1
|
van Aswegen M, Szabo A, Currie JJ, Stack SH, West KL, Hofmann N, Christiansen F, Bejder L. Energetic cost of gestation and prenatal growth in humpback whales. J Physiol 2025; 603:529-550. [PMID: 39661448 DOI: 10.1113/jp287304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/15/2024] [Indexed: 12/13/2024] Open
Abstract
Improving our understanding of energy allocation in reproduction is key for accurately parameterizing bioenergetic models to assess population responses to environmental perturbations and anthropogenic disturbance. We quantified the energetic cost of gestation in humpback whales (Megaptera novaeangliae) using historical whaling records, non-invasive unoccupied aerial system (UAS) photogrammetry and post mortem tissue samples. First, we estimated relative birth size using body length measurements of 678 mother-fetus pairs from historical whaling records and 987 mother-calf pairs measured in situ using UAS-photogrammetry. The total energetic cost of gestation includes fetal growth (FG), heat increment of gestation and placental tissue development. FG was modelled from conception to birth, with fetal volume and mass estimated using the volume-to-length relationship of perinatal calves and published humpback whale tissue composition estimates. Tissue-specific energy content was quantified using post mortem bone, muscle, viscera and blubber samples from a neonatal humpback whale. Placental tissue development was estimated using humpback whale placental tissue and published equations. Relative birth length was found to be 33.75% (95% CI: 32.10-34.61) of maternal length. FG rates and absolute birth size increased with maternal length, with exponential growth in fetal length, volume and mass resulting in minimal energetic costs over the first two quadmesters (0.01-1.08%) before increasing significantly in the final quadmester (98.92%). Gestational heat constituted the greatest energetic cost (90.42-94.95%), followed by fetal (4.58-7.76%) and placental (0.37-1.83%) tissue growth. Our findings highlight the energetic costs endured by capital breeding females preceding parturition, with the most substantial energetic costs of gestation coinciding with migration and fasting. KEY POINTS: We quantified the energetic cost of gestation using body length measurements of mother-fetus pairs from historical whaling records, length estimates of mother-calf pairs measured in situ using aerial photogrammetry and post mortem tissue samples. Fetal growth rates and birth size increased with maternal length, with fetal length, volume and mass increasing exponentially over gestation. Energetic costs over the first two quadmesters were negligible (0.01-1.08%) before increasing significantly in the final quadmester (98.92%). Though larger females incur nearly twice the energetic cost of smaller females, they are likely buffered by greater absolute energy reserves, suggesting smaller females may be less resilient to perturbations in energy balance. We demonstrate the significant energetic costs incurred by pregnant humpback whales, with most of the energetic expenditure occurring over the final 100 days of gestation. Late-pregnant females are, therefore, particularly vulnerable to disruptions in energy balance, given periods of greatest energetic stress coincide with fasting and migration.
Collapse
Affiliation(s)
- Martin van Aswegen
- Marine Mammal Research Program, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
- Alaska Whale Foundation, Petersburg, AK, USA
| | - Andy Szabo
- Alaska Whale Foundation, Petersburg, AK, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i at Manoa, Kāne'ohe, Hawai'i, USA
| | - Jens J Currie
- Marine Mammal Research Program, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
- Pacific Whale Foundation, Maui, HI, USA
| | - Stephanie H Stack
- Pacific Whale Foundation, Maui, HI, USA
- Southern Ocean Persistent Organic Pollutants Program, School of Environment and Science, Griffith University, Queensland, Australia
| | - Kristi L West
- Health and Stranding Lab, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
- Health and Stranding Lab, College of Tropical Agriculture and Human Resources, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Nicholas Hofmann
- Health and Stranding Lab, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | - Fredrik Christiansen
- Marine Mammal Research, Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Lars Bejder
- Marine Mammal Research Program, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Kügler A, Lammers MO, Pack AA, Tenorio-Hallé L, Thode AM. Diel spatio-temporal patterns of humpback whale singing on a high-density breeding ground. ROYAL SOCIETY OPEN SCIENCE 2024; 11:230279. [PMID: 38269074 PMCID: PMC10805604 DOI: 10.1098/rsos.230279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024]
Abstract
Humpback whale song chorusing dominates the marine soundscape in Hawai'i during winter months, yet little is known about spatio-temporal habitat use patterns of singers. We analysed passive acoustic monitoring data from five sites off Maui and found that ambient noise levels associated with song chorusing decreased during daytime hours nearshore but increased offshore. To resolve whether these changes reflect a diel offshore-onshore movement or a temporal difference in singing activity, data from 71 concurrently conducted land-based theodolite surveys were analysed. Non-calf pods (n = 3082), presumably including the majority of singers, were found further offshore with increasing time of the day. Separately, we acoustically localized 217 nearshore singers using vector-sensors. During the day, distances to shore and minimum distances among singers increased, and singers switched more between being stationary and singing while travelling. Together, these findings suggest that the observed diel trends in humpback whale chorusing off Maui represent a pattern of active onshore-offshore movement of singers. We hypothesize that this may result from singers attempting to reduce intraspecific acoustic masking when densities are high nearshore and avoidance of a loud, non-humpback, biological evening chorus offshore, creating a dynamic of movement of singers aimed at increasing the efficiency of their acoustic display.
