1
|
Irina P, Alena V, Arsene MMJ, Milana D, Alla P, Lyudmila K, Boris E. Comparison of Vaginal microbiota in HPV-negative and HPV-positive pregnant women using a culture-based approach. Diagn Microbiol Infect Dis 2024; 110:116419. [PMID: 39116654 DOI: 10.1016/j.diagmicrobio.2024.116419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
The purpose of this study was to conduct a comparative analysis of the composition of the dominant groups of vaginal microorganisms in healthy pregnant women and pregnant women infected with HPV using a microbiological culture-based method. The MALDI TOF MS method and 16S rRNA gene fragment sequencing were used to identify microorganisms isolated from healthy pregnant women (n=32) and pregnant women infected with HPV (n=24). It was found that vaginal secretion samples from both groups contained bacteria of 4 phyla: Bacillota, Actinomycetota, Pseudomonadota, Bacteroidota, and Ascomycota fungi. The most common microbial community in healthy pregnant women being CST I (p=0.0007), and CST V in pregnant women infected with HPV (p=0.0001). At the genus level, a total of 25 taxa were found in all samples, with Lactobacillus being the dominant genus overall. Escherichia (p<0.0001) and Prevotella (p=0.0001) concentrations were higher in HPV infected patients. When calculating the Pearson correlation coefficient for the phyla, it was found that Bacillota correlated negatively with HPV genotypes 16 and 51 (p≤0.05), but positively with HPV genotype 59 (p≤0.05), just like Actinomycetota (p≤0.05). Bacteroidota correlated positively with HPV genotype 56 (0.001
Collapse
Affiliation(s)
- Podoprigora Irina
- Department of Microbiology named after V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia; Research Institute of Molecular and Cellular Medicine, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia.
| | - Vasina Alena
- Mytishchi Regional Clinical Hospital, Mytishchi, Russia
| | - Mbarga Manga Joseph Arsene
- Department of Microbiology named after V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia; Research Institute of Molecular and Cellular Medicine, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia.
| | - Das Milana
- Department of Microbiology named after V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia; Research Institute of Molecular and Cellular Medicine, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Pikina Alla
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Russia
| | - Kafarskaya Lyudmila
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Russia
| | - Efimov Boris
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Russia
| |
Collapse
|
2
|
Lanza M, Scuderi SA, Capra AP, Casili G, Filippone A, Campolo M, Cuzzocrea S, Esposito E, Paterniti I. Effect of a combination of pea protein, grape seed extract and lactic acid in an in vivo model of bacterial vaginosis. Sci Rep 2023; 13:2849. [PMID: 36807330 PMCID: PMC9938223 DOI: 10.1038/s41598-023-28957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 02/19/2023] Open
Abstract
Bacterial vaginosis (BV) is a common vaginal dysbiosis characterized by a malodorous discharge and irritation. The imbalance of the vaginal microbiota plays a key role in the development of BV. It has been demonstrated that Gardnerella vaginalis (GV), a facultative anaerobic bacillus, is involved in BV. Due to the rising number of antimicrobial-resistant species, recurrence of BV is becoming more frequent in women; thus, alternative treatments to antibiotics are needed. Natural substances have recently shown a great efficacy for the treatment of vaginal dysbiosis. Thus, this study aimed to investigate the beneficial effect of a product containing pea protein (PP), grape seed extract (GS) and lactic acid (LA) in an in vivo model of Gardnerella vaginalis-induced vaginosis by intravaginal administration of GV suspension (1 × 106 CFU/20 µL saline). Our results demonstrated that the product containing PP, GS and LA significantly reduced GV proliferation. More specifically, it significantly preserved tissue architecture and reduced neutrophil infiltration, inflammatory markers and sialidase activity when used both as a pre- or a post-treatment. Moreover, the product displayed strong bioadhesive properties. Therefore, our data suggested that the product containing PP, GS and LA could be used as alternative preventive or curative treatment for the management of BV.
Collapse
Affiliation(s)
- Marika Lanza
- grid.10438.3e0000 0001 2178 8421Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ’Alcontres, 31, 98166 Messina, Italy
| | - Sarah Adriana Scuderi
- grid.10438.3e0000 0001 2178 8421Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ’Alcontres, 31, 98166 Messina, Italy
| | - Anna Paola Capra
- grid.10438.3e0000 0001 2178 8421Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ’Alcontres, 31, 98166 Messina, Italy
| | - Giovanna Casili
- grid.10438.3e0000 0001 2178 8421Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ’Alcontres, 31, 98166 Messina, Italy
| | - Alessia Filippone
- grid.10438.3e0000 0001 2178 8421Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ’Alcontres, 31, 98166 Messina, Italy
| | - Michela Campolo
- grid.10438.3e0000 0001 2178 8421Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ’Alcontres, 31, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- grid.10438.3e0000 0001 2178 8421Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ’Alcontres, 31, 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D 'Alcontres, 31, 98166, Messina, Italy.
