset.
Collapse
Affiliation(s)
- Yumiko Yamazaki
- Advanced Research Centres, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan. .,Laboratory for Symbolic Cognitive Development, RIKEN BSI, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| | - Shinpei Kawarai
- Laboratory of Small Animal Clinics, Veterinary Teaching Hospital, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa, 252-5201, Japan
| | - Hidetoshi Morita
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama-shi, Okayama, 700-8530, Japan
| | - Takefumi Kikusui
- Companion Animal Research, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa, 252-5201, Japan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN BSI, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.,RIKEN-NTU Research Centre for Human Biology, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
18
|
Michelini S, Modesto M, Filippini G, Spiezio C, Sandri C, Biavati B, Pisi A, Mattarelli P. Bifidobacterium aerophilum sp. nov., Bifidobacterium avesanii sp. nov. and Bifidobacterium ramosum sp. nov.: Three novel taxa from the faeces of cotton-top tamarin (Saguinus oedipus L.). Syst Appl Microbiol 2016; 39:229-236. [PMID: 27236565 DOI: 10.1016/j.syapm.2016.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 01/08/2023]
Abstract
Forty-five microorganisms were isolated on bifidobacteria selective medium from one faecal sample of an adult subject of the cotton-top tamarin (Saguinus oedipus L.). All isolates were Gram-positive, catalase-negative, anaerobic, fructose-6-phosphate phosphoketolase positive, and asporogenous rod-shaped bacteria. In this study, only eight out of the forty-five strains were characterized more deeply, whereas the others are still currently under investigation. They were grouped by BOX-PCR into three clusters: Cluster I (TRE 17(T), TRE 7, TRE 26, TRE 32, TRE 33, TRE I), Cluster II (TRE C(T)), and Cluster III (TRE M(T)). Comparative analysis of 16S rRNA gene sequences confirmed the results from the cluster analysis and revealed relatively low level similarities to each other (mean value 95%) and to members of the genus Bifidobacterium. All eight isolates showed the highest level of 16S rRNA gene sequence similarities with Bifidobacterium scardovii DSM 13734(T) (mean value 96.6%). Multilocus sequence analysis (MLSA) of five housekeeping genes (hsp60, rpoB, clpC, dnaJ and dnaG) supported their independent phylogenetic position to each other and to related species of Bifidobacterium. The G+C contents were 63.2%, 65.9% and 63.0% for Cluster I, Cluster II and Cluster III, respectively. Peptidoglycan types were A3α l-Lys-l-Thr-l-Ala, A4β l-Orn (Lys)-d-Ser-d-Glu and A3β l-Orn-l-Ser-l-Ala in Clusters I, II and III, respectively. Based on the data provided, each cluster represented a novel taxon for which the names Bifidobacterium aerophilum sp. nov. (TRE 17(T)=DSM 100689=JCM 30941; TRE 26=DSM 100690=JCM 30942), Bifidobacterium avesanii sp. nov. (TRE C(T)=DSM 100685=JCM 30943) and Bifidobacterium ramosum sp. nov. (TRE M=DSM 100688=JCM 30944) are proposed.
Collapse
Affiliation(s)
| | - Monica Modesto
- Department of Agricultural Sciences, University of Bologna, Italy.
| | | | - Caterina Spiezio
- Natura Viva Garda Zoological Park S.r.l., Bussolengo, Verona, Italy.
| | - Camillo Sandri
- Natura Viva Garda Zoological Park S.r.l., Bussolengo, Verona, Italy.
| | - Bruno Biavati
- Institute of Earth Systems, Division of Rural Sciences & Food Systems, University of Malta, Msida, Malta.
| | - Annamaria Pisi
- Department of Agricultural Sciences, University of Bologna, Italy.
| | - Paola Mattarelli
- Department of Agricultural Sciences, University of Bologna, Italy.
| |
Collapse
|
19
|
Michelini S, Modesto M, Pisi AM, Filippini G, Sandri C, Spiezio C, Biavati B, Sgorbati B, Mattarelli P. Bifidobacterium eulemuris sp. nov., isolated from faeces of black lemurs ( Eulemur macaco). Int J Syst Evol Microbiol 2016; 66:1567-1576. [PMID: 26823373 DOI: 10.1099/ijsem.0.000924] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Forty-three strains of bifidobacteria were isolated from the faeces of two adult black lemurs, Eulemur macaco. Thirty-four were identified as Bifidobacterium lemurum, recently described in Lemur catta. The nine remaining isolates were Gram-positive-staining, non-spore-forming, fructose-6-phosphate phosphoketolase-positive, microaerophilic, irregular rod-shaped bacteria that often presented Y- or V-shaped cells. Typing techniques revealed that these isolates were nearly identical, and strain LMM_E3T was chosen as a representative and characterized further. Phylogenetic analysis based on 16S rRNA gene sequences clustered this isolate inside the genus Bifidobacterium and showed the highest levels of sequence similarity with B. lemurum DSM 28807T (99.3 %), with Bifidobacterium pullorum LMG 21816T and Bifidobacterium longum subsp. infantis ATCC 15697T (96.4 and 96.3 %, respectively) as the next most similar strains. The hsp60 gene sequence of strain LMM_E3T showed the highest similarity to that of Bifidobacterium stellenboschense DSM 23968T (93.3 %), and 91.0 % similarity to that of the type strain of B. lemurum. DNA-DNA reassociation with the closest neighbour B. lemurum DSM 28807T was found to be 65.4 %. The DNA G+C content was 62.3 mol%. Strain LMM_E3T showed a peptidoglycan structure that has not been detected in bifidobacteria so far: A3α l-Lys-l-Ser-l-Thr-l-Ala. Based on the phylogenetic, genotypic and phenotypic data, strain LMM_E3T represents a novel species within the genus Bifidobacterium, for which the name Bifidobacterium eulemuris sp. nov. is proposed; the type strain is LMM_E3T ( = DSM 100216T = JCM 30801T).
