1
|
Júnior OF, Jansen AM, de Macedo GC, Nantes WAG, Santos FM, Sano NY, Barreto WTG, de Assis WO, Liberal SC, Xavier SCDC, Alves FM, Dario MA, de Oliveira CE, Roque ALR, Herrera HM. Non-human primates as indicators of Kinetoplastida diversity in an urban environment in Midwest Brazil. FRONTIERS IN PARASITOLOGY 2025; 4:1547701. [PMID: 40034868 PMCID: PMC11873808 DOI: 10.3389/fpara.2025.1547701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025]
Abstract
Introduction Trypanosomatids are parasites widely distributed in nature, parasitizing several host species in single or co-infections. Campo Grande (CG), capital of Mato Grosso do Sul State, is characterized by several green areas and forest fragments where wild mammals have been reported infected by diverse trypanosomatid species. In this study, we evaluated the parasitism by trypanosomatids in the non-human primates (NHP) Sapajus cay and Alouatta caraya sampled in three different areas of CG. Material and methods For the detection of infections and identification of trypanosomatid species, we made hemoculture, blood smears, molecular and serological tests. Results We detected trypanosomatids in 37/55 (67.3%) of sampled animals, all by the molecular test. DNA sequencing analyzes were performed on 32 samples, resulting in the following species identification: Trypanosoma cruzi, T. minasense, T. rangeli, Leishmania (L.) infantum and L. (L.) amazonensis (species already recorded in primates in Latin America), and for the first time T. lainsoni, a parasite related to small mammals, and Trypanosoma sp. DID, originally reported in marsupials Didelphis sp. Discussion The detection of trypanosomatids of public health importance as L. infantum, L. amazonensis and T. cruzi (genotypes TcI, TcII/TcVI and TcIV) indicates the enzootic character of these species in the studied area. Also, the presence of T. cruzi TcIV and T. minasense in the conservation area supports previous studies that these parasites would be associated with the arboreal stratum. We conclude that (i) the NHP at CG participate in a complex reservoir system for parasites of great importance for Public Health in the studied area, such as L. infantum, L. amazonensis and T. cruzi, and (ii) there is a great diversity of trypanosomatids circulating in the urban area of this city located in the Brazilian Midwest.
Collapse
Affiliation(s)
- Oscar Fernandes Júnior
- Programa de Pós-graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Dom Bosco Catholic University, Campo Grande, Mato Grosso do Sul, Brazil
- Programa de Pós-graduação em Microbiologia, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Maria Jansen
- Laboratório de Biologia de Tripanossomatídeos, Instituto Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel Carvalho de Macedo
- Laboratório de Biologia de Tripanossomatídeos, Instituto Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wesley Arruda Gimenes Nantes
- Programa de Pós-graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Dom Bosco Catholic University, Campo Grande, Mato Grosso do Sul, Brazil
| | - Filipe Martins Santos
- Programa de Pós-graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Dom Bosco Catholic University, Campo Grande, Mato Grosso do Sul, Brazil
- Programa de Pós-graduação em Microbiologia, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nayara Yoshie Sano
- Programa de Pós-graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Dom Bosco Catholic University, Campo Grande, Mato Grosso do Sul, Brazil
- Programa de Pós-graduação em Microbiologia, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanessa Teixeira Gomes Barreto
- Programa de Pós-graduação em Ecologia e Conservação, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - William Oliveira de Assis
- Programa de Pós-graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Dom Bosco Catholic University, Campo Grande, Mato Grosso do Sul, Brazil
| | - Sany Caroline Liberal
- Programa de Pós-graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Dom Bosco Catholic University, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Fernanda Moreira Alves
- Laboratório de Biologia de Tripanossomatídeos, Instituto Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Augusta Dario
- Laboratório de Biologia de Tripanossomatídeos, Instituto Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carina Elisei de Oliveira
