1
|
Ohno Y, Ozawa Y, Nagata H, Bando S, Cong S, Takahashi T, Oshima Y, Hamabuchi N, Matsuyama T, Ueda T, Yoshikawa T, Takenaka D, Toyama H. Area-Detector Computed Tomography for Pulmonary Functional Imaging. Diagnostics (Basel) 2023; 13:2518. [PMID: 37568881 PMCID: PMC10416899 DOI: 10.3390/diagnostics13152518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
An area-detector CT (ADCT) has a 320-detector row and can obtain isotropic volume data without helical scanning within an area of nearly 160 mm. The actual-perfusion CT data within this area can, thus, be obtained by means of continuous dynamic scanning for the qualitative or quantitative evaluation of regional perfusion within nodules, lymph nodes, or tumors. Moreover, this system can obtain CT data with not only helical but also step-and-shoot or wide-volume scanning for body CT imaging. ADCT also has the potential to use dual-energy CT and subtraction CT to enable contrast-enhanced visualization by means of not only iodine but also xenon or krypton for functional evaluations. Therefore, systems using ADCT may be able to function as a pulmonary functional imaging tool. This review is intended to help the reader understand, with study results published during the last a few decades, the basic or clinical evidence about (1) newly applied reconstruction methods for radiation dose reduction for functional ADCT, (2) morphology-based pulmonary functional imaging, (3) pulmonary perfusion evaluation, (4) ventilation assessment, and (5) biomechanical evaluation.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan;
| | - Yoshiyuki Ozawa
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan;
| | - Shuji Bando
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Shang Cong
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Tomoki Takahashi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Yuka Oshima
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Nayu Hamabuchi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Takahiro Matsuyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Takeshi Yoshikawa
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi 673-0021, Hyogo, Japan
| | - Daisuke Takenaka
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi 673-0021, Hyogo, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| |
Collapse
|
2
|
Pompe E, Kwee AK, Tejwani V, Siddharthan T, Mohamed Hoesein FA. Imaging-derived biomarkers in Asthma: Current status and future perspectives. Respir Med 2023; 208:107130. [PMID: 36702169 DOI: 10.1016/j.rmed.2023.107130] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
Asthma is a common disorder affecting around 315 million individuals worldwide. The heterogeneity of asthma is becoming increasingly important in the era of personalized treatment and response assessment. Several radiological imaging modalities are available in asthma including chest x-ray, computed tomography (CT) and magnetic resonance imaging (MRI) scanning. In addition to qualitative imaging, quantitative imaging could play an important role in asthma imaging to identify phenotypes with distinct disease course and response to therapy, including biologics. MRI in asthma is mainly performed in research settings given cost, technical challenges, and there is a need for standardization. Imaging analysis applications of artificial intelligence (AI) to subclassify asthma using image analysis have demonstrated initial feasibility, though additional work is necessary to inform the role of AI in clinical practice.
Collapse
Affiliation(s)
- Esther Pompe
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Anastasia Kal Kwee
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands.
| | | | - Trishul Siddharthan
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami (TS), USA.
