1
|
Andino-Molina M, Dost I, Abdel-Glil M, Pletz MW, Neubauer H, Seyboldt C. Antimicrobial resistance of Clostridioides difficile in veterinary medicine around the world: A scoping review of minimum inhibitory concentrations. One Health 2024; 19:100860. [PMID: 39157654 PMCID: PMC11327573 DOI: 10.1016/j.onehlt.2024.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Objective To provide a comprehensive characterization of Clostridioides difficile antimicrobial resistance (AMR) data in veterinary medicine based on the minimum inhibitory concentrations (MICs) of all antimicrobial agents tested in relation to the techniques used. Methods A systematic scoping review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension for scoping reviews (PRISMA-ScR) and its associated checklist. The objective was to provide a synthesis of the evidence in a summarized and analyzed format.To this end, three scientific databases were consulted: Scopus, PubMed, and Web of Science, up until December 2021. Subsequently, all identified literature was subjected to screening and classification in accordance with the established study criteria, with the objective of subsequent evaluation. Study selection and data extraction A comprehensive analysis was conducted on studies regarding Clostridioides difficile antimicrobial resistance (AMR) in veterinary medicine across various animal species and related sources. The analysis included studies that presented data on antimicrobial susceptibility testing using the E-test, agar dilution, or broth microdilution techniques. The extracted data included minimum inhibitory concentration (MIC) values and a comprehensive characterization analysis. Results A total of 1582 studies were identified in scientific databases, of which only 80 were subjected to analysis. The research on Clostridioides difficile antimicrobial resistance (AMR) in veterinary medicine is most prolific in Europe and North America. The majority of isolates originate from production animals (55%) and pets (15%), with pigs, horses, and cattle being the most commonly studied species. The tested agents' minimum inhibitory concentrations (MICs) and resulting putative antimicrobial resistance profiles exhibited considerable diversity across animal species and sources of isolation. Additionally, AMR characterization has been conducted at the gene and genomic level in animal strains. The E-test was the most frequently utilized method for antimicrobial susceptibility testing (AST). Furthermore, the breakpoints for interpreting the MICs were found to be highly heterogeneous and frequently observed regardless of the geographical origin of the publication. Conclusions Antimicrobial susceptibility testing techniques and results were found to be diverse and heterogeneous. There is no evidence of an exclusive antimicrobial resistance pattern in any animal species. Despite the phenotypic and genomic data collected over the years, further interdisciplinary studies are necessary. Our findings underscore the necessity for international collaboration to establish uniform standards for C. difficile antimicrobial susceptibility testing (AST) methods and reporting. Such collaboration would facilitate a "One Health" approach to surveillance and control, which is of paramount importance.
Collapse
Affiliation(s)
- Mauricio Andino-Molina
- Grupo de Investigación en Enfermedades de Etiología Microbiana (GIEEM) & Observatorio Universitario de Genómica y Resistencia Antimicrobiana (OUGRAM), Instituto de Investigaciones en Microbiología (IIM), Escuela de Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Honduras
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Ines Dost
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
- Landesuntersuchungsamt Rheinland-Pfalz, Koblenz, Germany
| | - Mostafa Abdel-Glil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Mathias W. Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
2
|
Werner M, Ishii PE, Pilla R, Lidbury JA, Steiner JM, Busch-Hahn K, Unterer S, Suchodolski JS. Prevalence of Clostridioides difficile in Canine Feces and Its Association with Intestinal Dysbiosis. Animals (Basel) 2023; 13:2441. [PMID: 37570250 PMCID: PMC10417777 DOI: 10.3390/ani13152441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
The role of Clostridioides (C.) difficile as an enteropathogen in dogs is controversial. In humans, intestinal bile acid-dysmetabolism is associated with C. difficile prevalence. The relationship between fecal qPCR-based dysbiosis index (DI) and especially the abundance of bile acid-converting Clostridium hiranonis with the presence of C. difficile in dogs was explored across the following 4 cohorts: 358 fecal samples submitted for routine diagnostic work-up, 33 dogs with chronic enteropathy, 14 dogs with acute diarrhea, and 116 healthy dogs. Dogs that tested positive for C. difficile had significantly higher DI (median, 4.4 (range from 0.4 to 8.6)) and lower C. hiranonis (median, 0.1 (range from 0.0 to 7.5) logDNA/g) than dogs that tested negative for C. difficile (median DI, -1 (range from -7.2 to 8.9); median C. hiranonis abundance, 6.2 (range from 0.1 to 7.5) logDNA/g; p < 0.0001, respectively). In 33 dogs with CE and 14 dogs with acute diarrhea, the treatment response did not differ between C. difficile-positive and -negative dogs. In the group of clinically healthy dogs, 9/116 tested positive for C. difficile, and 6/9 of these had also an abnormal DI. In conclusion, C. difficile is strongly linked to intestinal dysbiosis and lower C. hiranonis levels in dogs, but its presence does not necessitate targeted treatment.