- Programa de Pós-graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Dom Bosco Catholic University, Campo Grande, Mato Grosso do Sul, Brazil
- Programa de Pós-graduação em Biotecnologia, Dom Bosco Catholic University, Campo Grande, Mato Grosso do Sul, Brazil
| | - André Luiz Rodrigues Roque
- Laboratório de Biologia de Tripanossomatídeos, Instituto Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heitor Miraglia Herrera
- Programa de Pós-graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Dom Bosco Catholic University, Campo Grande, Mato Grosso do Sul, Brazil
- Programa de Pós-graduação em Ecologia e Conservação, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
- Programa de Pós-graduação em Biotecnologia, Dom Bosco Catholic University, Campo Grande, Mato Grosso do Sul, Brazil
| |
Collapse
|
2
|
Campos FA, Wikberg EC, Orkin JD, Park Y, Snyder-Mackler N, Cheves Hernandez S, Lopez Navarro R, Fedigan LM, Gurven M, Higham JP, Jack KM, Melin AD. Wild capuchin monkeys as a model system for investigating the social and ecological determinants of ageing. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230482. [PMID: 39463253 PMCID: PMC11513648 DOI: 10.1098/rstb.2023.0482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/29/2024] [Accepted: 05/10/2024] [Indexed: 10/29/2024] Open
Abstract
Studying biological ageing in animal models can circumvent some of the confounds exhibited by studies of human ageing. Ageing research in non-human primates has provided invaluable insights into human lifespan and healthspan. Yet data on patterns of ageing from wild primates remain relatively scarce, centred around a few populations of catarrhine species. Here, we introduce the white-faced capuchin, a long-lived platyrrhine primate, as a promising new model system for ageing research. Like humans, capuchins are highly social, omnivorous generalists, whose healthspan and lifespan relative to body size exceed that of other non-human primate model species. We review recent insights from capuchin ageing biology and outline our expanding, integrative research programme that combines metrics of the social and physical environments with physical, physiological and molecular hallmarks of ageing across the natural life courses of multiple longitudinally tracked individuals. By increasing the taxonomic breadth of well-studied primate ageing models, we generate new insights, increase the comparative value of existing datasets to geroscience and work towards the collective goal of developing accurate, non-invasive and reliable biomarkers with high potential for standardization across field sites and species, enhancing the translatability of primate studies.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Fernando A. Campos
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX78249, USA
| | - Eva C. Wikberg
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX78249, USA
| | - Joseph D. Orkin
- Département d’anthropologie, Université de Montréal, Montréal, QuébecH3T 1N8, Canada
- Département de sciences biologiques, Université de Montréal, Montréal, QuébecH2V 0B3, Canada
| | - Yeonjoo Park
- Department of Management Science and Statistics, University of Texas at San Antonio, San Antonio, TX78249, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, School of Life Sciences, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ85287, USA
| | | | | | - Linda M. Fedigan
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AlbertaT2N 1N4, Canada
| | - Michael Gurven
- Department of Anthropology, University of California, Santa Barbara, CA93106, USA
| | - James P. Higham
- Department of Anthropology, New York University, NY10003, USA
| | - Katharine M. Jack
- Department of Anthropology, Tulane University, New Orleans, LA70118, USA
| | - Amanda D. Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AlbertaT2N 1N4, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AlbertaT2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AlbertaT2N 4N1, Canada
| |
Collapse
|
3
|