| | | |
Collapse
|
3
|
Hwang HJ, Lee SM, Seo JB, Lee JS, Kim N, Lee SW, Oh YM. Visual and Quantitative Assessments of Regional Xenon-Ventilation Using Dual-Energy CT in Asthma-Chronic Obstructive Pulmonary Disease Overlap Syndrome: A Comparison with Chronic Obstructive Pulmonary Disease. Korean J Radiol 2020; 21:1104-1113. [PMID: 32691546 PMCID: PMC7371623 DOI: 10.3348/kjr.2019.0936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/11/2020] [Accepted: 03/22/2020] [Indexed: 01/08/2023] Open
Abstract
Objective To assess the regional ventilation in patients with asthma-chronic obstructive pulmonary disease (COPD) overlap syndrome (ACOS) using xenon-ventilation dual-energy CT (DECT), and to compare it to that in patients with COPD. Materials and Methods Twenty-one patients with ACOS and 46 patients with COPD underwent xenon-ventilation DECT. The ventilation abnormalities were visually determined to be 1) peripheral wedge/diffuse defect, 2) diffuse heterogeneous defect, 3) lobar/segmental/subsegmental defect, and 4) no defect on xenon-ventilation maps. Emphysema index (EI), airway wall thickness (Pi10), and mean ventilation values in the whole lung, peripheral lung, and central lung areas were quantified and compared between the two groups using the Student's t test. Results Most patients with ACOS showed the peripheral wedge/diffuse defect (n = 14, 66.7%), whereas patients with COPD commonly showed the diffuse heterogeneous defect and lobar/segmental/subsegmental defect (n = 21, 45.7% and n = 20, 43.5%, respectively). The prevalence of ventilation defect patterns showed significant intergroup differences (p < 0.001). The quantified ventilation values in the peripheral lung areas were significantly lower in patients with ACOS than in patients with COPD (p = 0.045). The quantified Pi10 was significantly higher in patients with ACOS than in patients with COPD (p = 0.041); however, EI was not significantly different between the two groups. Conclusion The ventilation abnormalities on the visual and quantitative assessments of xenon-ventilation DECT differed between patients with ACOS and patients with COPD. Xenon-ventilation DECT may demonstrate the different physiologic changes of pulmonary ventilation in patients with ACOS and COPD.
Collapse
Affiliation(s)
- Hye Jeon Hwang
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Min Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Joon Beom Seo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Seung Lee
- Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Namkug Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sei Won Lee
- Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeon Mok Oh
- Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Klassen C, Eckert CE, Wong J, Guyette JP, Harris JL, Thompson S, Wudel LJ, Ott HC. Ex Vivo Modeling of Perioperative Air Leaks in Porcine Lungs. IEEE Trans Biomed Eng 2018; 65:2827-2836. [PMID: 29993403 DOI: 10.1109/tbme.2018.2819625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE A novel ex vivo model is described to advance the understanding of prolonged air leaks, one of the most common postoperative complications following thoracic resection procedures. METHODS As an alternative to in vivo testing, an ex vivo model simulating the various physiologic environments experienced by an isolated lung during the perioperative period was designed and built. Isolated porcine lungs were perfused and ventilated during open chest and closed chest simulations, mimicking intra and postoperative ventilation conditions. To assess and validate system capabilities, nine porcine lungs were tested by creating a standardized injury to create an approximately 250 cc/min air leak. Air leak rates, physiologic ventilation, and perfusion parameters were continuously monitored, while gas transfer analysis was performed on selected lungs. Segmental ventilation was monitored using electrical impedance tomography. RESULTS The evaluated lungs produced flow-volume and pressure-volume loops that approximated standard clinical representations under positive (mechanical) and negative (physiological) pressure ventilation modalities. Leak rate was averaged across the ventilation phases, and sharp increases in leak rate were observed between positive and negative pressure phases, suggesting that differences or changes in ventilation mechanics may strongly influence leak development. CONCLUSION The successful design and validation of a novel ex vivo lung model was achieved. Model output paralleled clinical observations. Pressure modality may also play a significant role in air leak severity. SIGNIFICANCE This work provides a foundation for future studies aimed at increasing the understanding of air leaks to better inform means of mitigating the risk of air leaks under clinically relevant conditions.
