1
|
Ruckman SN, Humphrey EA, Muzzey L, Prantalou I, Pleasants M, Hughes KA. Assessing the Association Between Animal Color and Behavior: A Meta-Analysis of Experimental Studies. Ecol Evol 2024; 14:e70655. [PMID: 39640225 PMCID: PMC11617328 DOI: 10.1002/ece3.70655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Color varies in pattern and degree across the tree of life. In animals, genetic variation in color is hypothesized to have pleiotropic effects on a variety of behaviors due to shared dependence on underlying biochemical pathways. Such pleiotropy can constrain the independent evolution of color and behavior. Although associations between color and behavior have been reported, this relationship has not yet been addressed across a broad taxonomic scale with a formal meta-analysis. We used a phylogenetic meta-analytic approach to examine the relationship between individual variation in aggressive behavior and variation in multiple colors. Seventy-four studies met our inclusion criteria (vertebrates = 70; invertebrates = 4). After accounting for phylogeny and correcting for publication bias, there was a positive association between measures of aggression and degree or area of coloration (mean = 0.248, 95% CI = (0.044, 0.477)). Because this positive association was not restricted to melanin-based coloration, we conclude that this pattern does not strongly support the melanin pleiotropy hypothesis. Because the association was also not affected by moderators accounting for individual condition, social rank, or age, the results do not strongly support hypotheses that condition dependence accounts for relationships between color and aggressive behavior. The badge of status hypothesis predicts that arbitrary traits can evolve to signal aggression or social dominance. We propose that this is the most parsimonious explanation for the patterns we observe. Because of the lack of evidence for condition dependence in the association between color and aggression, we further propose that the genetic covariation between traits contributes to the evolution of the badges of status.
Collapse
Affiliation(s)
- Sarah N. Ruckman
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | | | - Lily Muzzey
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Ioanna Prantalou
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Madison Pleasants
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Kimberly A. Hughes
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
2
|
Munley KM, Sinkiewicz DM, Szwed SM, Demas GE. Sex and seasonal differences in neural steroid sensitivity predict territorial aggression in Siberian hamsters. Horm Behav 2023; 154:105390. [PMID: 37354601 PMCID: PMC10527453 DOI: 10.1016/j.yhbeh.2023.105390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/01/2023] [Accepted: 05/28/2023] [Indexed: 06/26/2023]
Abstract
Many animals display marked changes in physiology and behavior on a seasonal timescale, including non-reproductive social behaviors (e.g., aggression). Previous studies from our lab suggest that the pineal hormone melatonin acts via steroid hormones to regulate seasonal aggression in Siberian hamsters (Phodopus sungorus), a species in which both males and females display increased non-breeding aggression. The neural actions of melatonin on steroids and aggressive behavior, however, are relatively unexplored. Here, we housed male and female hamsters in long-day photoperiods (LDs, characteristic of breeding season) or short-day photoperiods (SDs, characteristic of non-breeding season) and administered timed melatonin (M) or control injections. Following 10 weeks of treatment, we quantified aggressive behavior and neural steroid sensitivity by measuring the relative mRNA expression of two steroidogenic enzymes (aromatase and 5α-reductase 3) and estrogen receptor 1 in brain regions associated with aggression or reproduction [medial preoptic area (MPOA), anterior hypothalamus (AH), arcuate nucleus (ARC), and periaqueductal gray (PAG)] via quantitative PCR. Although LD-M and SD males and females displayed increased aggression and similar changes in gene expression in the ARC, there were sex-specific effects of treatment with melatonin and SDs on gene expression in the MPOA, AH, and PAG. Furthermore, males and females exhibited different relationships between neural gene expression and aggression in response to melatonin and SDs. Collectively, these findings support a role for melatonin in regulating seasonal variation in neural steroid sensitivity and aggression and reveal how distinct neuroendocrine responses may modulate a similar behavioral phenotype in male and female hamsters.
Collapse
Affiliation(s)
- Kathleen M Munley
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA; Department of Psychology, University of Houston, Houston, TX 77204, USA.
| | - David M Sinkiewicz
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Sydney M Szwed
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Gregory E Demas
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
3
|
Prichard MR, Grogan KE, Merritt JR, Root J, Maney DL. Allele-specific cis-regulatory methylation of the gene for vasoactive intestinal peptide in white-throated sparrows. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12831. [PMID: 36220804 PMCID: PMC9744568 DOI: 10.1111/gbb.12831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/05/2022] [Accepted: 08/31/2022] [Indexed: 11/06/2022]
Abstract
White-throated sparrows (Zonotrichia albicollis) offer a unique opportunity to connect genotype with behavioral phenotype. In this species, a rearrangement of the second chromosome is linked with territorial aggression; birds with a copy of this "supergene" rearrangement are more aggressive than those without it. The supergene has captured the gene VIP, which encodes vasoactive intestinal peptide, a neuromodulator that drives aggression in other songbirds. In white-throated sparrows, VIP expression is higher in the anterior hypothalamus of birds with the supergene than those without it, and expression of VIP in this region predicts the level of territorial aggression regardless of genotype. Here, we aimed to identify epigenetic mechanisms that could contribute to differential expression of VIP both in breeding adults, which exhibit morph differences in territorial aggression, and in nestlings, before territorial behavior develops. We extracted and bisulfite-converted DNA from samples of the hypothalamus in wild-caught adults and nestlings and used high-throughput sequencing to measure DNA methylation of a region upstream of the VIP start site. We found that the allele inside the supergene was less methylated than the alternative allele in both adults and nestlings. The differential methylation was attributed primarily to CpG sites that were shared between the alleles, not to polymorphic sites, which suggests that epigenetic regulation is occurring independently of the genetic differentiation within the supergene. This work represents an initial step toward understanding how epigenetic differentiation inside chromosomal inversions leads to the development of alternative behavioral phenotypes.
Collapse
Affiliation(s)
| | - Kathleen E. Grogan
- Department of PsychologyEmory UniversityAtlantaGeorgiaUSA
- Present address:
Departments of Anthropology and BiologyUniversity of CincinnatiCincinnatiOhioUSA
| | - Jennifer R. Merritt
- Department of PsychologyEmory UniversityAtlantaGeorgiaUSA
- Present address:
Zuckerman Mind Brain Behavior Institute and Department of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkNew YorkUSA
| | - Jessica Root
- Department of PsychologyEmory UniversityAtlantaGeorgiaUSA
- Present address:
Department of Pharmacology and Chemical BiologyEmory UniversityAtlantaGeorgiaUSA
| | - Donna L. Maney
- Department of PsychologyEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
4
|
Munley KM, Trinidad JC, Demas GE. Sex-specific endocrine regulation of seasonal aggression in Siberian hamsters. Proc Biol Sci 2022; 289:20220668. [PMID: 36100021 PMCID: PMC9470250 DOI: 10.1098/rspb.2022.0668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/23/2022] [Indexed: 11/12/2022] Open
Abstract
Coordinating physiological and behavioural processes across the annual cycle is essential in enabling individuals to maximize fitness. While the mechanisms underlying seasonal reproduction and its associated behaviours are well characterized, fewer studies have examined the hormonal basis of non-reproductive social behaviours (e.g. aggression) on a seasonal time scale. Our previous work suggests that the pineal hormone melatonin facilitates a 'seasonal switch' in neuroendocrine regulation of aggression in male and female Siberian hamsters (Phodopus sungorus), specifically by acting on the adrenal glands to increase the production of the androgen dehydroepiandrosterone (DHEA) during the short-day (SD) photoperiods of the non-breeding season. Here, we provide evidence that the activity of 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (3β-HSD), a key enzyme within the steroidogenic pathway that mediates DHEA synthesis and metabolism, varies in a sex-specific and melatonin-dependent manner. Although both male and female hamsters displayed increased aggression in response to SDs and SD-like melatonin, only males showed an increase in adrenal 3β-HSD activity. Conversely, SD and melatonin-treated females exhibited reductions in both adrenal and neural 3β-HSD activity. Collectively, these results suggest a potential role for 3β-HSD in modulating non-breeding aggression and, more broadly, demonstrate how distinct neuroendocrine mechanisms may underlie the same behavioural phenotype in males and females.