| | - Irene Paterniti
- grid.10438.3e0000 0001 2178 8421Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ’Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
3
|
Aranha C, Goriwale M, Begum S, Gawade S, Bhor V, Patil AD, Munne K, Bansal V, Tandon D. Evaluation of cytokine profile in cervicovaginal lavage specimens of women having asymptomatic reproductive tract infections. J OBSTET GYNAECOL 2022; 42:3106-3111. [PMID: 35920391 DOI: 10.1080/01443615.2022.2106555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Reproductive tract infections (RTIs) such as vaginal candidiasis and bacterial vaginosis (BV) are common among sexually active women and can be both symptomatic or asymptomatic. The microbiota of the reproductive tract triggers immune response at the cervicovaginal interface resulting in secretion of cytokines during the course of these RTIs. The objective of this study was to evaluate the cytokine profile in cervicovaginal lavage of women having asymptomatic vaginal infections. Measurement of vaginal cytokines was done for various interleukins including IL-1β, IL-6, IL-8, IL-10, IL-12/IL23p40, IL-17A, tumour necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) by ProcartaPlex™ Multiplex Immunoassay. Women having vaginal Candida infection had increased concentration of IL-1β (p=.01), IL-6 (p=.007), IL-8 (p=.327), IL-12/IL23p40 (p=.049) and IFN-γ (p=.125). The results of our study suggest that evaluation of these cytokines could be explored as an additional measure to determine host inflammatory response in women having asymptomatic vaginal candidiasis.Impact StatementWhat is already known on this subject? Studies assessing the vaginal cytokine profile to assess the vaginal milieu in various cohorts such as post-menopausal women, pregnant women, women with history of preterm birth, CIN and scheduled IVF cycle are being undertaken. Variable cytokine response has been reported in literature in women with symptomatic bacterial vaginosis and Candida infection. However, much less is known about vaginal cytokine profile in asymptomatic infection.What do the results of this study add? The results of the study show increased concentration of the pro-inflammatory cytokines IL-1β, IL-6 IL-8, IL-12/IL23p40 and interferon gamma (IFN-γ) in women having asymptomatic Candida, vaginal leucocytosis and raised vaginal pH.What are the implications of these findings for clinical practice and/or further research? Evaluation of vaginal cytokine profile (IL-1β, IL-6 IL-8, IL-1β, IL-12/IL23p40 and IFN-γ) could be explored as an additional measure to determine inflammation in asymptomatic women. Vaginal cytokines (IL-1β, IL-6 IL-8, IL-1β, IL-12/IL23p40 and IFN-γ) could be used further for development of a point of care test.
Collapse
Affiliation(s)
- Clara Aranha
- Molecular Immunology and Microbiology, ICMR-National Institute for Research in Reproductive Health (NIRRH), Mumbai, India
| | - Mayuri Goriwale
- Department of Clinical Research, ICMR-National Institute for Research in Reproductive Health (NIRRH), Mumbai, India
| | - Shahina Begum
- Department of Biostatistics, ICMR-National Institute for Research in Reproductive Health (NIRRH), Mumbai, India
| | - Sheetal Gawade
- Department of Clinical Research, ICMR-National Institute for Research in Reproductive Health (NIRRH), Mumbai, India
| | - Vikrant Bhor
- Molecular Immunology and Microbiology, ICMR-National Institute for Research in Reproductive Health (NIRRH), Mumbai, India
| | - Anushree D Patil
- Department of Clinical Research, ICMR-National Institute for Research in Reproductive Health (NIRRH), Mumbai, India
| | - Kiran Munne
- Department of Clinical Research, ICMR-National Institute for Research in Reproductive Health (NIRRH), Mumbai, India
| | - Vandana Bansal
- Department of Gynecology, Nowrosjee Wadia Maternity Hospital, Mumbai, India
| | - Deepti Tandon
- Department of Clinical Research, ICMR-National Institute for Research in Reproductive Health (NIRRH), Mumbai, India
| |
Collapse
|
4
|
Edwards VL, McComb E, Gleghorn JP, Forney L, Bavoil PM, Ravel J. Three-dimensional models of the cervicovaginal epithelia to study host-microbiome interactions and sexually transmitted infections. Pathog Dis 2022; 80:6655985. [PMID: 35927516 PMCID: PMC9419571 DOI: 10.1093/femspd/ftac026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/14/2022] [Accepted: 08/02/2022] [Indexed: 02/03/2023] Open
Abstract
2D cell culture systems have historically provided controlled, reproducible means to analyze host-pathogen interactions observed in the human reproductive tract. Although inexpensive, straightforward, and requiring a very short time commitment, these models recapitulate neither the functionality of multilayered cell types nor the associated microbiome that occurs in a human. Animal models have commonly been used to recreate the complexity of human infections. However, extensive modifications of animal models are required to recreate interactions that resemble those in the human reproductive tract. 3D cell culture models have emerged as alternative means of reproducing vital elements of human infections at a fraction of the cost of animal models and on a scale that allows for replicative experiments. Here, we describe a new 3D model that utilizes transwells with epithelial cells seeded apically and a basolateral extracellular matrix (ECM)-like layer. The model produced tissues with morphologic and physiological resemblance to human cervical and vaginal epithelia, including mucus levels produced by cervical cells. Infection by Chlamydia trachomatis and Neisseria gonorrhoeae was demonstrated, as well as the growth of bacterial species observed in the human vaginal microbiota. This enabled controlled mechanistic analyses of the interactions between host cells, the vaginal microbiota, and STI pathogens. Affordable and semi high-throughput 3D models of the cervicovaginal epithelia that are physiologically relevant by sustaining vaginal bacterial colonization, and facilitate studies of chlamydial and gonococcal infections.