Collapse
|
5
|
Abstract
Asthma is increasingly recognised as a heterogeneous group of diseases with similar clinical presentations rather than a singular disease entity. Asthma was historically categorised by clinical symptoms; however, newer methods of subgrouping, describing and categorising the disease have sub-defined asthma. These sub-definitions are intermittently called phenotypes or endotypes, but the real meanings of these words are poorly understood. Novel treatments are currently and increasingly available, partly in the monoclonal antibody environment, and also some physical therapies (bronchial thermoplasty), but additionally small molecules are not far away from clinical practice. Understanding the disease pathogenesis and the mechanism of action more completely may enable identification of treatable traits, biomarkers, mediators and modifiable therapeutic targets. However, there remains a danger that clinicians become preoccupied with the concept of endotypes and biomarkers, ignoring therapies that are hugely effective but have no companion biomarker. This review discusses our understanding of the concept of phenotypes and endotypes in appreciating and managing the heterogeneous condition that is asthma. We consider the role of functional imaging, physiology, blood-, sputum- and breath-based biomarkers and clinical manifestations that could be used to produce a personalised asthma profile, with implications on prognosis, pathophysiology and most importantly specific therapeutic responses. With the advent of increasing numbers of biological therapies and other interventional options such as bronchial thermoplasty, the importance of targeting expensive therapies to patients with the best chance of clinical response has huge health economic importance.
Collapse
Affiliation(s)
- Katrina Dean
- University Hospital South Manchester, Manchester, UK
| | - Robert Niven
- Manchester Academic Health Science Centre, The University of Manchester and University Hospital South Manchester, Manchester, UK.
| |
Collapse
|
6
|
Airway Evaluation with Multidetector Computed Tomography Post-Processing Methods in Asthmatic Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 934:41-7. [PMID: 27271759 DOI: 10.1007/5584_2016_23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Asthma is a chronic inflammatory obstructive airways disease. The disease occurs regardless of age and manifests with cough, attacks of breathlessness, and tightness in the chest. The pathophysiology of asthma is complex and still not fully understood. It is essential to find answers concerning the role of each part of the bronchial tree in asthma, especially the role of small bronchioles. With the development of newer generations of multidetector computed tomography (MDCT) and advanced post-processing methods it is possible to obtain more detailed images and gain insight into further aspects of asthma. MDCT post-processing methods can be divided into two-dimensional (2D) and three-dimensional (3D). In 2D projections, visualized hypodense regions correspond to the airway flow limitations. With the more advanced methods, such as multi planar reconstructions (MPR), images in different planes (axial, coronal, or sagittal) can be created. In the MPR technique only the voxels which are adjacent to each other in the predetermined plane can be extracted from the data set. Using the minimal/maximal intensity projections and shaded surface display, the volume of interest (VOI) can be extracted. High resolution CT scans can be used to create a more advanced imaging tool - the virtual bronchoscopy (VB). Using the VB makes it possible to visualize regions of obturation in the bronchi of up to the 5-8th generation. The MDCT with advanced post-processing methods is likely to assume an important role in the differential diagnosis of asthma, particularly when the diagnosis is dubious or hard to settle due to accompanying other lung diseases.
Collapse
|
7
|
Hwang HJ, Hoffman EA, Lee CH, Goo JM, Levin DL, Kauczor HU, Seo JB. The role of dual-energy computed tomography in the assessment of pulmonary function. Eur J Radiol 2016; 86:320-334. [PMID: 27865580 DOI: 10.1016/j.ejrad.2016.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 01/05/2023]
Abstract
The assessment of pulmonary function, including ventilation and perfusion status, is important in addition to the evaluation of structural changes of the lung parenchyma in various pulmonary diseases. The dual-energy computed tomography (DECT) technique can provide the pulmonary functional information and high resolution anatomic information simultaneously. The application of DECT for the evaluation of pulmonary function has been investigated in various pulmonary diseases, such as pulmonary embolism, asthma and chronic obstructive lung disease and so on. In this review article, we will present principles and technical aspects of DECT, along with clinical applications for the assessment pulmonary function in various lung diseases.