Collapse
Affiliation(s)
- Kathleen M. Munley
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA
| | - Jonathan C. Trinidad
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Gregory E. Demas
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA
| |
Collapse
|
5
|
Maney DL, Küpper C. Supergenes on steroids. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200507. [PMID: 35634926 PMCID: PMC9149793 DOI: 10.1098/rstb.2020.0507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/18/2021] [Indexed: 07/20/2023] Open
Abstract
At the birth of supergenes, the genomic landscape is dramatically re-organized leading to pronounced differences in phenotypes and increased intrasexual diversity. Two of the best-studied supergenes in vertebrates are arguably the inversion polymorphisms on chromosomes 2 and 11 in the white-throated sparrow (Zonotrichia albicollis) and the ruff (Calidris pugnax), respectively. In both species, regions of suppressed recombination determine plumage coloration and social behavioural phenotypes. Despite the apparent lack of gene overlap between these two supergenes, in both cases the alternative phenotypes seem to be driven largely by alterations in steroid hormone pathways. Here, we explore the interplay between genomic architecture and steroid-related genes. Due to the highly pleiotropic effects of steroid-related genes and their universal involvement in social behaviour and transcriptomic regulation, processes favouring their linkage are likely to have substantial effects on the evolution of behavioural phenotypes, individual fitness, and life-history strategies. We propose that inversion-related differentiation and regulatory changes in steroid-related genes lie at the core of phenotypic differentiation in both of these interesting species. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.
Collapse
Affiliation(s)
- Donna L. Maney
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Clemens Küpper
- Research Group of Behavioural Genetics and Evolutionary Ecology, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| |
Collapse
|
6
|
Anderson JA, Tung J. Sparrows and supergenes: Ecological epigenetics in action. Mol Ecol 2021; 30:3391-3393. [PMID: 34145673 DOI: 10.1111/mec.16028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/04/2021] [Indexed: 12/01/2022]
Abstract
Despite the promise of ecological epigenetics, there remain few cases that clearly link epigenetic variation in wild animal populations to evolutionary change. In this issue of Molecular Ecology, Sun et al. provide such an example in white-throated sparrows-a fascinating system in which a large chromosomal rearrangement generates a "supergene" polymorphism linked to plumage colour, aggression and parenting behaviour. By combining whole genome bisulphite sequencing with RNA-sequencing and chromatin accessibility data, they show that the two alleles of this chromosomal polymorphism also exhibit substantial differences in DNA methylation levels, with implications for gene expression and transposable element activity. Their results provide a compelling case study for how genetic and epigenetic evolution proceed in concert. They also demonstrate the importance of integrating multiple types of genomic information to understand how gene regulation evolves, providing a model for future work in nonmodel species.
Collapse
Affiliation(s)
- Jordan A Anderson
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA.,Department of Biology, Duke University, Durham, North Carolina, USA.,Duke Population Research Institute, Duke University, Durham, North Carolina, USA.,Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
7
|
Sun D, Layman TS, Jeong H, Chatterjee P, Grogan K, Merritt JR, Maney DL, Yi SV. Genome-wide variation in DNA methylation linked to developmental stage and chromosomal suppression of recombination in white-throated sparrows. Mol Ecol 2021; 30:3453-3467. [PMID: 33421223 PMCID: PMC8359194 DOI: 10.1111/mec.15793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/25/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022]
Abstract
Much of our knowledge on regulatory impacts of DNA methylation has come from laboratory‐bred model organisms, which may not exhibit the full extent of variation found in wild populations. Here, we investigated naturally‐occurring variation in DNA methylation in a wild avian species, the white‐throated sparrow (Zonotrichia albicollis). This species offers exceptional opportunities for studying the link between genetic differentiation and phenotypic traits because of a nonrecombining chromosome pair linked to both plumage and behavioural phenotypes. Using novel single‐nucleotide resolution methylation maps and gene expression data, we show that DNA methylation and the expression of DNA methyltransferases are significantly higher in adults than in nestlings. Genes for which DNA methylation varied between nestlings and adults were implicated in development and cell differentiation and were located throughout the genome. In contrast, differential methylation between plumage morphs was concentrated in the nonrecombining chromosome pair. Interestingly, a large number of CpGs on the nonrecombining chromosome, localized to transposable elements, have undergone dramatic loss of DNA methylation since the split of the ZAL2 and ZAL2m chromosomes. Changes in methylation predicted changes in gene expression for both chromosomes. In summary, we demonstrate changes in genome‐wide DNA methylation that are associated with development and with specific functional categories of genes in white‐throated sparrows. Moreover, we observe substantial DNA methylation reprogramming associated with the suppression of recombination, with implications for genome integrity and gene expression divergence. These results offer an unprecedented view of ongoing epigenetic reprogramming in a wild population. see also the Perspective by Jordan A. Anderson and Jenny Tung.
Collapse
Affiliation(s)
- Dan Sun
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Thomas S Layman
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hyeonsoo Jeong
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Paramita Chatterjee
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kathleen Grogan
- Department of Psychology, Emory University, Atlanta, GA, USA
| | | | - Donna L Maney
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Soojin V Yi
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
8
|
Loveland JL, Giraldo-Deck LM, Lank DB, Goymann W, Gahr M, Küpper C. Functional differences in the hypothalamic-pituitary-gonadal axis are associated with alternative reproductive tactics based on an inversion polymorphism. Horm Behav 2021; 127:104877. [PMID: 33186586 DOI: 10.1016/j.yhbeh.2020.104877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 01/01/2023]
Abstract
The evolution of social behavior depends on genetic changes, yet, how genomic variation manifests itself in behavioral diversity is still largely unresolved. Chromosomal inversions can play a pivotal role in producing distinct behavioral phenotypes, in particular, when inversion genes are functionally associated with hormone synthesis and signaling. Male ruffs exhibit alternative reproductive tactics (ARTs) with an autosomal inversion determining two alternative morphs with clear behavioral and hormonal differences from the ancestral morph. We investigated hormonal and transcriptomic differences in the pituitary and gonads. Using a GnRH challenge, we found that the ability to synthesize testosterone in inversion carriers is severely constrained, whereas the synthesis of androstenedione, a testosterone precursor, is not. Inversion morphs were able to produce a transient increase in androstenedione following the GnRH injection, supporting the view that pituitary sensitivity to GnRH is comparable to that of the ancestral morph. We then performed gene expression analyses in a second set of untreated birds and found no evidence of alterations to pituitary sensitivity, gonadotropin production or gonad sensitivity to luteinizing hormone or follicle-stimulating hormone across morphs. Inversion morphs also showed reduced progesterone receptor expression in the pituitary. Strikingly, in the gonads, inversion morphs over-expressed STAR, a gene that is located outside of the inversion and responsible for providing the cholesterol substrate required for the synthesis of sex hormones. In conclusion, our results suggest that the gonads determine morph-specific differences in hormonal regulation.
Collapse
MESH Headings
- Androstenedione/metabolism
- Animals
- Charadriiformes/genetics
- Charadriiformes/physiology
- Follicle Stimulating Hormone, beta Subunit/genetics
- Follicle Stimulating Hormone, beta Subunit/metabolism
- Gene Expression/drug effects
- Gonadal Steroid Hormones/biosynthesis
- Gonadotropin-Releasing Hormone/pharmacology
- Gonads/drug effects
- Gonads/metabolism
- Gonads/physiology
- Hypothalamo-Hypophyseal System/drug effects
- Hypothalamo-Hypophyseal System/metabolism
- Hypothalamo-Hypophyseal System/physiology
- Male
- Pituitary Gland/drug effects
- Pituitary Gland/metabolism
- Polymorphism, Genetic
- Receptors, FSH/genetics
- Receptors, FSH/metabolism
- Receptors, LH/genetics
- Receptors, LH/metabolism
- Receptors, LHRH/genetics
- Receptors, LHRH/metabolism
- Reproduction/drug effects
- Reproduction/genetics
- Sequence Inversion
- Sexual Behavior, Animal/drug effects
- Sexual Behavior, Animal/physiology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Testosterone/metabolism
Collapse
Affiliation(s)
- J L Loveland
- Behavioural Genetics and Evolutionary Ecology Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany.