Collapse
Affiliation(s)
- Vonetta L Edwards
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Larry Forney
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Patrik M Bavoil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | - Jacques Ravel
- Corresponding author: Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Health Science Research Facility (HSRDF), 670 W. Baltimore Street, Baltimore, MD 21201, United States. Tel: +1 410-706-5674; E-mail:
| |
Collapse
|
5
|
Kudela E, Liskova A, Samec M, Koklesova L, Holubekova V, Rokos T, Kozubik E, Pribulova T, Zhai K, Busselberg D, Kubatka P, Biringer K. The interplay between the vaginal microbiome and innate immunity in the focus of predictive, preventive, and personalized medical approach to combat HPV-induced cervical cancer. EPMA J 2021; 12:199-220. [PMID: 34194585 PMCID: PMC8192654 DOI: 10.1007/s13167-021-00244-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/04/2021] [Indexed: 12/20/2022]
Abstract
HPVs representing the most common sexually transmitted disease are a group of carcinogenic viruses with different oncogenic potential. The immune system and the vaginal microbiome represent the modifiable and important risk factors in HPV-induced carcinogenesis. HPV infection significantly increases vaginal microbiome diversity, leading to gradual increases in the abundance of anaerobic bacteria and consequently the severity of cervical dysplasia. Delineation of the exact composition of the vaginal microbiome and immune environment before HPV acquisition, during persistent/progressive infections and after clearance, provides insights into the complex mechanisms of cervical carcinogenesis. It gives hints regarding the prediction of malignant potential. Relative high HPV prevalence in the general population is a challenge for modern and personalized diagnostics and therapeutic guidelines. Identifying the dominant microbial biomarkers of high-grade and low-grade dysplasia could help us to triage the patients with marked chances of lesion regression or progression. Any unnecessary surgical treatment of cervical dysplasia could negatively affect obstetrical outcomes and sexual life. Therefore, understanding the effect and role of microbiome-based therapies is a breaking point in the conservative management of HPV-associated precanceroses. The detailed evaluation of HPV capabilities to evade immune mechanisms from various biofluids (vaginal swabs, cervicovaginal lavage/secretions, or blood) could promote the identification of new immunological targets for novel individualized diagnostics and therapy. Qualitative and quantitative assessment of local immune and microbial environment and associated risk factors constitutes the critical background for preventive, predictive, and personalized medicine that is essential for improving state-of-the-art medical care in patients with cervical precanceroses and cervical cancer. The review article focuses on the influence and potential diagnostic and therapeutic applications of the local innate immune system and the microbial markers in HPV-related cancers in the context of 3P medicine.
Collapse
Affiliation(s)
- Erik Kudela
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Veronika Holubekova
- Jessenius Faculty of Medicine, Biomedical Centre Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Tomas Rokos
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Erik Kozubik
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Terezia Pribulova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Dietrich Busselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1160 Brussels, Belgium
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| |
Collapse
|
6
|
Xie Y, Feng Y, Li W, Zhan F, Huang G, Hu H, Xiong Y, Tan B, Chen T. Revealing the Disturbed Vaginal Micobiota Caused by Cervical Cancer Using High-Throughput Sequencing Technology. Front Cell Infect Microbiol 2020; 10:538336. [PMID: 33365275 PMCID: PMC7750457 DOI: 10.3389/fcimb.2020.538336] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 11/05/2020] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is the fourth most prevalent cancer type among all malignancies, so it is of great significance to find its actual pathogenesis mechanisms. In the present study, 90 women were enrolled, and high-throughput sequencing technology was firstly used to analyze the vaginal microbiota of healthy women (C group), cervical intraepithelial neoplasia patients (CIN group) and cervical cancer patients (CER group). Our results indicates that compared with C group, a higher HPV infection rate as well as increased Neutrophil ratio and tumor marker squamous cell carcinoma antigen (SCCA) were obtained, and a decrease in Lymphocyte ratio and Hemoglobin were also present. In addition, the cervical cancer showed a strong association with reduced probiotics Lactobacillus, increased pathogens Prevotella spp., Sneathia spp. and Pseudomonas spp. These results prove that the immunological changes generated by the cervical cancer and the vaginal microbiota can interact with each other. However, further study investigating the key bacteria for cervical cancer is still needed, which can be a clue for the diagnosis or treatment of cervical cancer.