Collapse
Affiliation(s)
- Anke Kügler
- University of Hawai‘i at Mānoa, Honolulu, HI, USA
- Bioacoustics and Behavioral Ecology Lab, Syracuse University, Syracuse, NY, USA
- Oceanwide Science Institute, Honolulu, HI, USA
| | - Marc O. Lammers
- Oceanwide Science Institute, Honolulu, HI, USA
- Hawaiian Islands Humpback Whale National Marine Sanctuary, Kīhei, HI, USA
| | - Adam A. Pack
- University of Hawai‘i at Hilo, Hilo, HI, USA
- The Dolphin Institute, Hilo, HI, USA
| | - Ludovic Tenorio-Hallé
- Marine Physical Laboratory, Scripps Institute of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Aaron M. Thode
- Marine Physical Laboratory, Scripps Institute of Oceanography, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Cheeseman T, Southerland K, Acebes JM, Audley K, Barlow J, Bejder L, Birdsall C, Bradford AL, Byington JK, Calambokidis J, Cartwright R, Cedarleaf J, Chavez AJG, Currie JJ, De Weerdt J, Doe N, Doniol-Valcroze T, Dracott K, Filatova O, Finn R, Flynn K, Ford JKB, Frisch-Jordán A, Gabriele CM, Goodwin B, Hayslip C, Hildering J, Hill MC, Jacobsen JK, Jiménez-López ME, Jones M, Kobayashi N, Lyman E, Malleson M, Mamaev E, Martínez Loustalot P, Masterman A, Matkin C, McMillan CJ, Moore JE, Moran JR, Neilson JL, Newell H, Okabe H, Olio M, Pack AA, Palacios DM, Pearson HC, Quintana-Rizzo E, Ramírez Barragán RF, Ransome N, Rosales-Nanduca H, Sharpe F, Shaw T, Stack SH, Staniland I, Straley J, Szabo A, Teerlink S, Titova O, Urban R J, van Aswegen M, de Morais MV, von Ziegesar O, Witteveen B, Wray J, Yano KM, Zwiefelhofer D, Clapham P. A collaborative and near-comprehensive North Pacific humpback whale photo-ID dataset. Sci Rep 2023; 13:10237. [PMID: 37353581 PMCID: PMC10290149 DOI: 10.1038/s41598-023-36928-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/12/2023] [Indexed: 06/25/2023] Open
Abstract
We present an ocean-basin-scale dataset that includes tail fluke photographic identification (photo-ID) and encounter data for most living individual humpback whales (Megaptera novaeangliae) in the North Pacific Ocean. The dataset was built through a broad collaboration combining 39 separate curated photo-ID catalogs, supplemented with community science data. Data from throughout the North Pacific were aggregated into 13 regions, including six breeding regions, six feeding regions, and one migratory corridor. All images were compared with minimal pre-processing using a recently developed image recognition algorithm based on machine learning through artificial intelligence; this system is capable of rapidly detecting matches between individuals with an estimated 97-99% accuracy. For the 2001-2021 study period, a total of 27,956 unique individuals were documented in 157,350 encounters. Each individual was encountered, on average, in 5.6 sampling periods (i.e., breeding and feeding seasons), with an annual average of 87% of whales encountered in more than one season. The combined dataset and image recognition tool represents a living and accessible resource for collaborative, basin-wide studies of a keystone marine mammal in a time of rapid ecological change.
Collapse
Affiliation(s)
- Ted Cheeseman
- Happywhale, Santa Cruz, California, USA.
- Southern Cross University, Lismore, NSW, Australia.