Collapse
Affiliation(s)
- Melanie Werner
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, 8057 Zurich, Switzerland
| | - Patricia Eri Ishii
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 4474, USA
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 4474, USA
| | - Jonathan A. Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 4474, USA
| | - Joerg M. Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 4474, USA
| | - Kathrin Busch-Hahn
- Clinic of Small Animal Internal Medicine, Centre for Clinical Veterinary Medicine, Ludwig Maximilians University, 80539 Munich, Germany
| | - Stefan Unterer
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, 8057 Zurich, Switzerland
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 4474, USA
| |
Collapse
|
3
|
Mitchell M, Nguyen SV, Macori G, Bolton D, McMullan G, Drudy D, Fanning S. Clostridioides difficile as a Potential Pathogen of Importance to One Health: A Review. Foodborne Pathog Dis 2022; 19:806-816. [PMID: 36516404 DOI: 10.1089/fpd.2022.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clostridioides difficile (basonym Clostridium) is a bacterial enteropathogen associated with cases of C. difficile infection that can result in pseudomembranous colitis, rapid fluid loss, and death. For decades following its isolation, C. difficile was thought to be a solely nosocomial pathogen, being isolated from individuals undergoing antimicrobial therapy and largely affecting elderly populations. More recently, C. difficile spores have been identified in the broader environment, including in food-producing animals, soil, and food matrices, in both ready-to-eat foods and meat products. Furthermore, evidence has emerged of hypervirulent ribotypes (RTs), such as RT078, similar to those cultured in asymptomatic carriers, also being identified in these environments. This finding may reflect on adaptations arising in these bacteria following selection pressures encountered in these niches, and which occurs due to an increase in antimicrobial usage in both clinical and veterinary settings. As C. difficile continues to adapt to new ecological niches, the taxonomy of this genus has also been evolving. To help understand the transmission and virulence potential of these bacteria of importance to veterinary public health, strategies applying multi-omics-based technologies may prove useful. These approaches may extend our current understanding of this recognized nosocomial pathogen, perhaps redefining it as a zoonotic bacterium. In this review, a brief background on the epidemiological presentation of C. difficile will be highlighted, followed by a review of C. difficile in food-producing animals and food products. The current state of C. difficile taxonomy will provide evidence of Clade 5 (ST11/RT078) delineation, as well as background on the genomic elements linked to C. difficile virulence and ongoing speciation. Recent studies applying second- and third-generation sequencing technologies will be highlighted, and which will further strengthen the argument made by many throughout the world regarding this pathogen and its consideration within a One Health dimension.
Collapse
Affiliation(s)
- Molly Mitchell
- UCD-Centre for Food Safety, University College Dublin, Dublin, Ireland
| | - Scott V Nguyen
- UCD-Centre for Food Safety, University College Dublin, Dublin, Ireland.,District of Columbia Department of Forensic Sciences, Public Health Laboratory, Washington, District of Columbia, USA
| | - Guerrino Macori
- UCD-Centre for Food Safety, University College Dublin, Dublin, Ireland
| | | | - Geoff McMullan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | | | - Séamus Fanning
- UCD-Centre for Food Safety, University College Dublin, Dublin, Ireland.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
4
|
Canine Fecal Microbiota Transplantation: Current Application and Possible Mechanisms. Vet Sci 2022; 9:vetsci9080396. [PMID: 36006314 PMCID: PMC9413255 DOI: 10.3390/vetsci9080396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is an emerging therapeutic option for a variety of diseases, and is characterized as the transfer of fecal microorganisms from a healthy donor into the intestinal tract of a diseased recipient. In human clinics, FMT has been used for treating diseases for decades, with promising results. In recent years, veterinary specialists adapted FMT in canine patients; however, compared to humans, canine FMT is more inclined towards research purposes than practical applications in most cases, due to safety concerns. Therefore, in order to facilitate the application of fecal transplant therapy in dogs, in this paper, we review recent applications of FMT in canine clinical treatments, as well as possible mechanisms that are involved in the process of the therapeutic effect of FMT. More research is needed to explore more effective and safer approaches for conducting FMT in dogs.
Collapse
|
5
|
Domestic Environment and Gut Microbiota: Lessons from Pet Dogs. Microorganisms 2022; 10:microorganisms10050949. [PMID: 35630391 PMCID: PMC9143008 DOI: 10.3390/microorganisms10050949] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Accumulating data show the involvement of intestinal microbiota in the development and maintenance of numerous diseases. Many environmental factors influence the composition and function of the gut microbiota. An animal model subjected to the same environmental constraints that will allow better characterization of the microbiota–host dialogue is awaited. The domestic dog has physiological, dietary and pathological characteristics similar to those of humans and shares the domestic environment and lifestyle of its owner. This review exposes how the domestication of dogs has brought them closer to humans based on their intrinsic and extrinsic similarities which were discerned through examining and comparing the current knowledge and data on the intestinal microbiota of humans and canines in the context of several spontaneous pathologies, including inflammatory bowel disease, obesity and diabetes mellitus.