Schüßler D, Blanco MB, Guthrie NK, Sgarlata GM, Dammhahn M, Ernest R, Evasoa MR, Hasiniaina A, Hending D, Jan F, le Pors B, Miller A, Olivieri G, Rakotonanahary AN, Rakotondranary SJ, Rakotondravony R, Ralantoharijaona T, Ramananjato V, Randrianambinina B, Raoelinjanakolona NN, Rasoazanabary E, Rasoloarison RM, Rasolofoson DW, Rasoloharijaona S, Rasolondraibe E, Roberts SH, Teixeira H, van Elst T, Johnson SE, Ganzhorn JU, Chikhi L, Kappeler PM, Louis EE, Salmona J, Radespiel U. Morphological variability or inter-observer bias? A methodological toolkit to improve data quality of multi-researcher datasets for the analysis of morphological variation. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:60-78. [PMID: 37607125 DOI: 10.1002/ajpa.24836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVES The investigation of morphological variation in animals is widely used in taxonomy, ecology, and evolution. Using large datasets for meta-analyses has dramatically increased, raising concerns about dataset compatibilities and biases introduced by contributions of multiple researchers. MATERIALS AND METHODS We compiled morphological data on 13 variables for 3073 individual mouse lemurs (Cheirogaleidae, Microcebus spp.) from 25 taxa and 153 different sampling locations, measured by 48 different researchers. We introduced and applied a filtering pipeline and quantified improvements in data quality (Shapiro-Francia statistic, skewness, and excess kurtosis). The filtered dataset was then used to test for genus-wide sexual size dimorphism and the applicability of Rensch's, Allen's, and Bergmann's rules. RESULTS Our pipeline reduced inter-observer bias (i.e., increased normality of data distributions). Inter-observer reliability of measurements was notably variable, highlighting the need to reduce data collection biases. Although subtle, we found a consistent pattern of sexual size dimorphism across Microcebus, with females being the larger (but not heavier) sex. Sexual size dimorphism was isometric, providing no support for Rensch's rule. Variations in tail length but not in ear size were consistent with the predictions of Allen's rule. Body mass and length followed a pattern contrary to predictions of Bergmann's rule. DISCUSSION We highlighted the usefulness of large multi-researcher datasets for testing ecological hypotheses after correcting for inter-observer biases. Using genus-wide tests, we outlined generalizable patterns of morphological variability across all mouse lemurs. This new methodological toolkit aims to facilitate future large-scale morphological comparisons for a wide range of taxa and applications.
Collapse
Affiliation(s)
- Dominik Schüßler
- Institute of Biology and Chemistry, University of Hildesheim, Hildesheim, Germany
| | | | - Nicola K Guthrie
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | - Mamy Rina Evasoa
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Alida Hasiniaina
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
- School for International Training, Antananarivo, Madagascar
| | | | - Fabien Jan
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Alex Miller
- Perth Zoo, South Perth, Western Australia, Australia
| | - Gillian Olivieri
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | - Romule Rakotondravony
- Faculté des Sciences, de Technologies et de l'Environnement, Ecole Doctorale Ecosystèmes Naturels, Université de Mahajanga, Mahajanga, Madagascar
| | - Tantely Ralantoharijaona
- Faculté des Sciences, de Technologies et de l'Environnement, Ecole Doctorale Ecosystèmes Naturels, Université de Mahajanga, Mahajanga, Madagascar
| | - Veronarindra Ramananjato
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, USA
- Mention Zoologie et Biodiversité Animale, Faculté des Sciences, Université d'Antananarivo, Antananarivo, Madagascar
| | - Blanchard Randrianambinina
- Faculté des Sciences, de Technologies et de l'Environnement, Ecole Doctorale Ecosystèmes Naturels, Université de Mahajanga, Mahajanga, Madagascar
| | - Nancia N Raoelinjanakolona
- Mention Zoologie et Biodiversité Animale, Faculté des Sciences, Université d'Antananarivo, Antananarivo, Madagascar
| | | | - Rodin M Rasoloarison
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - David W Rasolofoson
- Groupe d'Etude et de Recherche sur les Primates de Madagascar (GERP), Antananarivo, Madagascar
| | - Solofonirina Rasoloharijaona
- Faculté des Sciences, de Technologies et de l'Environnement, Ecole Doctorale Ecosystèmes Naturels, Université de Mahajanga, Mahajanga, Madagascar
| | - Emmanuel Rasolondraibe
- Faculté des Sciences, de Technologies et de l'Environnement, Ecole Doctorale Ecosystèmes Naturels, Université de Mahajanga, Mahajanga, Madagascar
| | | | - Helena Teixeira
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
- UMR ENTROPIE, Université de La Réunion, La Réunion, France
| | - Tobias van Elst