| | - L M Giraldo-Deck
- Behavioural Genetics and Evolutionary Ecology Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - D B Lank
- Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
| | - W Goymann
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - M Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - C Küpper
- Behavioural Genetics and Evolutionary Ecology Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
9
|
Crow T, Ta J, Nojoomi S, Aguilar-Rangel MR, Torres Rodríguez JV, Gates D, Rellán-Álvarez R, Sawers R, Runcie D. Gene regulatory effects of a large chromosomal inversion in highland maize. PLoS Genet 2020; 16:e1009213. [PMID: 33270639 PMCID: PMC7752097 DOI: 10.1371/journal.pgen.1009213] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 12/21/2020] [Accepted: 10/19/2020] [Indexed: 12/25/2022] Open
Abstract
Chromosomal inversions play an important role in local adaptation. Inversions can capture multiple locally adaptive functional variants in a linked block by repressing recombination. However, this recombination suppression makes it difficult to identify the genetic mechanisms underlying an inversion's role in adaptation. In this study, we used large-scale transcriptomic data to dissect the functional importance of a 13 Mb inversion locus (Inv4m) found almost exclusively in highland populations of maize (Zea mays ssp. mays). Inv4m was introgressed into highland maize from the wild relative Zea mays ssp. mexicana, also present in the highlands of Mexico, and is thought to be important for the adaptation of these populations to cultivation in highland environments. However, the specific genetic variants and traits that underlie this adaptation are not known. We created two families segregating for the standard and inverted haplotypes of Inv4m in a common genetic background and measured gene expression effects associated with the inversion across 9 tissues in two experimental conditions. With these data, we quantified both the global transcriptomic effects of the highland Inv4m haplotype, and the local cis-regulatory variation present within the locus. We found diverse physiological effects of Inv4m across the 9 tissues, including a strong effect on the expression of genes involved in photosynthesis and chloroplast physiology. Although we could not confidently identify the causal alleles within Inv4m, this research accelerates progress towards understanding this inversion and will guide future research on these important genomic features.
Collapse
Affiliation(s)
- Taylor Crow
- Department of Plant Sciences/University of California, Davis, California, United States of America
| | - James Ta
- Department of Plant Sciences/University of California, Davis, California, United States of America
| | - Saghi Nojoomi
- Department of Plant Sciences/University of California, Davis, California, United States of America
| | - M. Rocío Aguilar-Rangel
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados (CINVESTAV- IPN), Irapuato CP 36821, Guanajuato, Mexico
- Corteva Agriscience, Agriculture Division of DowDuPont, Tlajomulco, Jalisco, Mexico
| | - Jorge Vladimir Torres Rodríguez
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados (CINVESTAV- IPN), Irapuato CP 36821, Guanajuato, Mexico
| | - Daniel Gates
- Department of Evolution and Ecology/University of California, Davis, California, United States of America
| | - Rubén Rellán-Álvarez
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados (CINVESTAV- IPN), Irapuato CP 36821, Guanajuato, Mexico
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Ruairidh Sawers
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados (CINVESTAV- IPN), Irapuato CP 36821, Guanajuato, Mexico
- Department of Plant Science, Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Daniel Runcie
- Department of Plant Sciences/University of California, Davis, California, United States of America
| |
Collapse
|
10
|
Affiliation(s)
- Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.
| |
Collapse
|
11
|
Maney DL, Merritt JR, Prichard MR, Horton BM, Yi SV. Inside the supergene of the bird with four sexes. Horm Behav 2020; 126:104850. [PMID: 32937166 PMCID: PMC7725849 DOI: 10.1016/j.yhbeh.2020.104850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023]
Abstract
The white-throated sparrow (Zonotrichia albicollis) offers unique opportunities to understand the adaptive value of supergenes, particularly their role in alternative phenotypes. In this species, alternative plumage morphs segregate with a nonrecombining segment of chromosome 2, which has been called a 'supergene'. The species mates disassortatively with respect to the supergene; that is, each breeding pair consists of one individual with it and one without it. This species has therefore been called the "bird with four sexes". The supergene segregates with a behavioral phenotype; birds with it are more aggressive and less parental than birds without it. Here, we review our efforts to identify the genes inside the supergene that are responsible for the behavioral polymorphism. The gene ESR1, which encodes estrogen receptor α, differs between the morphs and predicts both territorial and parental behavior. Variation in the regulatory regions of ESR1 causes an imbalance in expression of the two alleles, and the degree to which this imbalance favors the supergene allele predicts territorial singing. In heterozygotes, knockdown of ESR1 causes a phenotypic switch, from more aggressive to less aggressive. We recently showed that another gene important for social behavior, vasoactive intestinal peptide (VIP), is differentially expressed between the morphs and predicts territorial singing. We hypothesize that ESR1 and VIP contribute to behavior in a coordinated way and could represent co-adapted alleles. Because the supergene contains more than 1000 individual genes, this species provides rich possibilities for discovering alleles that work together to mediate life-history trade-offs and maximize the fitness of alternative complex phenotypes.
Collapse
Affiliation(s)
- Donna L Maney
- Department of Psychology, Emory University, Atlanta, GA, USA.
| | | | | | - Brent M Horton
- Department of Biology, Millersville University, Millersville, PA, USA
| | - Soojin V Yi
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
12
|
Merritt JR, Grogan KE, Zinzow-Kramer WM, Sun D, Ortlund EA, Yi SV, Maney DL. A supergene-linked estrogen receptor drives alternative phenotypes in a polymorphic songbird. Proc Natl Acad Sci U S A 2020; 117:21673-21680. [PMID: 32817554 PMCID: PMC7474689 DOI: 10.1073/pnas.2011347117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Behavioral evolution relies on genetic changes, yet few behaviors can be traced to specific genetic sequences in vertebrates. Here we provide experimental evidence showing that differentiation of a single gene has contributed to the evolution of divergent behavioral phenotypes in the white-throated sparrow, a common backyard songbird. In this species, a series of chromosomal inversions has formed a supergene that segregates with an aggressive phenotype. The supergene has captured ESR1, the gene that encodes estrogen receptor α (ERα); as a result, this gene is accumulating changes that now distinguish the supergene allele from the standard allele. Our results show that in birds of the more aggressive phenotype, ERα knockdown caused a phenotypic change to that of the less aggressive phenotype. We next showed that in a free-living population, aggression is predicted by allelic imbalance favoring the supergene allele. Finally, we identified cis-regulatory features, both genetic and epigenetic, that explain the allelic imbalance. This work provides a rare illustration of how genotypic divergence has led to behavioral phenotypic divergence in a vertebrate.
Collapse
Affiliation(s)
| | | | | | - Dan Sun
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Eric A Ortlund
- Department of Biochemistry, Emory University, Atlanta, GA 30322
| | - Soojin V Yi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Donna L Maney
- Department of Psychology, Emory University, Atlanta, GA 30322
| |
Collapse
|
13
|
Oomen RA, Kuparinen A, Hutchings JA. Consequences of Single-Locus and Tightly Linked Genomic Architectures for Evolutionary Responses to Environmental Change. J Hered 2020; 111:319-332. [PMID: 32620014 PMCID: PMC7423069 DOI: 10.1093/jhered/esaa020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/25/2020] [Indexed: 12/26/2022] Open
Abstract
Genetic and genomic architectures of traits under selection are key factors influencing evolutionary responses. Yet, knowledge of their impacts has been limited by a widespread assumption that most traits are controlled by unlinked polygenic architectures. Recent advances in genome sequencing and eco-evolutionary modeling are unlocking the potential for integrating genomic information into predictions of population responses to environmental change. Using eco-evolutionary simulations, we demonstrate that hypothetical single-locus control of a life history trait produces highly variable and unpredictable harvesting-induced evolution relative to the classically applied multilocus model. Single-locus control of complex traits is thought to be uncommon, yet blocks of linked genes, such as those associated with some types of structural genomic variation, have emerged as taxonomically widespread phenomena. Inheritance of linked architectures resembles that of single loci, thus enabling single-locus-like modeling of polygenic adaptation. Yet, the number of loci, their effect sizes, and the degree of linkage among them all occur along a continuum. We review how linked architectures are often associated, directly or indirectly, with traits expected to be under selection from anthropogenic stressors and are likely to play a large role in adaptation to environmental disturbance. We suggest using single-locus models to explore evolutionary extremes and uncertainties when the trait architecture is unknown, refining parameters as genomic information becomes available, and explicitly incorporating linkage among loci when possible. By overestimating the complexity (e.g., number of independent loci) of the genomic architecture of traits under selection, we risk underestimating the complexity (e.g., nonlinearity) of their evolutionary dynamics.