| | | | | | | | - Jay Barlow
- NOAA Southwest Fisheries Science Center, San Diego, California, USA
| | - Lars Bejder
- Hawai'i Institute of Marine Biology, University of Hawai'i at Manoa, Kaneohe, Hawai'i, USA
| | - Caitlin Birdsall
- Marine Education and Research Society, Port McNeill, British Columbia, Canada
- Ocean Wise, Vancouver, British Columbia, Canada
| | - Amanda L Bradford
- NOAA Fisheries Pacific Islands Fisheries Science Center, Honolulu, Hawai'i, USA
| | - Josie K Byington
- Pacific Wildlife Foundation, Port Moody, British Columbia, Canada
| | | | | | | | | | | | | | - Nicole Doe
- Marine Education and Research Society, Port McNeill, British Columbia, Canada
| | | | - Karina Dracott
- Ocean Wise, Vancouver, British Columbia, Canada
- North Coast Cetacean Society, Hartley Bay, British Columbia, Canada
| | | | - Rachel Finn
- NOAA Hawaiian Islands Humpback Whale National Marine Sanctuary, Kihei, Maui, Hawaii, USA
| | | | - John K B Ford
- Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | | | - Christine M Gabriele
- Glacier Bay National Park and Preserve, Gustavus, Alaska, USA
- Hawai'i Marine Mammal Consortium, Kamuela, Hawai'i, USA
| | - Beth Goodwin
- Eye of the Whale Marine Mammal Research, Kamuela, Hawai'i, USA
| | - Craig Hayslip
- Marine Mammal Institute, Oregon State University, Newport, Oregon, USA
| | - Jackie Hildering
- Marine Education and Research Society, Port McNeill, British Columbia, Canada
| | - Marie C Hill
- NOAA Fisheries Pacific Islands Fisheries Science Center, Honolulu, Hawai'i, USA
- Cooperative Institution of Marine and Atmospheric Research, Research Corporation of the University of Hawai'i, Honolulu, Hawai'i, USA
| | | | - M Esther Jiménez-López
- Departamento Académico de Ingeniería en Pesquerías, Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, México
| | | | | | - Edward Lyman
- NOAA Hawaiian Islands Humpback Whale National Marine Sanctuary, Kihei, Maui, Hawaii, USA
| | - Mark Malleson
- Humpback Whales of the Salish Sea, Duncan, British Columbia, Canada
| | - Evgeny Mamaev
- Commander Islands National Park, Kamchatka Krai, Russian Federation
| | | | | | | | - Christie J McMillan
- Marine Education and Research Society, Port McNeill, British Columbia, Canada
- Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Jeff E Moore
- NOAA Southwest Fisheries Science Center, San Diego, California, USA
| | - John R Moran
- NOAA Alaska Fisheries Science Center, Juneau, Alaska, USA
| | - Janet L Neilson
- Glacier Bay National Park and Preserve, Gustavus, Alaska, USA
| | | | - Haruna Okabe
- Okinawa Churashima Foundation, Kunigami-gun, Japan
| | | | - Adam A Pack
- University of Hawai'i at Hilo, Hilo, Hawai'i, USA
- The Dolphin Institute, Hilo, Hawai'i, USA
| | - Daniel M Palacios
- Marine Mammal Institute, Oregon State University, Newport, Oregon, USA
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, Oregon, USA
| | | | | | | | | | - Hiram Rosales-Nanduca
- Departamento Académico de Ingeniería en Pesquerías, Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, México
| | - Fred Sharpe
- Alaska Whale Foundation, Petersburg, Alaska, USA
| | - Tasli Shaw
- Humpback Whales of the Salish Sea, Duncan, British Columbia, Canada
| | | | | | - Jan Straley
- University of Alaska Southeast, Juneau, Alaska, USA
| | - Andrew Szabo
- Alaska Whale Foundation, Petersburg, Alaska, USA
| | - Suzie Teerlink
- NOAA Fisheries Alaska Regional Office, Juneau, Alaska, USA
| | - Olga Titova
- Severtsov Institute of Ecology and Evolution, Moscow, Russian Federation
| | - Jorge Urban R
- Universidad Autónoma de Baja California Sur, La Paz, Mexico
| | | | | | | | | | - Janie Wray
- North Coast Cetacean Society, Hartley Bay, British Columbia, Canada
| | - Kymberly M Yano
- NOAA Fisheries Pacific Islands Fisheries Science Center, Honolulu, Hawai'i, USA
- Cooperative Institution of Marine and Atmospheric Research, Research Corporation of the University of Hawai'i, Honolulu, Hawai'i, USA
| | | | - Phil Clapham
- Seastar Scientific, Vashon Island, Washington, USA
| |
Collapse
|
4
|
Atkinson S, Branch TA, Pack AA, Straley JM, Moran JR, Gabriele C, Mashburn KL, Cates K, Yin S. Pregnancy rate and reproductive hormones in humpback whale blubber: Dominant form of progesterone differs during pregnancy. Gen Comp Endocrinol 2023; 330:114151. [PMID: 36341970 DOI: 10.1016/j.ygcen.2022.114151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/04/2022]
Abstract
To better understand reproductive physiology of humpback whales Megaptera novaeangliae that reside in Hawai'i and Alaska, enzyme immunoassays were validated for both progesterone and testosterone in free-ranging and stranded animals (n = 185 biopsies). Concentrations were analyzed between different depths of large segments of blubber taken from skin to muscle layers of stranded female (n = 2, 1 pregnant, 1 non-pregnant) and male (n = 1) whales. Additionally, progesterone metabolites were identified between pregnant (n = 1) and non-pregnant (n = 3) females using high pressure liquid chromatography (HPLC). Progesterone concentrations were compared between juvenile (i.e., sexually immature), lactating, and pregnant females, and male whales, and pregnancy rates of sexually mature females were calculated. Based on replicate samples from ship struck animals collected at 7 depth locations, blubber containing the highest concentration of progesterone was located 1 cm below the skin for females, and the highest concentration of testosterone was in the skin layer of one male whale. HPLC of blubber samples of pregnant and non-pregnant females contain different immunoreactive progesterone metabolites, with the non-pregnant female eluate comprised of a more polar, and possibly conjugated, form of progesterone than the pregnant female. In females, concentrations of progesterone were highest in the blubber of pregnant (n = 28, 28.6 ± 6.9 ng/g), followed by lactating (n = 16, 0.9 ± 0.1 ng/g), and female juvenile (n = 5, 1.0 ± 0.2 ng/g) whales. Progesterone concentrations in male (n = 24, 0.6 ng/g ± 0.1 ng/g) tissues were the lowest all groups, and not different from lactating or juvenile females. Estimated summer season pregnancy rate among sexually mature females from the Hawai'i stock of humpback whales was 0.562 (95 % confidence interval 0.528-0.605). For lactating females, the year-round pregnancy rate was 0.243 (0.09-0.59), and varies depending on the threshold of progesterone assumed for pregnancy in the range between 3.1 and 28.5 ng/g. Our results demonstrate the synergistic value added when combining immunoreactive assays, HPLC, and long-term sighting histories to further knowledge of humpback whale reproductive physiology.