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Steig E Johnson
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - Jörg U Ganzhorn
- Animal Ecology and Conservation, University of Hamburg, Hamburg, Germany
| | - Lounès Chikhi
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Laboratoire Évolution et Diversité Biologique, UMR5174, IRD, CNRS, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Peter M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Department of Anthropology/Sociobiology, University of Göttingen, Göttingen, Germany
| | - Edward E Louis
- Madagascar Biodiversity Partnership (MBP), Antananarivo, Madagascar
| | - Jordi Salmona
- Laboratoire Évolution et Diversité Biologique, UMR5174, IRD, CNRS, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
4
|
Veilleux CC, Dominy NJ, Melin AD. The sensory ecology of primate food perception, revisited. Evol Anthropol 2022; 31:281-301. [PMID: 36519416 DOI: 10.1002/evan.21967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 09/06/2022] [Accepted: 10/23/2022] [Indexed: 12/23/2022]
Abstract
Twenty years ago, Dominy and colleagues published "The sensory ecology of primate food perception," an impactful review that brought new perspectives to understanding primate foraging adaptations. Their review synthesized information on primate senses and explored how senses informed feeding behavior. Research on primate sensory ecology has seen explosive growth in the last two decades. Here, we revisit this important topic, focusing on the numerous new discoveries and lines of innovative research. We begin by reviewing each of the five traditionally recognized senses involved in foraging: audition, olfaction, vision, touch, and taste. For each sense, we provide an overview of sensory function and comparative ecology, comment on the state of knowledge at the time of the original review, and highlight advancements and lingering gaps in knowledge. Next, we provide an outline for creative, multidisciplinary, and innovative future research programs that we anticipate will generate exciting new discoveries in the next two decades.
Collapse
Affiliation(s)
- Carrie C Veilleux
- Department of Anatomy, Midwestern University, Glendale, Arizona, USA
| | - Nathaniel J Dominy
- Department of Anthropology, Dartmouth College, Hanover, New Hampshire, USA
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada.,Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Factors influencing terrestriality in primates of the Americas and Madagascar. Proc Natl Acad Sci U S A 2022; 119:e2121105119. [PMID: 36215474 PMCID: PMC9586308 DOI: 10.1073/pnas.2121105119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Among mammals, the order Primates is exceptional in having a high taxonomic richness in which the taxa are arboreal, semiterrestrial, or terrestrial. Although habitual terrestriality is pervasive among the apes and African and Asian monkeys (catarrhines), it is largely absent among monkeys of the Americas (platyrrhines), as well as galagos, lemurs, and lorises (strepsirrhines), which are mostly arboreal. Numerous ecological drivers and species-specific factors are suggested to set the conditions for an evolutionary shift from arboreality to terrestriality, and current environmental conditions may provide analogous scenarios to those transitional periods. Therefore, we investigated predominantly arboreal, diurnal primate genera from the Americas and Madagascar that lack fully terrestrial taxa, to determine whether ecological drivers (habitat canopy cover, predation risk, maximum temperature, precipitation, primate species richness, human population density, and distance to roads) or species-specific traits (body mass, group size, and degree of frugivory) associate with increased terrestriality. We collated 150,961 observation hours across 2,227 months from 47 species at 20 sites in Madagascar and 48 sites in the Americas. Multiple factors were associated with ground use in these otherwise arboreal species, including increased temperature, a decrease in canopy cover, a dietary shift away from frugivory, and larger group size. These factors mostly explain intraspecific differences in terrestriality. As humanity modifies habitats and causes climate change, our results suggest that species already inhabiting hot, sparsely canopied sites, and exhibiting more generalized diets, are more likely to shift toward greater ground use.