Collapse
Affiliation(s)
- Hye Jeon Hwang
- Department of Radiology, Hallym University College of Medicine, Hallym University Sacred Heart Hospital, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do 431-796, Republic of Korea
| | - Eric A Hoffman
- Departments of Radiology, Medicine, and Biomedical Engineering, University of Iowa, 200 Hawkins Dr, CC 701 GH, Iowa City, IA 52241, United States
| | - Chang Hyun Lee
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Republic of Korea
| | - Jin Mo Goo
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Republic of Korea
| | - David L Levin
- Department of Radiology, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN 55905, United States
| | - Hans-Ulrich Kauczor
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Joon Beom Seo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 388-1, Pungnap 2-dong, Songpa-ku, Seoul, 05505, Republic of Korea.
| |
Collapse
|
8
|
Hoffman EA, Lynch DA, Barr RG, van Beek EJR, Parraga G. Pulmonary CT and MRI phenotypes that help explain chronic pulmonary obstruction disease pathophysiology and outcomes. J Magn Reson Imaging 2016; 43:544-57. [PMID: 26199216 PMCID: PMC5207206 DOI: 10.1002/jmri.25010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/01/2015] [Indexed: 12/12/2022] Open
Abstract
Pulmonary x-ray computed tomographic (CT) and magnetic resonance imaging (MRI) research and development has been motivated, in part, by the quest to subphenotype common chronic lung diseases such as chronic obstructive pulmonary disease (COPD). For thoracic CT and MRI, the main COPD research tools, disease biomarkers are being validated that go beyond anatomy and structure to include pulmonary functional measurements such as regional ventilation, perfusion, and inflammation. In addition, there has also been a drive to improve spatial and contrast resolution while at the same time reducing or eliminating radiation exposure. Therefore, this review focuses on our evolving understanding of patient-relevant and clinically important COPD endpoints and how current and emerging MRI and CT tools and measurements may be exploited for their identification, quantification, and utilization. Since reviews of the imaging physics of pulmonary CT and MRI and reviews of other COPD imaging methods were previously published and well-summarized, we focus on the current clinical challenges in COPD and the potential of newly emerging MR and CT imaging measurements to address them. Here we summarize MRI and CT imaging methods and their clinical translation for generating reproducible and sensitive measurements of COPD related to pulmonary ventilation and perfusion as well as parenchyma morphology. The key clinical problems in COPD provide an important framework in which pulmonary imaging needs to rapidly move in order to address the staggering burden, costs, as well as the mortality and morbidity associated with COPD.
Collapse
Affiliation(s)
- Eric A Hoffman
- Department of Radiology, University of Iowa, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | - David A Lynch
- Department of Radiology, National Jewish Health Center, Denver, Colorado, USA
| | - R Graham Barr
- Division of General Medicine, Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Columbia University Medical Center, New York, New York, USA
- Department of Epidemiology, Columbia University Medical Center, New York, New York, USA
| | - Edwin J R van Beek
- Clinical Research Imaging Centre, Queen's Medical Research Institute, University of Edinburgh, Scotland, UK
| | - Grace Parraga
- Robarts Research Institute, University of Western Ontario, London, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Canada
| |
Collapse
|
9
|
Abstract
Non-uniform distribution of inspired gas within the lung, termed ventilation heterogeneity, is present in patients with even mild asthma. Current evidence strongly supports ventilation heterogeneity as a fundamental derangement of lung function in asthma that contributes per se to hypoxemia and airway hyper-responsiveness. An extreme example of ventilation heterogeneity is the identification by hyperpolarized gas MRI of lung regions with no ventilation, termed filling defects. Lung filling defects in patients with asthma can persist over time, increase in size with methacholine-induced bronchospasm and more likely are caused by obstruction of the peripheral and not the proximal airways. Ventilation heterogeneity can be quantified in the conducting and acinar lung zones with the multiple gas washout method, and in the acinar zone does not fully resolve following bronchodilator treatment in patients with asthma. In prospective studies, the degree of ventilation heterogeneity at baseline predicts airway hyper-responsiveness and response to corticosteroid dose titration. An important unanswered question is the relationship of airways inflammation to ventilation heterogeneity. In consideration of the importance of ventilation heterogeneity in its pathobiology, asthma is more a focal disorder with regional pathology akin to regional ileitis and not the generalized disorder of the airways as it has been viewed in the past.