Collapse
Affiliation(s)
- Rebekah A Oomen
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
- Centre for Coastal Research, University of Agder, Kristiansand, Norway
| | - Anna Kuparinen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jeffrey A Hutchings
- Centre for Coastal Research, University of Agder, Kristiansand, Norway
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
| |
Collapse
|
14
|
Maney DL, Aldredge RA, Edwards SHA, James NP, Sockman KW. Time course of photo-induced Egr-1 expression in the hypothalamus of a seasonally breeding songbird. Mol Cell Endocrinol 2020; 512:110854. [PMID: 32422399 PMCID: PMC7347413 DOI: 10.1016/j.mce.2020.110854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 01/25/2023]
Abstract
Many seasonally-breeding species use daylength to time reproduction. Light-induced release of progonadal hormones involves a complex cascade of responses both inside and outside the brain. In this study, we used induction of early growth response 1 (Egr-1), the protein product of an immediate early gene, to evaluate the time course of such responses in male white-throated sparrows (Zonotrichia albicollis) exposed to a single long day. Induction of Egr-1 in the pars tuberalis began ∼11 h after dawn. This response was followed ∼6 h later by dramatic induction in the tuberal hypothalamus, including in the ependymal cells lining the third ventricle. At approximately the same time, Egr-1 was induced in dopaminergic and vasoactive intestinal peptide neurons in the tuberal hypothalamus and in dopaminergic neurons of the premammillary nucleus. We noted no induction in gonadotropin-releasing hormone (GnRH) neurons until 2 h after dawn the following morning. Overall, our results indicate that Egr-1 responses in GnRH neurons occur rather late during photostimulation, compared with responses in other cell populations, and that such induction may reflect new synthesis related to GnRH depletion rather than stimulation by light cues.
Collapse
Affiliation(s)
- Donna L Maney
- Department of Psychology, Emory University, Atlanta, GA, USA.
| | - Robert A Aldredge
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Nathan P James
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Keith W Sockman
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
15
|
Barcelo-Serra M, Gordo O, Gonser RA, Tuttle EM. Behavioural polymorphism in wintering white-throated sparrows, Zonotrichia albicollis. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Horton BM, Michael CM, Prichard MR, Maney DL. Vasoactive intestinal peptide as a mediator of the effects of a supergene on social behaviour. Proc Biol Sci 2020; 287:20200196. [PMID: 32259472 PMCID: PMC7209063 DOI: 10.1098/rspb.2020.0196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022] Open
Abstract
Supergenes, or linked groups of alleles that are inherited together, present excellent opportunities to understand gene-behaviour relationships. In white-throated sparrows (Zonotrichia albicollis), a supergene on the second chromosome associates with a more aggressive and less parental phenotype. This supergene includes the gene for vasoactive intestinal peptide (VIP), a neuropeptide known to play a causal role in both aggression and parental behaviour. Here, using a free-living population, we compared the levels of VIP mRNA between birds with and without the supergene. We focused on the anterior hypothalamus and infundibular region, two brain regions containing VIP neurons known to play a causal role in aggression and parental behaviour, respectively. First, we show that the supergene enhances VIP expression in the anterior hypothalamus and that expression positively predicts vocal aggression independently of genotype in both sexes. Next, we show that the supergene reduces VIP expression in the infundibular region, which suggests reduced secretion of prolactin, a pro-parental hormone. Thus, the patterns of VIP expression in these two regions are consistent with the enhanced aggression and reduced parental behaviour of birds with the supergene allele. Our results illustrate mechanisms by which elements of genomic architecture, such as supergenes, can contribute to the evolution of alternative behavioural phenotypes.
Collapse
Affiliation(s)
- Brent M. Horton
- Department of Biology, Millersville University, Millersville, PA, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| | | | | | - Donna L. Maney
- Department of Psychology, Emory University, Atlanta, GA, USA
| |
Collapse
|
17
|
Newhouse DJ, Barcelo-Serra M, Tuttle EM, Gonser RA, Balakrishnan CN. Parent and offspring genotypes influence gene expression in early life. Mol Ecol 2019; 28:4166-4180. [PMID: 31421010 DOI: 10.1111/mec.15205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
Parents can have profound effects on offspring fitness. Little, however, is known about the mechanisms through which parental genetic variation influences offspring physiology in natural systems. White-throated sparrows (Zonotrichia albicollis, WTSP) exist in two genetic morphs, tan and white, controlled by a large polymorphic supergene. Morphs mate disassortatively, resulting in two pair types: tan male × white female (T × W) pairs, which provide biparental care and white male × tan female (W × T) pairs, which provide female-biased care. To investigate how parental composition impacts offspring, we performed RNA-seq on whole blood of WTSP nestlings sampled from nests of both pair types. Parental pair type had a large effect on nestling gene expression, with 881 genes differentially expressed (DE) and seven correlated gene coexpression modules. The DE genes and modules expressed at higher levels in W × T nests with female-biased parental care function in metabolism and stress-related pathways resulting from the overrepresentation of proteolysis and stress-response genes (e.g., SOD2, NR3C1). These results show that parental genotypes and/or associated behaviours influence nestling physiology, and highlight avenues of further research investigating the ultimate implications for the maintenance of this polymorphism. Nestlings also exhibited morph-specific gene expression, with 92 differentially expressed genes, comprising immunity genes and genes encompassed by the supergene. Remarkably, we identified the same regulatory hub genes in these blood-derived expression networks as were previously identified in adult WTSP brains (EPM2A, BPNT1, TAF5L). These hub genes were located within the supergene, highlighting the importance of this gene complex in structuring regulatory networks across diverse tissues.
Collapse
Affiliation(s)
- Daniel J Newhouse
- Department of Biology, East Carolina University, Greenville, NC, USA
| | | | | | | | | |
Collapse
|
18
|
Grogan KE, Horton BM, Hu Y, Maney DL. A chromosomal inversion predicts the expression of sex steroid-related genes in a species with alternative behavioral phenotypes. Mol Cell Endocrinol 2019; 495:110517. [PMID: 31348983 PMCID: PMC6749608 DOI: 10.1016/j.mce.2019.110517] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/18/2019] [Accepted: 07/21/2019] [Indexed: 12/13/2022]
Abstract
In white-throated sparrows, a chromosomal rearrangement has led to alternative phenotypes that differ in sex steroid-dependent behaviors. The rearrangement has captured the genes estrogen receptor alpha and 5-alpha reductase, making these genes strong candidates for mediating the behavioral phenotypes. We report here that of the two genes, expression of estrogen receptor alpha mRNA differs between the morphs and predicts behavior to a much greater extent than does expression of 5-alpha reductase mRNA. Differentiation of estrogen receptor alpha, therefore, is likely more important for the behavioral phenotypes. We also found that in some brain regions, the degree to which testosterone treatment affects the expression of steroid-related genes depends strongly on morph. A large morph difference in estrogen receptor alpha mRNA expression in the amygdala appears to be independent of plasma testosterone; this difference persists during the non-breeding season and is detectable in nestlings at post-hatch day seven. The latter result suggests a substrate for organizational effects of hormones during development.
Collapse
Affiliation(s)
- Kathleen E Grogan
- Department of Psychology, Emory University, Atlanta, GA, 30322, USA; Departments of Anthropology and Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Brent M Horton
- Department of Psychology, Emory University, Atlanta, GA, 30322, USA
| | - Yuchen Hu
- Department of Psychology, Emory University, Atlanta, GA, 30322, USA
| | - Donna L Maney
- Department of Psychology, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
19
|
Boyd RJ, Kelly TR, MacDougall-Shackleton SA, MacDougall-Shackleton EA. Alternative reproductive strategies in white-throated sparrows are associated with differences in parasite load following experimental infection. Biol Lett 2019; 14:rsbl.2018.0194. [PMID: 29973391 DOI: 10.1098/rsbl.2018.0194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/11/2018] [Indexed: 11/12/2022] Open
Abstract
Immune defences often trade off with other life-history components. Within species, optimal allocation to immunity may differ between the sexes or between alternative life-history strategies. White-throated sparrows (Zonotrichia albicollis) are unusual in having two discrete plumage morphs, white-striped and tan-striped. Within each sex, white-striped individuals are more aggressive and provide less parental care than tan-striped individuals. We extended immunocompetence handicap models, which predict sex differences in immunity and parasitism, to hypothesize that infection susceptibility should be greater in white-striped than tan-striped birds. We inoculated birds of both morphs with malarial parasites. Contrary to our prediction, among birds that became infected, parasite loads were higher in tan-striped than white-striped individuals and did not differ between the sexes. Circulating androgen levels did not differ between morphs but were higher in males than females. Our findings are not consistent with androgen-mediated immunosuppression. Instead, morph differences in immunity could reflect social interactions or life-history-related differences in risk of injury, and/or genetic factors. Although plumage and behavioural morphs of white-throated sparrow may differ in disease resistance, these differences do not parallel sex differences that have been reported in animals, and do not appear to be mediated by differences in androgen levels.