Collapse
Affiliation(s)
- S Atkinson
- University of Alaska Fairbanks, College of Fisheries and Ocean Sciences, 17101 Point Lena Loop Road, Juneau, AK 99801, USA.
| | - T A Branch
- University of Washington, School of Aquatic and Fishery Sciences, Box 355020, Washington 98105, USA.
| | - A A Pack
- Departments of Psychology and Biology, University of Hawai'i at Hilo, 200 West Kawili Street, Hilo, HI 96720, USA; The Dolphin Institute, P.O. Box 6279, Hilo, HI 96720, USA.
| | - J M Straley
- University of Alaska Southeast, 1332 Seward Avenue, Sitka, AK 99835, USA.
| | - J R Moran
- National Marine Fisheries Service, Alaska Fisheries Science Center, Ted Stevens Marine Research Institute, 17109 Pt. Lena Loop Road, Juneau, AK 99801, USA.
| | - C Gabriele
- Hawai'i Marine Mammal Consortium, P.O. Box 6107, Kamuela, HI 96743, USA; Glacier Bay National Park & Preserve, P.O. Box 140, Gustavus, AK 99826, USA.
| | - K L Mashburn
- University of Alaska Fairbanks, College of Fisheries and Ocean Sciences, 17101 Point Lena Loop Road, Juneau, AK 99801, USA.
| | - K Cates
- University of Alaska Fairbanks, College of Fisheries and Ocean Sciences, 17101 Point Lena Loop Road, Juneau, AK 99801, USA.
| | - S Yin
- Hawai'i Marine Mammal Consortium, P.O. Box 6107, Kamuela, HI 96743, USA.
| |
Collapse
|
5
|
Kettemer LE, Rikardsen AH, Biuw M, Broms F, Mul E, Blanchet MA. Round-trip migration and energy budget of a breeding female humpback whale in the Northeast Atlantic. PLoS One 2022; 17:e0268355. [PMID: 35622815 PMCID: PMC9140263 DOI: 10.1371/journal.pone.0268355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/27/2022] [Indexed: 11/19/2022] Open
Abstract
In the northern hemisphere, humpback whales (Megaptera novaeangliae) typically migrate between summer/autumn feeding grounds at high latitudes, and specific winter/spring breeding grounds at low latitudes. Northeast Atlantic (NEA) humpback whales for instance forage in the Barents Sea and breed either in the West Indies, or the Cape Verde Islands, undertaking the longest recorded mammalian migration (~ 9 000 km). However, in the past decade hundreds of individuals have been observed foraging on herring during the winter in fjord systems along the northern Norwegian coast, with unknown consequences to their migration phenology, breeding behavior and energy budgets. Here we present the first complete migration track (321 days, January 8th, 2019—December 6th, 2019) of a humpback whale, a pregnant female that was equipped with a satellite tag in northern Norway. We show that whales can use foraging grounds in the NEA (Barents Sea, coastal Norway, and Iceland) sequentially within the same migration cycle, foraging in the Barents Sea in summer/fall and in coastal Norway and Iceland in winter. The migration speed was fast (1.6 ms-1), likely to account for the long migration distance (18 300 km) and long foraging season, but varied throughout the migration, presumably in response to the calf’s needs after its birth. The energetic cost of this migration was higher than for individuals belonging to other populations. Our results indicate that large whales can modulate their migration speed to balance foraging opportunities with migration phenology, even for the longest migrations and under the added constraint of reproduction.