Collapse
Affiliation(s)
- W Gerald Teague
- Division of Respiratory Medicine, Allergy, and Immunology, Department of Pediatrics and
| | | | | |
Collapse
|
10
|
Park HW, Jung JW, Kim KM, Kim TW, Lee SH, Lee CH, Goo JM, Min KU, Cho SH. Xenon ventilation computed tomography and the management of asthma in the elderly. Respirology 2014; 19:389-95. [PMID: 24512222 DOI: 10.1111/resp.12242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/19/2012] [Accepted: 11/12/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Xenon ventilation computed tomography (CT) has shown potential in assessing the regional ventilation status in subjects with asthma. The purpose of this study was to evaluate the usefulness of xenon ventilation CT in the management of asthma in the elderly. METHODS Treatment-naïve asthmatics aged 65 years or older were recruited. Before initiation of medication, spirometry with bronchodilator (BD) reversibility, questionnaires to assess the severity of symptoms including a visual analogue scale (VAS), tests to evaluate cognitive function and mood, and xenon ventilation CT were performed. Xenon gas trapping (XT) on xenon ventilation CT represents an area where inhaled xenon gas was not expired and was trapped. Symptoms and lung functions were measured again after the 12-week treatment. RESULTS A total of 30 elderly asthmatics were enrolled. The severity of dyspnoea measured by the VAS showed a significant correlation with the total number of areas of XT on the xenon ventilation CT taken in the pre-BD wash-out phase (r = -0.723, P < 0.001). The total number of areas of XT significantly decreased after BD inhalation, and differences in the total number of areas of XT (between the pre- and post-BD wash-out phases) at baseline showed significant correlations with the per cent increases in forced expiratory volume in 1 s after subsequent anti-asthma treatment (r = -0.775, P < 0.001). CONCLUSIONS Xenon ventilation CT may be an objective and promising tool in the measurement of dyspnoea and prediction of the treatment response in elderly asthmatics.
Collapse
Affiliation(s)
- Heung-Woo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Thien F. Measuring and imaging small airways dysfunction in asthma. Asia Pac Allergy 2013; 3:224-30. [PMID: 24260727 PMCID: PMC3826607 DOI: 10.5415/apallergy.2013.3.4.224] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/04/2013] [Indexed: 11/26/2022] Open
Abstract
Asthma is a chronic inflammatory disorder of the airways causing typical symptoms, and the diagnosis is supported by evidence of airflow obstruction which is variable, reversible or inducible. However, standard assessment of lung function with spirometry does not measure dysfunction in small airways which are < 2 mm in diameter towards the periphery of the lung. These airways make only a small contribution to airway resistance under normal circumstances. Nevertheless, there is mounting evidence that pathology and dysfunction in these small airways are implicated in the pathogenesis and natural history of asthma. Using forced oscillation and the multibreath nitrogen washout techniques, uneven ventilation (ventilation heterogeneity) due to small airways dysfunction has been shown to be an important marker of asthma disease activity, even in the absence of abnormalities in standard spirometric measurements. Recent advances in imaging research, particularly with hyperpolarised gas magnetic resonance imaging, have also given insights into the significance and dynamic nature of ventilation heterogeneity in asthma. The challenge is to integrate these new physiological and imaging insights to further our understanding of asthma and facilitate potential new treatments.
Collapse
Affiliation(s)
- Francis Thien
- Department of Respiratory Medicine, Eastern Health and Monash University, Box Hill Hospital, Box Hill, VIC 3128, Australia
| |
Collapse
|
12
|
Phipatanakul W, Teague WG. Xenon ventilation computed tomography rules: new technology may open up further understanding in asthma. Ann Allergy Asthma Immunol 2013; 111:81. [PMID: 23886222 DOI: 10.1016/j.anai.2013.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 05/23/2013] [Accepted: 05/26/2013] [Indexed: 11/29/2022]
|