Collapse
Affiliation(s)
- R J Boyd
- Biology Department, Advanced Facility for Avian Research, University of Western Ontario, London, Canada N6A 5B7
| | - T R Kelly
- Biology Department, Advanced Facility for Avian Research, University of Western Ontario, London, Canada N6A 5B7
| | - S A MacDougall-Shackleton
- Biology Department, Advanced Facility for Avian Research, University of Western Ontario, London, Canada N6A 5B7.,Psychology Department, Advanced Facility for Avian Research, University of Western Ontario, London, Canada N6A 5C2
| | - E A MacDougall-Shackleton
- Biology Department, Advanced Facility for Avian Research, University of Western Ontario, London, Canada N6A 5B7
| |
Collapse
|
20
|
Grunst AS, Grunst ML, Korody ML, Forrette LM, Gonser RA, Tuttle EM. Extrapair mating and the strength of sexual selection: insights from a polymorphic species. Behav Ecol 2019; 30:278-290. [PMID: 30971857 PMCID: PMC6450205 DOI: 10.1093/beheco/ary160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/04/2018] [Accepted: 11/07/2018] [Indexed: 11/13/2022] Open
Abstract
Extrapair mating could drive sexual selection in socially monogamous species, but support for this hypothesis remains equivocal. We used lifetime fitness data and a unique model species, the dimorphic white-throated sparrow (Zonotrichia albicollis), to examine how extrapair mating affects the potential for sexual selection. In this species, the morphs employ distinct reproductive strategies, with white males pursuing extrapair mating at higher rates than tan counterparts. Social and extrapair mating is disassortative by morph, with paternity exchange occurring primarily between pairs composed of white males and tan females. Bateman gradients and Jones indexes indicated stronger sexual selection via mate numbers in white males than in females and tan males, and generally did not differ between females as compared with tan males. Extrapair mating contributed more to the Bateman gradient for white than tan males, and white males also had higher variance in annual reproductive success. However, variance in lifetime reproductive success did not differ between morphs or sexes. Moreover, extrapair mating did not increase variance in male reproductive success relative to apparent patterns, and within-pair success accounted for much more variance than extrapair success. Thus, extrapair mating by white males increases Bateman gradients and the potential for sexual selection via mate numbers. However, our latter results support previous research suggesting that extrapair mating may play a limited role in driving the overall potential for sexual selection.
Collapse
Affiliation(s)
- Andrea S Grunst
- Department of Biology, Indiana State University, Terre Haute, IN, USA
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Melissa L Grunst
- Department of Biology, Indiana State University, Terre Haute, IN, USA
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Marisa L Korody
- Department of Biology, Indiana State University, Terre Haute, IN, USA
- Conservation Genetics/Northern White Rhino Initiative, Institute for Conservation Research, San Diego Zoo Global, Escondido, CA, USA
| | | | - Rusty A Gonser
- Department of Biology, Indiana State University, Terre Haute, IN, USA
| | - Elaine M Tuttle
- Department of Biology, Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
21
|
Batabyal A, Thaker M. Social coping styles of lizards are reactive and not proactive in urban areas. Gen Comp Endocrinol 2019; 270:67-74. [PMID: 30336119 DOI: 10.1016/j.ygcen.2018.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/04/2018] [Accepted: 10/14/2018] [Indexed: 01/05/2023]
Abstract
Animals engage in social interactions with changes in their behaviour and physiology. Environmental challenges, however, can influence social interactions by adding additional stressors. Here, we investigated the effects of urbanisation on the behaviour and hormonal responses of a tropical lizard species, Psammophilus dorsalis, during social interactions. We recorded behaviour of males from suburban and rural areas during controlled encounters with other males and females. We then measured corticosterone and testosterone levels of individuals at 10 min intervals, from immediately after the social encounter to 30 min later and then at 120 min after the interaction period. We found that differences in social behaviours and subsequent hormone levels were largely driven by habitat, and not social context. Overall, we found that fewer suburban males showed behavioural displays compared to rural males during social encounters. For those that displayed, intensity of aggression was similar across populations, but courtship intensity was lower for suburban males compared to rural males. Suburban males also had significantly elevated levels of corticosterone both under control conditions (no social encounter) and following intra- and intersexual interactions, while rural males retained low levels of corticosterone across contexts. Social interactions were associated with an increase in testosterone levels in all males, but only rural males maintained elevated levels for up to 120 min after interactions with females. Thus, lizards from these suburban and rural populations showed key differences in responsiveness to and recovery from social challenges, a pattern that suggests alternative coping styles ('proactive' vs. 'reactive'). These differences in social coping styles could influence consequences of sexual selection in an urbanised world.
Collapse
Affiliation(s)
- Anuradha Batabyal
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India.
| | - Maria Thaker
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
22
|
Heimovics SA, Merritt JR, Jalabert C, Ma C, Maney DL, Soma KK. Rapid effects of 17β-estradiol on aggressive behavior in songbirds: Environmental and genetic influences. Horm Behav 2018; 104:41-51. [PMID: 29605636 PMCID: PMC6344317 DOI: 10.1016/j.yhbeh.2018.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
Contribution to Special Issue on Fast effects of steroids. 17β-estradiol (E2) has numerous rapid effects on the brain and behavior. This review focuses on the rapid effects of E2 on aggression, an important social behavior, in songbirds. First, we highlight the contributions of studies on song sparrows, which reveal that seasonal changes in the environment profoundly influence the capacity of E2 to rapidly alter aggressive behavior. E2 administration to male song sparrows increases aggression within 20 min in the non-breeding season, but not in the breeding season. Furthermore, E2 rapidly modulates several phosphoproteins in the song sparrow brain. In particular, E2 rapidly affects pCREB in the medial preoptic nucleus, in the non-breeding season only. Second, we describe studies of the white-throated sparrow, which reveal how a genetic polymorphism may influence the rapid effects of E2 on aggression. In this species, a chromosomal rearrangement that includes ESR1, which encodes estrogen receptor α (ERα), affects ERα expression in the brain and the ability of E2 to rapidly promote aggression. Third, we summarize studies showing that aggressive interactions rapidly affect levels of E2 and other steroids, both in the blood and in specific brain regions, and the emerging potential for steroid profiling by liquid chromatography tandem mass spectrometry (LC-MS/MS). Such studies of songbirds demonstrate the value of an ethologically informed approach, in order to reveal how steroids act rapidly on the brain to alter naturally-occurring behavior.