Collapse
Affiliation(s)
- Samanta Michelini
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Monica Modesto
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Anna Maria Pisi
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | | | - Camillo Sandri
- Natura Viva Garda Zoological Park S.r.l, Bussolengo, Verona, Italy
| | - Caterina Spiezio
- Natura Viva Garda Zoological Park S.r.l, Bussolengo, Verona, Italy
| | - Bruno Biavati
- Institute of Earth Systems, Division of Rural Sciences & Food Systems, University of Malta, Msida, Malta
| | - Barbara Sgorbati
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Paola Mattarelli
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
Draft Genome Sequence of Bifidobacterium aesculapii DSM 26737T, Isolated from Feces of Baby Common Marmoset. GENOME ANNOUNCEMENTS 2015; 3:3/6/e01463-15. [PMID: 26659692 PMCID: PMC4675957 DOI: 10.1128/genomea.01463-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bifidobacterium aesculapii DSM 26737(T) was isolated from feces of baby common marmoset. Here, we report the draft genome sequence of this organism. This paper is the first published report of the genomic sequence of B. aesculapii.
Collapse
|
21
|
Michelini S, Oki K, Yanokura E, Shimakawa Y, Modesto M, Mattarelli P, Biavati B, Watanabe K. Bifidobacterium myosotis sp. nov., Bifidobacterium tissieri sp. nov. and Bifidobacterium hapali sp. nov., isolated from faeces of baby common marmosets (Callithrix jacchus L.). Int J Syst Evol Microbiol 2015; 66:255-265. [PMID: 26515885 DOI: 10.1099/ijsem.0.000708] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a previous study on bifidobacterial distribution in New World monkeys, six strains belonging to the Bifidobacteriaceae were isolated from faecal samples of baby common marmosets (Callithrix jacchus L.). All the isolates were Gram-positive-staining, anaerobic, asporogenous and fructose-6-phosphate phosphoketolase-positive. Comparative analysis of 16S rRNA gene sequences revealed relatively low levels of similarity (maximum identity 96 %) to members of the genus Bifidobacterium, and placed the isolates in three independent clusters: strains of cluster I (MRM_5.9T and MRM_5.10) and cluster III (MRM_5.18T and MRM_9.02) respectively showed 96.4 and 96.7 % 16S rRNA gene sequence similarity to Bifidobacterium callitrichos DSM 23973T, while strains of cluster II (MRM_8.14T and MRM_9.14) showed 95.4 % similarity to Bifidobacterium stellenboschense DSM 23968T. Phylogenetic analysis of partial hsp60 and clpC gene sequences supported an independent phylogenetic position of each cluster from each other and from the related type strains B. callitrichos DSM 23973T and B. stellenboschense DSM 23968T. Clusters I, II and III respectively showed DNA G+C contents of 64.9-65.1, 56.4-56.7 and 63.1-63.7 mol%. The major cellular fatty acids of MRM_5.9T were C14 : 0, C16 : 0 and C18 : 1ω9c dimethylacetal, while C16 : 0 was prominent in strains MRM_5.18T and MRM_8.14T, followed by C18 : 1ω9c and C14 : 0. Biochemical profiles and growth parameters were recorded for all the isolates. Based on the data provided, the clusters represent three novel species, for which the names Bifidobacterium myosotis sp. nov. (type strain MRM_5.9T = DSM 100196T = JCM 30796T), Bifidobacterium hapali sp. nov. (type strain MRM_8.14T = DSM 100202T = JCM 30799T) and Bifidobacterium tissieri sp. nov. (type strain MRM_5.18T = DSM 100201T = JCM 30798T) are proposed.
Collapse
Affiliation(s)
- Samanta Michelini
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Kaihei Oki
- Yakult Honsha European Research Center for Microbiology ESV, Technologie Park 4, 9052 Zwijnaarde, Belgium
| | - Emiko Yanokura
- Yakult Central Institute, 5-11 Izumi, Kunitachi, Tokyo 186-8650, Japan
| | | | - Monica Modesto
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Paola Mattarelli
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Bruno Biavati
- Institute of Earth Systems, Division of Rural Sciences & Food Systems, University of Malta, Msida, Malta
| | - Koichi Watanabe
- Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Sec. 3, Keelung Rd, Taipei 10673, Taiwan ROC
| |
Collapse
|