Collapse
Affiliation(s)
- Lisa Elena Kettemer
- Faculty of Biosciences, Fisheries and Economics, UiT–The Arctic University of Norway, Tromsø, Norway
- * E-mail: ,
| | - Audun H. Rikardsen
- Faculty of Biosciences, Fisheries and Economics, UiT–The Arctic University of Norway, Tromsø, Norway
- Norwegian Institute for Nature Research, Tromsø, Norway
| | - Martin Biuw
- FRAM—High North Research Centre for Climate and the Environment, IMR Institute of Marine Research, Tromsø, Norway
| | - Fredrik Broms
- North Norwegian Humpback Whale Catalogue (NNHWC), Straumsvegen, Kvaløya, Norway
| | - Evert Mul
- Norwegian Institute for Nature Research, Tromsø, Norway
| | - Marie-Anne Blanchet
- Faculty of Biosciences, Fisheries and Economics, UiT–The Arctic University of Norway, Tromsø, Norway
- FRAM—High North Research Centre for Climate and the Environment, Norwegian Polar Institute, Tromsø, Norway
| |
Collapse
|
6
|
Jones‐Todd CM, Pirotta E, Durban JW, Claridge DE, Baird RW, Falcone EA, Schorr GS, Watwood S, Thomas L. Discrete-space continuous-time models of marine mammal exposure to Navy sonar. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e02475. [PMID: 34653299 PMCID: PMC9786920 DOI: 10.1002/eap.2475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 02/01/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Assessing the patterns of wildlife attendance to specific areas is relevant across many fundamental and applied ecological studies, particularly when animals are at risk of being exposed to stressors within or outside the boundaries of those areas. Marine mammals are increasingly being exposed to human activities that may cause behavioral and physiological changes, including military exercises using active sonars. Assessment of the population-level consequences of anthropogenic disturbance requires robust and efficient tools to quantify the levels of aggregate exposure for individuals in a population over biologically relevant time frames. We propose a discrete-space, continuous-time approach to estimate individual transition rates across the boundaries of an area of interest, informed by telemetry data collected with uncertainty. The approach allows inferring the effect of stressors on transition rates, the progressive return to baseline movement patterns, and any difference among individuals. We apply the modeling framework to telemetry data from Blainville's beaked whale (Mesoplodon densirostris) tagged in the Bahamas at the Atlantic Undersea Test and Evaluation Center (AUTEC), an area used by the U.S. Navy for fleet readiness training. We show that transition rates changed as a result of exposure to sonar exercises in the area, reflecting an avoidance response. Our approach supports the assessment of the aggregate exposure of individuals to sonar and the resulting population-level consequences. The approach has potential applications across many applied and fundamental problems where telemetry data are used to characterize animal occurrence within specific areas.
Collapse
Affiliation(s)
| | - Enrico Pirotta
- Department of Mathematics and StatisticsWashington State University14204 NE Salmon Creek AvenueVancouverWashington98686USA
- School of Biological, Earth and Environmental SciencesUniversity College CorkNorth MallDistillery FieldsCorkT23 N73KIreland
- Centre for Research into Ecological and Environmental ModellingThe ObservatoryUniversity of St AndrewsSt AndrewsKY16 9LZUK
| | - John W. Durban
- Southall Environmental Associates Inc.9099 Soquel Drive, Suite 8AptosCalifornia95003USA
| | - Diane E. Claridge
- Bahamas Marine Mammal Research OrganizationMarsh HarbourAbacoBahamas
| | - Robin W. Baird
- Cascadia Research Collective218 ½ W. 4th AvenueOlympiaWashington98501USA
| | - Erin A. Falcone
- Marine Ecology and Telemetry Research2420 Nellita Road NWSeabeckWashington98380USA
| | - Gregory S. Schorr
- Marine Ecology and Telemetry Research2420 Nellita Road NWSeabeckWashington98380USA
| | - Stephanie Watwood
- Naval Undersea Warfare Center DivisionCode 70TNewportRhode Island02841USA
| | - Len Thomas
- Centre for Research into Ecological and Environmental ModellingThe ObservatoryUniversity of St AndrewsSt AndrewsKY16 9LZUK
| |
Collapse
|
7
|
Wray J, Keen E, O’Mahony ÉN. Social survival: Humpback whales (Megaptera novaeangliae) use social structure to partition ecological niches within proposed critical habitat. PLoS One 2021; 16:e0245409. [PMID: 34161375 PMCID: PMC8221492 DOI: 10.1371/journal.pone.0245409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/30/2021] [Indexed: 11/25/2022] Open
Abstract
Animal culture and social bonds are relevant to wildlife conservation because they influence patterns of geography, behavior, and strategies of survival. Numerous examples of socially-driven habitat partitioning and ecological-niche specialization can be found among vertebrates, including toothed whales. But such social-ecological dynamics, described here as ‘social niche partitioning’, are not known among baleen whales, whose societies—particularly on foraging grounds—are largely perceived as unstructured and incidental to matters of habitat use and conservation. However, through 16 years of behavioral observations and photo-identifications of humpback whales (Megaptera novaeangliae) feeding within a fjord system in the Canadian Pacific (primarily within Gitga’at First Nation waters), we have documented long-term pair bonds (up to 12 years) as well as a complex societal structure, which corresponds closely to persistent patterns in feeding strategy, long-term site fidelity (extended occupancy and annual rate of return up to 75%), specific geographic preferences within the fjord system, and other forms of habitat use. Randomization tests of network congruency and clustering algorithms were used to test for overlap in patterns of social structure and habitat use, which confirmed the occurrence of social niche partitioning on the feeding grounds of this baleen whale species. In addition, we document the extensive practice of group bubble net feeding in Pacific Canada. This coordinated feeding behavior was found to strongly mediate the social structure and habitat use within this humpback whale society. Additionally, during our 2004–2019 study, we observed a shift in social network structure in 2010–2012, which corresponded with environmental and demographic shifts including a sudden decline in the population’s calving rate. Our findings indicate that the social lives of humpback whales, and perhaps baleen whales generally, are more complex than previously supposed and should be a primary consideration in the assessment of potential impacts to important habitat.