Collapse
Affiliation(s)
| | | | - Cecilia Jalabert
- University of British Columbia, Department of Zoology, Vancouver, BC, Canada
| | - Chunqi Ma
- University of British Columbia, Department of Psychology, Vancouver, BC, Canada
| | - Donna L Maney
- Emory University, Department of Psychology, Atlanta, GA, USA
| | - Kiran K Soma
- University of British Columbia, Department of Zoology, Vancouver, BC, Canada; University of British Columbia, Department of Psychology, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, Canada
| |
Collapse
|
23
|
Eco-Evolutionary Genomics of Chromosomal Inversions. Trends Ecol Evol 2018; 33:427-440. [DOI: 10.1016/j.tree.2018.04.002] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 01/17/2023]
|
24
|
Rodríguez-Saltos CA, Lyons SM, Sockman KW, Maney DL. Sound-induced monoaminergic turnover in the auditory forebrain depends on endocrine state in a seasonally-breeding songbird. J Neuroendocrinol 2018; 30:e12606. [PMID: 29738608 PMCID: PMC6365208 DOI: 10.1111/jne.12606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/30/2018] [Indexed: 02/06/2023]
Abstract
Sensory responses to courtship signals can be altered by reproductive hormones. In seasonally-breeding female songbirds, for example, sound-induced immediate early gene expression in the auditory pathway is selective for male song over behaviourally irrelevant sounds only when plasma estradiol reaches breeding-like levels. This selectivity has been hypothesized to be mediated by release of monoaminergic neuromodulators in the auditory pathway. We previously showed that in oestrogen-primed female white-throated sparrows, exposure to male song induced dopamine and serotonin release in auditory regions. In order to mediate hormone-dependent selectivity, this release must be (1) selective for song and (2) modulated by endocrine state. Therefore, in the current study we addressed both questions by conducting playbacks of song or a control sound to females in a breeding-like or non-breeding endocrine state. We then used high performance liquid chromatography to measure turnover of dopamine, norepinephrine, and serotonin in the auditory midbrain and forebrain. We found that sound-induced turnover of dopamine and serotonin did in fact depend on endocrine state; hearing sound increased turnover in the auditory forebrain only in the birds in a breeding-like endocrine state. Contrary to our expectations, these increases occurred in response to either song or artificial tones; in other words, they were not selective for song. The selectivity of sound-induced monoamine release was thus strikingly different from that of immediate early gene responses described in previous studies. We did, however, find that constitutive monoamine release was altered by endocrine state; whether the birds heard sound or not, turnover of serotonin in the auditory forebrain was higher in a breeding-like state than in a non-breeding endocrine state. Our results suggest that dopaminergic and serotonergic responses to song and other sounds, as well as serotonergic tone in auditory areas, could be seasonally modulated. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Susan M. Lyons
- Department of Biology, University of North Carolina, Chapel Hill, NC
| | - Keith W. Sockman
- Department of Biology, University of North Carolina, Chapel Hill, NC
| | | |
Collapse
|
25
|
Scott AM, Dworkin I, Dukas R. Sociability in Fruit Flies: Genetic Variation, Heritability and Plasticity. Behav Genet 2018; 48:247-258. [PMID: 29682673 DOI: 10.1007/s10519-018-9901-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/02/2018] [Indexed: 11/26/2022]
Abstract
Sociability, defined as individuals' propensity to participate in non-aggressive activities with conspecifics, is a fundamental feature of behavior in many animals including humans. However, we still have a limited knowledge of the mechanisms and evolutionary biology of sociability. To enhance our understanding, we developed a new protocol to quantify sociability in fruit flies (Drosophila melanogaster). In a series of experiments with 59 F1 hybrids derived from inbred lines, we documented, first, significant genetic variation in sociability in both males and females, with broad-sense heritabilities of 0.24 and 0.21 respectively. Second, we observed little genetic correlation in sociability between the sexes. Third, we found genetic variation in social plasticity among the hybrids, with a broad-sense heritability of ~0.24. That is, genotypes differed in the degree of sociability after experiencing the same relevant social experience. Our data pave the way for further research on the mechanisms that underlie sociability as well as its ecological and evolutionary consequences.
Collapse
Affiliation(s)
- Andrew M Scott
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Ian Dworkin
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Reuven Dukas
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
26
|
Rapid regulatory evolution of a nonrecombining autosome linked to divergent behavioral phenotypes. Proc Natl Acad Sci U S A 2018; 115:2794-2799. [PMID: 29483264 PMCID: PMC5856536 DOI: 10.1073/pnas.1717721115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the white-throated sparrow (Zonotrichia albicollis), the second chromosome bears a striking resemblance to sex chromosomes. First, within each breeding pair of birds, one bird is homozygous for the standard arrangement of the chromosome (ZAL2/ZAL2) and its mate is heterozygous for a different version (ZAL2/ZAL2m). Second, recombination is profoundly suppressed between the two versions, leading to genetic differentiation between them. Third, the ZAL2m version is linked with phenotypic traits, such as bright plumage, high aggression, and low parental behavior, which are usually associated with males. These similarities to sex chromosomes suggest that the evolutionary mechanisms that shape sex chromosomes, in particular genetic degeneration of the heterogametic version due to the suppression of recombination, are likely important in this system as well. Here, we investigated patterns of protein sequence evolution and gene expression evolution between the ZAL2 and ZAL2m chromosomes by whole-genome sequencing and transcriptome analyses. Patterns of protein evolution exhibited only weak signals of genetic degeneration, and few genes harbored signatures of positive selection. We found substantial evidence of transcriptome evolution, such as significant expression divergence between ZAL2 and ZAL2m alleles and signatures of dosage compensation for highly expressed genes. These results suggest that, early in the evolution of heteromorphic chromosomes, gene expression divergence and dosage compensation can prevail before large-scale genetic degeneration. Our results show further that suppression of recombination between heteromorphic chromosomes can lead to the evolution of alternative (sex-like) behavioral phenotypes before substantial genetic degeneration.
Collapse
|
27
|
Merritt JR, Davis MT, Jalabert C, Libecap TJ, Williams DR, Soma KK, Maney DL. Rapid effects of estradiol on aggression depend on genotype in a species with an estrogen receptor polymorphism. Horm Behav 2018; 98:210-218. [PMID: 29277700 PMCID: PMC5832363 DOI: 10.1016/j.yhbeh.2017.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/01/2017] [Accepted: 11/21/2017] [Indexed: 11/18/2022]
Abstract
The white-throated sparrow (Zonotrichia albicollis) represents a powerful model in behavioral neuroendocrinology because it occurs in two plumage morphs that differ with respect to steroid-dependent social behaviors. Birds of the white-striped (WS) morph engage in more territorial aggression than do birds of the tan-striped (TS) morph, and the TS birds engage in more parenting behavior. This behavioral polymorphism is caused by a chromosomal inversion that has captured many genes, including estrogen receptor alpha (ERα). In this study, we tested the hypothesis that morph differences in aggression might be explained by differential sensitivity to estradiol (E2). We administered E2 non-invasively to non-breeding white-throated sparrows and quantified aggression toward a conspecific 10 min later. E2 administration rapidly increased aggression in WS birds but not TS birds, consistent with our hypothesis that differential sensitivity to E2 may at least partially explain morph differences in aggression. To query the site of E2 action in the brain, we administered E2 and quantified Egr-1 expression in brain regions in which expression of ERα is known to differ between the morphs. E2 treatment decreased Egr-1 immunoreactivity in nucleus taeniae of the amygdala, but this effect did not depend on morph. Overall, our results support a role for differential effects of E2 on aggression in the two morphs, but more research will be needed to determine the neuroanatomical site of action.
Collapse
Affiliation(s)
- Jennifer R Merritt
- Department of Psychology, 36 Eagle Row, Emory University, Atlanta, GA 30322, USA.
| | - Matthew T Davis
- Department of Psychology, 36 Eagle Row, Emory University, Atlanta, GA 30322, USA
| | - Cecilia Jalabert
- Department of Psychology, 2136 West Mall, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Timothy J Libecap
- Department of Psychology, 36 Eagle Row, Emory University, Atlanta, GA 30322, USA
| | - Donald R Williams
- Department of Psychology, 36 Eagle Row, Emory University, Atlanta, GA 30322, USA
| | - Kiran K Soma
- Department of Psychology, 2136 West Mall, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Donna L Maney
- Department of Psychology, 36 Eagle Row, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
28
|
Grunst ML, Grunst AS, Formica VA, Gonser RA, Tuttle EM. Multiple signaling functions of song in a polymorphic species with alternative reproductive strategies. Ecol Evol 2018; 8:1369-1383. [PMID: 29375804 PMCID: PMC5773301 DOI: 10.1002/ece3.3702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/23/2017] [Accepted: 09/14/2017] [Indexed: 11/10/2022] Open
Abstract
Vocal traits can be sexually selected to reflect male quality, but may also evolve to serve additional signaling functions. We used a long-term dataset to examine the signaling potential of song in dimorphic white-throated sparrows (Zonotrichia albicollis). We investigated whether song conveys multifaceted information about the vocalizing individual, including fitness, species identity, individual identity, and morph. We also evaluated whether song traits correlate differently with fitness in the two morphs, as the more promiscuous strategy of white, relative to tan, morph males might impose stronger sexual selection. Males with high song rates achieved higher lifetime reproductive success, and this pattern was driven by white morph males. In addition, males that sang songs with many notes survived longer, but this pattern was less robust. Thus, song traits reflect differences in fitness and may more strongly affect fitness in the white morph. Song frequency was unrelated to fitness, body size, or morph, but was individual specific and could signal individual identity. Songs of the two morphs displayed similar frequency ratios and bandwidths. However, tan morph males sang songs with longer first notes, fewer notes, and higher variability. Thus, song could be used in morph discrimination. Variation in frequency ratios between notes was low and could function in conspecific recognition, but pitch change dynamics did differ between four different song types observed. Our results support a multiple messages model for white-throated sparrow song, in which different song traits communicate discrete information about the vocalizing individual.