Collapse
|
6
|
Suchodolski JS. Analysis of the gut microbiome in dogs and cats. Vet Clin Pathol 2021; 50 Suppl 1:6-17. [PMID: 34514619 PMCID: PMC9292158 DOI: 10.1111/vcp.13031] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022]
Abstract
The gut microbiome is an important immune and metabolic organ. Intestinal bacteria produce various metabolites that influence the health of the intestine and other organ systems, including kidney, brain, and heart. Changes in the microbiome in diseased states are termed dysbiosis. The concept of dysbiosis is constantly evolving and includes changes in microbiome diversity and/or structure and functional changes (eg, altered production of bacterial metabolites). Molecular tools are now the standard for microbiome analysis. Sequencing of microbial genes provides information about the bacteria present and their functional potential but lacks standardization and analytical validation of methods and consistency in the reporting of results. This makes it difficult to compare results across studies or for individual clinical patients. The Dysbiosis Index (DI) is a validated quantitative PCR assay for canine fecal samples that measures the abundance of seven important bacterial taxa and summarizes the results as one single number. Reference intervals are established for dogs, and the DI can be used to assess the microbiome in clinical patients over time and in response to therapy (eg, fecal microbiota transplantation). In situ hybridization or immunohistochemistry allows the identification of mucosa‐adherent and intracellular bacteria in animals with intestinal disease, especially granulomatous colitis. Future directions include the measurement of bacterial metabolites in feces or serum as markers for the appropriate function of the microbiome. This article summarizes different approaches to the analysis of gut microbiota and how they might be applicable to research studies and clinical practice in dogs and cats.
Collapse
Affiliation(s)
- Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
7
|
Albuquerque C, Pagnossin D, Landsgaard K, Simpson J, Brown D, Irvine J, Candlish D, Ridyard AE, Douce G, Millins C. The duration of antibiotic treatment is associated with carriage of toxigenic and non-toxigenic strains of Clostridioides difficile in dogs. PLoS One 2021; 16:e0245949. [PMID: 33979349 PMCID: PMC8115768 DOI: 10.1371/journal.pone.0245949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/29/2021] [Indexed: 02/04/2023] Open
Abstract
Clostridioides difficile is a leading cause of human antibiotic-associated diarrhoeal disease globally. Zoonotic reservoirs of infection are increasingly suspected to play a role in the emergence of this disease in the community and dogs are considered as one potential source. Here we use a canine case-control study at a referral veterinary hospital in Scotland to assess: i) the risk factors associated with carriage of C. difficile by dogs, ii) whether carriage of C. difficile is associated with clinical disease in dogs and iii) the similarity of strains isolated from dogs with local human clinical surveillance. The overall prevalence of C. difficile carriage in dogs was 18.7% (95% CI 14.8–23.2%, n = 61/327) of which 34% (n = 21/61) were toxigenic strains. We found risk factors related to prior antibiotic treatment were significantly associated with C. difficile carriage by dogs. However, the presence of toxigenic strains of C. difficile in a canine faecal sample was not associated with diarrhoeal disease in dogs. Active toxin was infrequently detected in canine faecal samples carrying toxigenic strains (2/11 samples). Both dogs in which active toxin was detected had no clinical evidence of gastrointestinal disease. Among the ten toxigenic ribotypes of C. difficile detected in dogs in this study, six of these (012, 014, 020, 026, 078, 106) were ribotypes commonly associated with human clinical disease in Scotland, while nontoxigenic isolates largely belonged to 010 and 039 ribotypes. Whilst C. difficile does not appear commonly associated with diarrhoeal disease in dogs, antibiotic treatment increases carriage of this bacteria including toxigenic strains commonly found in human clinical disease.
Collapse
Affiliation(s)
- Carolina Albuquerque
- Small Animal Hospital, School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Davide Pagnossin
- Veterinary Pathology, Public Health and Disease Investigation, School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kirsten Landsgaard
- Veterinary Pathology, Public Health and Disease Investigation, School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Jessica Simpson
- Institute of Infection, Immunity and Inflammation, Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Derek Brown
- Scottish Microbiology Reference Laboratories, Glasgow, United Kingdom
| | - June Irvine
- Institute of Infection, Immunity and Inflammation, Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Denise Candlish
- Institute of Infection, Immunity and Inflammation, Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alison E. Ridyard
- Small Animal Hospital, School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Gillian Douce
- Institute of Infection, Immunity and Inflammation, Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (CM); (GD)
| | - Caroline Millins
- Veterinary Pathology, Public Health and Disease Investigation, School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (CM); (GD)
| |
Collapse
|