Collapse
Affiliation(s)
- Janie Wray
- North Coast Cetacean Society, Alert Bay, British Columbia, Canada
- Pacific Orca Society, Alert Bay, British Columbia, Canada
- * E-mail:
| | - Eric Keen
- North Coast Cetacean Society, Alert Bay, British Columbia, Canada
- Marine Ecology & Telemetry Research, Seabeck, Washington, United States of America
- Sewanee: The University of the South, Sewanee, Tennessee, United States of America
| | - Éadin N. O’Mahony
- North Coast Cetacean Society, Alert Bay, British Columbia, Canada
- Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, United Kingdom
| |
Collapse
|
8
|
Abstract
Abstract
During migration, humpback whale (Megaptera novaeangliae) adult females and their calves use acoustic calling to help maintain contact. The signals produced by these pairs, however, may unintentionally attract nearby breeding males, which can result in interactions that have negative physical and physiological effects on the calf. Therefore, maternal females must choose the vocal and/or behavioral strategy that most effectively balances intra-pair communication with male avoidance. Here, we analyzed differences in adult female-calf vocal activity and movement behavior according to the presence of, and distance to, singing whales and other groups likely to contain males. The results of this study found that these pairs make only minimal changes to their vocal behavior in response to nearby males, suggesting that they have instead evolved calls that are naturally difficult to detect (i.e., produced at significantly lower rates and acoustic levels than other whale groups, resulting in a restricted active space). In addition, they maintain spatial separation from nearby groups by moving to shallower, inshore waters, increasing their proportion of time spent near the surface, and favoring a direct migratory course. This combination of cryptic strategies balances avoidance of unwanted conspecific interaction with the necessity of continued contact between maternal female humpback whales and their calves.
Collapse
|
9
|
Cates KA, Atkinson S, Pack AA, Straley JM, Gabriele CM, Yin S. Corticosterone in central North Pacific male humpback whales (Megaptera novaeangliae): Pairing sighting histories with endocrine markers to assess stress. Gen Comp Endocrinol 2020; 296:113540. [PMID: 32585212 DOI: 10.1016/j.ygcen.2020.113540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 10/24/2022]
Abstract
Developing a better understanding of the stress response is critical to ensuring the health and sustainability of marine mammal populations. However, accurately measuring and interpreting a stress response in free-ranging, large cetaceans is a nascent field. Here, an enzyme immunoassay for corticosterone was validated for use in biopsy samples from male humpback whales (Megaptera novaeangliae). Analyses were conducted on 247 male North Pacific humpback whale blubber samples, including 238 non-calves and 9 calves that were collected on the Hawaiian breeding and Southeast Alaskan feeding grounds from 2004 to 2006. Significant relationships were found when corticosterone concentrations were examined by year, age class and distribution between locations. When examined by year, corticosterone concentrations for male humpback whales were higher in Hawaii in 2004 than in 2005 and 2006 (p < 0.05). Corticosterone concentration also varied by age class with initially high concentrations at birth which subsequently tapered off and remained relatively low until sexual maturity was reached around age 8-10 years. Corticosterone concentrations appeared to peak in male humpback whales around 15-25 years of age. Blubber biopsies from Alaska and Hawaii had similar mean corticosterone concentrations, yet the variability in these samples was much greater for whales located in Hawaii. It is clear that much work remains to be done in order to accurately define or monitor a stress response in male humpback whales and that specific attention is required when looking at age, sex, and yearly trends. Our results suggest that a stress response may be most impacted by age and yearly oceanographic conditions and needs to be initially examined at the individual level.
Collapse
Affiliation(s)
- Kelly A Cates
- University of Alaska Fairbanks, College of Fisheries and Ocean Sciences, Fisheries Department, Juneau Center, 17101 Pt. Lena Loop Road, Juneau, Alaska 99801, USA.