Collapse
Affiliation(s)
- Melissa L Grunst
- Department of Biology Indiana State University Terre Haute IN USA
| | - Andrea S Grunst
- Department of Biology Indiana State University Terre Haute IN USA
| | | | - Rusty A Gonser
- Department of Biology Indiana State University Terre Haute IN USA
| | - Elaina M Tuttle
- Department of Biology Indiana State University Terre Haute IN USA
| |
Collapse
|
29
|
Maney DL. Polymorphisms in sex steroid receptors: From gene sequence to behavior. Front Neuroendocrinol 2017; 47:47-65. [PMID: 28705582 PMCID: PMC6312198 DOI: 10.1016/j.yfrne.2017.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/05/2017] [Accepted: 07/08/2017] [Indexed: 01/09/2023]
Abstract
Sex steroid receptors have received much interest as potential mediators of human behaviors and mental disorders. Candidate gene association studies have identified about 50 genetic variants of androgen and estrogen receptors that correlate with human behavioral phenotypes. Because most of these polymorphisms lie outside coding regions, discerning their effect on receptor function is not straightforward. Thus, although discoveries of associations improve our ability to predict risk, they have not greatly advanced our understanding of underlying mechanisms. This article is intended to serve as a starting point for psychologists and other behavioral biologists to consider potential mechanisms. Here, I review associations between polymorphisms in sex steroid receptors and human behavioral phenotypes. I then consider ways in which genetic variation can affect processes such as mRNA transcription, splicing, and stability. Finally, I suggest ways that hypotheses about mechanism can be tested, for example using in vitro assays and/or animal models.
Collapse
Affiliation(s)
- Donna L Maney
- Department of Psychology, 36 Eagle Row, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
30
|
Yewers MSC, Jessop TS, Stuart-Fox D. Endocrine differences among colour morphs in a lizard with alternative behavioural strategies. Horm Behav 2017; 93:118-127. [PMID: 28478216 DOI: 10.1016/j.yhbeh.2017.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 03/18/2017] [Accepted: 05/02/2017] [Indexed: 11/16/2022]
Abstract
Alternative behavioural strategies of colour morphs are expected to associate with endocrine differences and to correspond to differences in physical performance (e.g. movement speed, bite force in lizards); yet the nature of correlated physiological and performance traits in colour polymorphic species varies widely. Colour morphs of male tawny dragon lizards Ctenophorus decresii have previously been found to differ in aggressive and anti-predator behaviours. We tested whether known behavioural differences correspond to differences in circulating baseline and post-capture stress levels of androgen and corticosterone, as well as bite force (an indicator of aggressive performance) and field body temperature. Immediately after capture, the aggressive orange morph had higher circulating androgen than the grey morph or the yellow morph. Furthermore, the orange morph maintained high androgen following acute stress (30min of capture); whereas androgen increased in the grey and yellow morphs. This may reflect the previously defined behavioural differences among morphs as the aggressive response of the yellow morph is conditional on the colour of the competitor and the grey morph shows consistently low aggression. In contrast, all morphs showed an increase in corticosterone concentration after capture stress and morphs did not differ in levels of corticosterone stress magnitude (CSM). Morphs did not differ in size- and temperature-corrected bite force but did in body temperature at capture. Differences in circulating androgen and body temperature are consistent with morph-specific behavioural strategies in C. decresii but our results indicate a complex relationship between hormones, behaviour, temperature and bite force within and between colour morphs.
Collapse
Affiliation(s)
| | - Tim S Jessop
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Australia
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Australia
| |
Collapse
|
31
|
Tuttle EM, Grunst AS, Grunst ML, Korody ML, Betuel AM, Barcelo‐Serra M, Bierly G, Gonser RA. Climatically driven changes in population composition and offspring sex‐morph ratio in a polymorphic species. Ecosphere 2017. [DOI: 10.1002/ecs2.1762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- E. M. Tuttle
- Department of Biology Indiana State University 200 North Seventh Street Terre Haute Indiana 47809 USA
| | - A. S. Grunst
- Department of Biology Indiana State University 200 North Seventh Street Terre Haute Indiana 47809 USA
| | - M. L. Grunst
- Department of Biology Indiana State University 200 North Seventh Street Terre Haute Indiana 47809 USA
| | - M. L. Korody
- Department of Biology Indiana State University 200 North Seventh Street Terre Haute Indiana 47809 USA
| | - A. M. Betuel
- Department of Biology Indiana State University 200 North Seventh Street Terre Haute Indiana 47809 USA
| | - M. Barcelo‐Serra
- Department of Biology Indiana State University 200 North Seventh Street Terre Haute Indiana 47809 USA
| | - G. Bierly
- Department of Earth and Environmental Systems Indiana State University 200 North Seventh Street Terre Haute Indiana 47809 USA
| | - R. A. Gonser
- Department of Biology Indiana State University 200 North Seventh Street Terre Haute Indiana 47809 USA
| |
Collapse
|
32
|
Steen R, Torjussen CS, Jones DW, Tsimpidis T, Miliou A. Plastic mistaken for prey by a colony-breeding Eleonora's falcon (Falco eleonorae) in the Mediterranean Sea, revealed by camera-trap. MARINE POLLUTION BULLETIN 2016; 106:200-201. [PMID: 26971232 DOI: 10.1016/j.marpolbul.2016.02.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 06/05/2023]
Abstract
Discarded plastic is known to be harmful for marine animals through ingestion and entanglement. Here we report the first documentation of Eleonora's falcons providing plastic waste to dependent nestlings. Eleonora's falcons breed colonially on sea cliffs and islets in areas of the Mediterranean Sea and the Canary Islands in which they normally feed their nestlings exclusively with small migratory birds.
Collapse
Affiliation(s)
- Ronny Steen
- Department of Ecology and Natural Resource Management, Norwegian University of Life Science, P.O. Box 5003, 1432 Ås, Norway.
| | - Cathrine S Torjussen
- Department of Ecology and Natural Resource Management, Norwegian University of Life Science, P.O. Box 5003, 1432 Ås, Norway
| | - Dean W Jones
- Archipelagos, Institute of Marine Conservation, Marine Research Base, P.O. Box 42, Pythagorio 83102, Samos, Greece
| | - Thodoris Tsimpidis
- Archipelagos, Institute of Marine Conservation, Marine Research Base, P.O. Box 42, Pythagorio 83102, Samos, Greece
| | - Anastasia Miliou
- Archipelagos, Institute of Marine Conservation, Marine Research Base, P.O. Box 42, Pythagorio 83102, Samos, Greece
| |
Collapse
|
33
|
Hedrick PW, Smith DW, Stahler DR. Negative-assortative mating for color in wolves. Evolution 2016; 70:757-66. [PMID: 26988852 DOI: 10.1111/evo.12906] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/13/2016] [Accepted: 03/01/2016] [Indexed: 12/01/2022]
Abstract
There is strong negative-assortative mating for gray and black pelage color in the iconic wolves in Yellowstone National Park. This is the first documented case of significant negative-assortative mating in mammals and one of only a very few cases in vertebrates. Of 261 matings documented from 1995 to 2015, 63.6% were between gray and black wolves and the correlation between mates for color was -0.266. There was a similar excess of matings of both gray males × black females and black males × gray females. Using the observed frequency of negative-assortative mating in a model with both random and negative-assortative mating, the estimated proportion of negative-assortative mating was 0.430. The estimated frequency of black wolves in the population from 1996 to 2014 was 0.452 and these frequencies appear stable over this 19-year period. Using the estimated level of negative-assortative mating, the predicted equilibrium frequency of the dominant allele was 0.278, very close to the mean value of 0.253 observed. In addition, the patterns of genotype frequencies, that is, the observed proportion of black homozygotes and the observed excess of black heterozygotes, are consistent with negative-assortative mating. Importantly these results demonstrate that negative-assortative mating could be entirely responsible for the maintenance of this well-known color polymorphism.