Collapse
|
6
|
Melin AD, Veilleux CC, Janiak MC, Hiramatsu C, Sánchez-Solano KG, Lundeen IK, Webb SE, Williamson RE, Mah MA, Murillo-Chacon E, Schaffner CM, Hernández-Salazar L, Aureli F, Kawamura S. Anatomy and dietary specialization influence sensory behaviour among sympatric primates. Proc Biol Sci 2022; 289:20220847. [PMID: 35975434 PMCID: PMC9382214 DOI: 10.1098/rspb.2022.0847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Senses form the interface between animals and environments, and provide a window into the ecology of past and present species. However, research on sensory behaviours by wild frugivores is sparse. Here, we examine fruit assessment by three sympatric primates (Alouatta palliata, Ateles geoffroyi and Cebus imitator) to test the hypothesis that dietary and sensory specialization shape foraging behaviours. Ateles and Cebus groups are comprised of dichromats and trichromats, while all Alouatta are trichomats. We use anatomical proxies to examine smell, taste and manual touch, and opsin genotyping to assess colour vision. We find that the frugivorous spider monkeys (Ateles geoffroyi) sniff fruits most often, omnivorous capuchins (Cebus imitator), the species with the highest manual dexterity, use manual touch most often, and that main olfactory bulb volume is a better predictor of sniffing behaviour than nasal turbinate surface area. We also identify an interaction between colour vision phenotype and use of other senses. Controlling for species, dichromats sniff and bite fruits more often than trichromats, and trichromats use manual touch to evaluate cryptic fruits more often than dichromats. Our findings reveal new relationships among dietary specialization, anatomical variation and foraging behaviour, and promote understanding of sensory system evolution.
Collapse
Affiliation(s)
- Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada.,Department of Medical Genetics, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,German Primate Research Center, Gottingen, Germany
| | - Carrie C Veilleux
- Department of Anatomy, Midwestern University, Glendale, AZ, USA.,Department of Anthropology, University of Texas, Austin, TX, USA
| | - Mareike C Janiak
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,School of Science, Engineering & Environment, University of Salford, Manchester, UK
| | - Chihiro Hiramatsu
- Department of Human Science, Faculty of Design, Kyushu University, Fukuoka 815-8540, Japan
| | | | - Ingrid K Lundeen
- Department of Anthropology, University of Texas, Austin, TX, USA
| | - Shasta E Webb
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada
| | - Rachel E Williamson
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada
| | - Megan A Mah
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada
| | | | | | | | - Filippo Aureli
- Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México.,Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, UK
| | - Shoji Kawamura
- Department of Integrative Biosciences, University of Tokyo, Kashiwa, Japan
| |
Collapse
|
7
|
Harel R, Alavi S, Ashbury AM, Aurisano J, Berger-Wolf T, Davis GH, Hirsch BT, Kalbitzer U, Kays R, Mclean K, Núñez CL, Vining A, Walton Z, Havmøller RW, Crofoot MC. Life in 2.5D: Animal Movement in the Trees. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.801850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The complex, interconnected, and non-contiguous nature of canopy environments present unique cognitive, locomotor, and sensory challenges to their animal inhabitants. Animal movement through forest canopies is constrained; unlike most aquatic or aerial habitats, the three-dimensional space of a forest canopy is not fully realized or available to the animals within it. Determining how the unique constraints of arboreal habitats shape the ecology and evolution of canopy-dwelling animals is key to fully understanding forest ecosystems. With emerging technologies, there is now the opportunity to quantify and map tree connectivity, and to embed the fine-scale horizontal and vertical position of moving animals into these networks of branching pathways. Integrating detailed multi-dimensional habitat structure and animal movement data will enable us to see the world from the perspective of an arboreal animal. This synthesis will shed light on fundamental aspects of arboreal animals’ cognition and ecology, including how they navigate landscapes of risk and reward and weigh energetic trade-offs, as well as how their environment shapes their spatial cognition and their social dynamics.
Collapse
|