| | - Shannon Atkinson
- University of Alaska Fairbanks, College of Fisheries and Ocean Sciences, Fisheries Department, Juneau Center, 17101 Pt. Lena Loop Road, Juneau, Alaska 99801, USA
| | - Adam A Pack
- Departments of Psychology and Biology, University of Hawai'i at Hilo, 200 West Kawili Street, Hilo, Hawai'i 96720, USA; The Dolphin Institute, P.O. Box 6279, Hilo, Hawai'i 96720, USA
| | - Janice M Straley
- University of Alaska Southeast Sitka Campus, 1332 Seward Ave., Sitka, Alaska 99835, USA
| | | | - Suzanne Yin
- Hawai'i Marine Mammal Consortium, P.O. Box 6107, Kamuela, Hawai'i 96743, USA
| |
Collapse
|
10
|
Chou E, Kershaw F, Maxwell SM, Collins T, Strindberg S, Rosenbaum HC. Distribution of breeding humpback whale habitats and overlap with cumulative anthropogenic impacts in the Eastern Tropical Atlantic. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Emily Chou
- Wildlife Conservation Society Ocean Giants Program Bronx NY USA
- Ecology, Evolution and Environmental Biology Department Columbia University New York NY USA
| | | | - Sara M. Maxwell
- School of Interdisciplinary Arts and Sciences University of Washington Bothell Bothell WA USA
| | - Tim Collins
- Wildlife Conservation Society Ocean Giants Program Bronx NY USA
| | | | - Howard C. Rosenbaum
- Wildlife Conservation Society Ocean Giants Program Bronx NY USA
- Ecology, Evolution and Environmental Biology Department Columbia University New York NY USA
| |
Collapse
|
11
|
Cates KA, Atkinson S, Gabriele CM, Pack AA, Straley JM, Yin S. Testosterone trends within and across seasons in male humpback whales (Megaptera novaeangliae) from Hawaii and Alaska. Gen Comp Endocrinol 2019; 279:164-173. [PMID: 30904390 DOI: 10.1016/j.ygcen.2019.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 11/30/2022]
Abstract
Understanding reproductive profiles and timing of reproductive events is essential in the management and conservation of humpback whales (Megaptera novaeangliae). Yet compared to other parameters and life history traits, such as abundance, migratory trends, reproductive rates, behavior and communication, relatively little is known about variations in reproductive physiology, especially in males. Here, an enzyme immunoassay (EIA) for testosterone was validated for use in biopsy samples from male humpback whales. Analyses were conducted on 277 North Pacific male humpback whale blubber samples, including 268 non-calves and 9 calves that were collected in the Hawaiian breeding grounds and the Southeast Alaskan feeding grounds from 2004 to 2006. Testosterone concentrations (ng/g) were significantly different between non-calves sampled in Hawaii (n = 182) and Alaska (n = 86, p < 0.05) with peak testosterone concentrations occurring in the winter (January-March) and the lowest concentrations occurring in the summer (June-September). Fall and spring showed increasing and decreasing trends in testosterone concentrations, respectively. Blubber testosterone concentrations in non-calves and calves sampled in Alaska were not significantly different. Blubber and skin from the same individual biopsies (n = 37) were also compared, with blubber having significantly higher testosterone concentrations (p < 0.05) than skin samples. We found variability in testosterone concentration with age, suggesting that male humpbacks reach peak lifetime testosterone concentrations in the breeding grounds around age 8-25 years. The testosterone profile of male humpback whales follows a predictable pattern for capital breeders, where testosterone begins to increase prior to the breeding season, stimulating the onset of spermatogenesis. Incorporation of reproductive hormonal profiles into our overall understanding of humpback whale physiology will shed additional light on the timing of reproduction and overall health of the recently delisted Hawaii distinct population segment (DPS).
Collapse
Affiliation(s)
- Kelly A Cates
- University of Alaska Fairbanks, College of Fisheries and Ocean Sciences, Fisheries Department, Juneau Center, 17101 Pt. Lena Loop Road, Juneau, AK 99801, United States
| | - Shannon Atkinson
- University of Alaska Fairbanks, College of Fisheries and Ocean Sciences, Fisheries Department, Juneau Center, 17101 Pt. Lena Loop Road, Juneau, AK 99801, United States.
| | | | - Adam A Pack
- Departments of Psychology and Biology, University of Hawai'i at Hilo, 200 West Kawili Street, Hilo, HI 96720, United States; The Dolphin Institute, P.O. Box 6279, Hilo, HI 96720, United States
| | - Janice M Straley
- University of Alaska Southeast Sitka Campus, 1332 Seward Ave., Sitka, AK 99835, United States
| | - Suzanne Yin
- Hawai'i Marine Mammal Consortium, P.O. Box 6107 Kamuela, HI 96743, United States
| |
Collapse
|
12
|
Nielsen MLK, Bejder L, Videsen SKA, Christiansen F, Madsen PT. Acoustic crypsis in southern right whale mother-calf pairs: infrequent, low-output calls to avoid predation? ACTA ACUST UNITED AC 2019; 222:222/13/jeb190728. [PMID: 31296536 DOI: 10.1242/jeb.190728] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 06/02/2019] [Indexed: 11/20/2022]
Abstract
Southern right whales (Eubalaena australis) invest substantial amounts of energy in their calves, while facing the risk of having them predated upon by eavesdropping killer whales (Orcinus orca). We tested the hypothesis that southern right whale mother-calf pairs employ acoustic crypsis to reduce acoustic detectability by such predators. Specifically, we deployed multi-sensor DTAGs on nine lactating whales for a total of 62.9 h in a Western Australian breeding ground, and used a SoundTrap to estimate the concomitant acoustic background noise. Vocalisations were recorded at low rates of <10 calls h-1 (1 call per dive) and at low received levels between 123±8 and 134±10 dB re. 1 µPa RMS depending on call type. We conclude that such acoustic crypsis in southern right whales and other baleen whales decreases the risk of alerting potential predators and hence jeopardizing a substantial energetic investment by the mother.