Collapse
Affiliation(s)
- Yupei Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying Feng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenyu Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Fuliang Zhan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Genhua Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yifei Xiong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Buzhen Tan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Amerson-Brown MH, Miller AL, Maxwell CA, White MM, Vincent KL, Bourne N, Pyles RB. Cultivated Human Vaginal Microbiome Communities Impact Zika and Herpes Simplex Virus Replication in ex vivo Vaginal Mucosal Cultures. Front Microbiol 2019; 9:3340. [PMID: 30692980 PMCID: PMC6340164 DOI: 10.3389/fmicb.2018.03340] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/24/2018] [Indexed: 01/07/2023] Open
Abstract
The human vaginal microbiome (VMB) is a complex bacterial community that interacts closely with vaginal epithelial cells (VECs) impacting the mucosal phenotype and its responses to pathogenic insults. The VMB and VEC relationship includes nutrient exchange and regulation of signaling molecules that controls numerous host functions and defends against invading pathogens. To better understand infection and replication of sexually transmitted viral pathogens in the human vaginal mucosa we used our ex vivo VEC multilayer culture system. We tested the hypothesis that selected VMB communities could be identified that alter the replication of sexually transmitted viruses consistent with reported clinical associations. Sterile VEC multilayer cultures or those colonized with VMB dominated by specific Lactobacillus spp., or VMB lacking lactobacilli, were infected with Zika virus, (ZIKV) a single stranded RNA virus, or Herpes Simplex Virus type 2 (HSV-2), a double stranded DNA virus. The virus was added to the apical surface of the cultured VEC multilayer to model transmission during vaginal intercourse. Viral replication was measured 48 h later by qPCR. The results indicated that VEC cultures colonized by VMB containing Staphylococcus spp., previously reported as inflammatory, significantly reduced the quantity of viral genomes produced by ZIKV. HSV-2 titers were decreased by nearly every VMB tested relative to the sterile control, although Lactobacillus spp.-dominated VMBs caused the greatest reduction in HSV-2 titer consistent with clinical observations. To explore the mechanism for reduced ZIKV titers, we investigated inflammation created by ZIKV infection, VMB colonization or pre-exposure to selected TLR agonists. Finally, expression levels of human beta defensins 1–3 were quantified in cultures infected by ZIKV and those colonized by VMBs that impacted ZIKV titers. Human beta defensins 1–3 produced by the VEC showed no association with ZIKV titers. The data presented expands the utility of this ex vivo model system providing controlled and reproducible methods to study the VMB impact on STIs and indicated an association between viral replication and specific bacterial species within the VMB.
Collapse
Affiliation(s)
- Megan H Amerson-Brown
- Graduate School of Biomedical Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Aaron L Miller
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Carrie A Maxwell
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mellodee M White
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Kathleen L Vincent
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Nigel Bourne
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Richard B Pyles
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
8
|
Abstract
Cervical cancer is a common malignant cancer among women worldwide. Changes in the vaginal microecological environment lead to multiple gynecological diseases, including cervical cancer. Recent research has shown that Lactobacillus may play an important role in the occurrence and development of cervical cancer. This review explores the role of Lactobacillus in cervical cancer. A total of 29 articles were included after identification and screening. The pertinent literature on Lactobacillus in cervical cancer from two perspectives, including clinical studies and experimental studies, was analyzed. An association network for the mechanism by which Lactobacillus induces cervical cancer was constructed. In addition, we provide direction and insight for further research on the role of Lactobacillus in cervical cancer.
Collapse
Affiliation(s)
- Xi Yang
- Department of Intervention and Radiotherapy, Huzhou Central Hospital
| | - Miao Da
- Medical College of Nursing, Huzhou University
| | | | - Quan Qi
- Department of Medical Oncology
| | - Chun Zhang
- Department of Infectious Diseases, Huzhou Central Hospital, Huzhou, Zhejiang Province, People's Republic of China
| | | |
Collapse
|