Collapse
Affiliation(s)
- Philip W Hedrick
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85287.
| | - Douglas W Smith
- Yellowstone Wolf Project, Yellowstone Center for Resources, Yellowstone National Park, Wyoming, 82190
| | - Daniel R Stahler
- Yellowstone Wolf Project, Yellowstone Center for Resources, Yellowstone National Park, Wyoming, 82190
| |
Collapse
|
34
|
Lamichhaney S, Fan G, Widemo F, Gunnarsson U, Thalmann DS, Hoeppner MP, Kerje S, Gustafson U, Shi C, Zhang H, Chen W, Liang X, Huang L, Wang J, Liang E, Wu Q, Lee SMY, Xu X, Höglund J, Liu X, Andersson L. Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax). Nat Genet 2015; 48:84-8. [DOI: 10.1038/ng.3430] [Citation(s) in RCA: 273] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/01/2015] [Indexed: 12/12/2022]
|
35
|
Zinzow-Kramer WM, Horton BM, McKee CD, Michaud JM, Tharp GK, Thomas JW, Tuttle EM, Yi S, Maney DL. Genes located in a chromosomal inversion are correlated with territorial song in white-throated sparrows. GENES BRAIN AND BEHAVIOR 2015; 14:641-54. [PMID: 26463687 DOI: 10.1111/gbb.12252] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/28/2015] [Accepted: 09/09/2015] [Indexed: 01/10/2023]
Abstract
The genome of the white-throated sparrow (Zonotrichia albicollis) contains an inversion polymorphism on chromosome 2 that is linked to predictable variation in a suite of phenotypic traits including plumage color, aggression and parental behavior. Differences in gene expression between the two color morphs, which represent the two common inversion genotypes (ZAL2/ZAL2 and ZAL2/ZAL2(m) ), may therefore advance our understanding of the molecular underpinnings of these phenotypes. To identify genes that are differentially expressed between the two morphs and correlated with behavior, we quantified gene expression and terrirorial aggression, including song, in a population of free-living white-throated sparrows. We analyzed gene expression in two brain regions, the medial amygdala (MeA) and hypothalamus. Both regions are part of a 'social behavior network', which is rich in steroid hormone receptors and previously linked with territorial behavior. Using weighted gene co-expression network analyses, we identified modules of genes that were correlated with both morph and singing behavior. The majority of these genes were located within the inversion, showing the profound effect of the inversion on the expression of genes captured by the rearrangement. These modules were enriched with genes related to retinoic acid signaling and basic cellular functioning. In the MeA, the most prominent pathways were those related to steroid hormone receptor activity. Within these pathways, the only gene encoding such a receptor was ESR1 (estrogen receptor 1), a gene previously shown to predict song rate in this species. The set of candidate genes we identified may mediate the effects of a chromosomal inversion on territorial behavior.
Collapse
Affiliation(s)
| | - B M Horton
- Department of Psychology, Emory University, Atlanta, GA
| | - C D McKee
- Department of Psychology, Emory University, Atlanta, GA
| | - J M Michaud
- Department of Psychology, Emory University, Atlanta, GA
| | - G K Tharp
- Yerkes Nonhuman Primate Genomics Core, Emory University, Atlanta, GA
| | - J W Thomas
- NIH Intramural Sequencing Center, National Human Genome Research Institute, NIH, Rockville, MD
| | - E M Tuttle
- Department of Biology, Indiana State University, Terre Haute, IN.,The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN
| | - S Yi
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - D L Maney
- Department of Psychology, Emory University, Atlanta, GA
| |
Collapse
|
36
|
Calisi RM, Saldanha CJ. Neurohormones, Brain, and Behavior: A Comparative Approach to Understanding Rapid Neuroendocrine Action. Integr Comp Biol 2015; 55:264-7. [PMID: 25896107 DOI: 10.1093/icb/icv007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The definition of a hormone has been in part delineated by its journey to distant receptor targets. Following activation of a receptor, a subsequent reaction facilitates the regulation of physiology and, ultimately, behavior. However, a growing number of studies report that hormones can influence these events at a previously underappreciated high speed. With the potential to act as neurotransmitters, the definition of a hormone and its mechanisms of action are evolving. In this symposium, we united scientists who use contemporary molecular, electrophysiological, and biochemical approaches to study aspects of rapid hormone action in a broad array of systems across different levels of biological organization. What emerged was an overwhelming consensus that the use of integrative and comparative approaches fuels discovery and increases our understanding of de novo hormone synthesis, local actions of neurohormones, and subsequent effects on neuroplasticity and behavior.
Collapse
Affiliation(s)
- Rebecca M Calisi
- *Department of Biology, Barnard College, Columbia University, New York, NY 10027, USA;
| | - Colin J Saldanha
- Department of Biology, American University, Washington, D.C. 20016, USA
| |
Collapse
|
37
|
Maney DL, Horton BM, Zinzow-Kramer WM. Estrogen Receptor Alpha as a Mediator of Life-History Trade-offs. Integr Comp Biol 2015; 55:323-31. [PMID: 25855477 DOI: 10.1093/icb/icv005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Trade-offs between competitive and parental strategies often are mediated by sex steroids. The mechanisms underlying steroid signaling and metabolism may therefore serve as targets of disruptive selection that leads to alternative behavioral phenotypes. White-throated sparrows exhibit two color morphs that differ in both competitive and parental behavior; white-striped (WS) birds engage in more territorial singing, whereas tan-striped (TS) birds provision nestlings more often. Although WS birds have higher levels of plasma testosterone (T) and estradiol than do TS birds, experimental equalization of these hormones does not abolish morph differences in singing. Neural sensitivity to sex steroids may differ between the morphs because the gene for estrogen receptor alpha (ERα) has been captured by a chromosomal rearrangement found only in the WS birds. We recently showed that expression of this gene differs between the morphs and may drive the behavioral polymorphism. First, the ERα promoter region contains fixed polymorphisms that affect transcription efficiency in vitro. Second, in a free-living population, local expression of ERα depends strongly on morph and predicts both territorial singing and parental provisioning. Differential ERα expression is particularly striking in the medial amygdala; WS birds have three times more ERα mRNA than do TS birds. This difference persists during the non-breeding season and is unaffected by exogenous T treatment. Finally, preliminary data generated by RNA-seq confirm that ERα expression in MeA is both differentially expressed and correlated with territorial singing. Together, these results suggest that ERα may be a target of disruptive selection that leads to alternative behavioral strategies. Our future directions include a more detailed analysis of the ERα promoter regions to determine the molecular basis of differential expression as well as gene network analyses to identify genes connected to ERα.
Collapse
Affiliation(s)
- Donna L Maney
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Brent M Horton
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
38
|
Zinzow-Kramer WM, Horton BM, Maney DL. Evaluation of reference genes for quantitative real-time PCR in the brain, pituitary, and gonads of songbirds. Horm Behav 2014; 66:267-75. [PMID: 24780145 PMCID: PMC4131286 DOI: 10.1016/j.yhbeh.2014.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/01/2014] [Accepted: 04/20/2014] [Indexed: 01/18/2023]
Abstract
Quantitative real-time PCR (qPCR) is becoming a popular tool for the quantification of gene expression in the brain and endocrine tissues of songbirds. Accurate analysis of qPCR data relies on the selection of appropriate reference genes for normalization, yet few papers on songbirds contain evidence of reference gene validation. Here, we evaluated the expression of ten potential reference genes (18S, ACTB, GAPDH, HMBS, HPRT, PPIA, RPL4, RPL32, TFRC, and UBC) in brain, pituitary, ovary, and testis in two species of songbirds: zebra finch and white-throated sparrow. We used two algorithms, geNorm and NormFinder, to assess the stability of these reference genes in our samples. We found that the suitability of some of the most popular reference genes for target gene normalization in mammals, such as 18S, depended highly on tissue type. Thus, they are not the best choices for brain and gonad in these songbirds. In contrast, we identified alternative genes, such as HPRT, RPL4 and PPIA, that were highly stable in brain, pituitary, and gonad in these species. Our results suggest that the validation of reference genes in mammals does not necessarily extrapolate to other taxonomic groups. For researchers wishing to identify and evaluate suitable reference genes for qPCR in songbirds, our results should serve as a starting point and should help increase the power and utility of songbird models in behavioral neuroendocrinology.
Collapse
Affiliation(s)
| | - Brent M Horton
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Donna L Maney
- Department of Psychology, Emory University, Atlanta, GA, USA
| |
Collapse
|