Collapse
Affiliation(s)
- Mia L K Nielsen
- Zoophysiology, Department of Bioscience, Faculty of Science and Technology, Aarhus University, 8000 Aarhus C, Denmark
| | - Lars Bejder
- Marine Mammal Research Program, Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA.,Aquatic Megafauna Research Unit, School of Veterinary and Life Sciences and Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Simone K A Videsen
- Zoophysiology, Department of Bioscience, Faculty of Science and Technology, Aarhus University, 8000 Aarhus C, Denmark
| | - Fredrik Christiansen
- Zoophysiology, Department of Bioscience, Faculty of Science and Technology, Aarhus University, 8000 Aarhus C, Denmark.,Aquatic Megafauna Research Unit, School of Veterinary and Life Sciences and Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia.,Aarhus Institute of Advanced Studies, Høegh-Guldbergs Gade 6B, 8000 Aarhus C, Denmark
| | - Peter T Madsen
- Zoophysiology, Department of Bioscience, Faculty of Science and Technology, Aarhus University, 8000 Aarhus C, Denmark.,Aquatic Megafauna Research Unit, School of Veterinary and Life Sciences and Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia.,Aarhus Institute of Advanced Studies, Høegh-Guldbergs Gade 6B, 8000 Aarhus C, Denmark
| |
Collapse
|
13
|
Cartwright R, Venema A, Hernandez V, Wyels C, Cesere J, Cesere D. Fluctuating reproductive rates in Hawaii's humpback whales, Megaptera novaeangliae, reflect recent climate anomalies in the North Pacific. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181463. [PMID: 31032006 PMCID: PMC6458358 DOI: 10.1098/rsos.181463] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/20/2019] [Indexed: 06/01/2023]
Abstract
Alongside changing ocean temperatures and ocean chemistry, anthropogenic climate change is now impacting the fundamental processes that support marine systems. However, where natural climate aberrations mask or amplify the impacts of anthropogenic climate change, identifying key detrimental changes is challenging. In these situations, long-term, systematic field studies allow the consequences of anthropogenically driven climate change to be distinguished from the expected fluctuations in natural resources. In this study, we describe fluctuations in encounter rates for humpback whales, Megaptera novaeangliae, between 2008 and 2018. Encounter rates were assessed during transect surveys of the Au'Au Channel, Maui, Hawaii. Initially, rates increased, tracking projected growth rates for this population segment. Rates reached a peak in 2013, then declined through 2018. Specifically, between 2013 and 2018, mother-calf encounter rates dropped by 76.5%, suggesting a rapid reduction in the reproductive rate of the newly designated Hawaii Distinct Population Segment of humpback whales during this time. As this decline coincided with changes in the Pacific decadal oscillation, the development of the NE Pacific marine heat wave and the evolution of the 2016 El Niño, this may be another example of the impact of this potent trifecta of climatic events within the North Pacific.
Collapse
Affiliation(s)
- R. Cartwright
- The Keiki Kohola Project, Kihei, HI 96753, USA
- Department of Environmental Science and Resource Management, California State University Channel Islands, One University Drive, Camarillo, CA 93012, USA
| | - A. Venema
- The Keiki Kohola Project, Kihei, HI 96753, USA
| | | | - C. Wyels
- The Keiki Kohola Project, Kihei, HI 96753, USA
- Department of Mathematics, California State University Channel Islands, One University Drive, Camarillo, CA 93012, USA
| | - J. Cesere
- The Keiki Kohola Project, Kihei, HI 96753, USA
- Fine Art Photography, Paia, HI 96779, USA
| | - D. Cesere
- The Keiki Kohola Project, Kihei, HI 96753, USA
- Fine Art Photography, Paia, HI 96779, USA
| |
Collapse
|
14
|
Gonçalves MIC, Sousa-Lima RSD, Teixeira NN, Carvalho GH, Danilewicz D, Baumgarten JE. Movement patterns of humpback whales (Megaptera novaeangliae) reoccupying a Brazilian breeding ground. BIOTA NEOTROPICA 2018. [DOI: 10.1590/1676-0611-bn-2018-0567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract: The population of humpback whales from breeding stock A is increasing, and little is known about the routes used by humpbacks that move north of the main calving area of Brazil, the Abrolhos Bank. The aim of this study was to describe the movements of humpback whales in a reoccupation wintering area (Serra Grande, Bahia state, Brazil) based on land-based surveys to test if movement patterns change during the season and between years, due to group composition, behavioral state, and distance to the coast. The mean leg speed of the groups sighted was 6.88 (±2.92) km/h, and leg speed was positively correlated with distance to the coast. There was an increase in leg speed and distance to the coast with increasing number of escorts in the groups with calves. The mean linearity value for group trajectory was 0.81 (±0.19) and the mean reorientation rate was 25.72 (±19.09) º/min. We observed a predominance of trajectories heading south throughout the study. Groups exhibiting more erratic movements early in the season, and groups moving south showed more linear trajectories than groups moving north, indicating the beginning of their migration back to the feeding grounds. Energy conserving strategies and social context affect the movements of humpback whales in Serra Grande, resulting in the observed patterns of the reoccupation of available and suitable habitat north of Abrolhos. Thereby, special attention should be given managing activities with the potential to disturb or displace whales using the region to calve and breed.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Danilewicz
- Universidade Estadual de Santa Cruz, Brasil; Instituto Aqualie, Brasil; Grupo de Estudos de Mamíferos Aquáticos do Rio Grande do Sul, Brasil
| | | |
Collapse
|
15
|
Derville S, Torres LG, Garrigue C. Social segregation of humpback whales in contrasted coastal and oceanic breeding habitats. J Mammal 2018. [DOI: 10.1093/jmammal/gyx185] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|