1
|
Gozzi M, Blandino M, Bruni R, Capo L, Righetti L, Dall'Asta C. Mycotoxin occurrence in kernels and straws of wheat, barley, and tritordeum. Mycotoxin Res 2024; 40:203-210. [PMID: 38236484 PMCID: PMC10834653 DOI: 10.1007/s12550-024-00521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Thirty-two varieties of common and durum wheat, hordeum, barley, and tritordeum collected over two harvesting years (2020 and 2021) were investigated for the presence of multiple Fusarium-related mycotoxins in asymptomatic plants. DON, 3-AcDON, 15-AcDON, T-2, HT-2, and ZEN together with the emerging mycotoxin ENN B and the major modified form of DON, namely DON3Glc, were quantified by means of UHPLC-MS/MS. Overall, DON and ENN B were the most frequently detected mycotoxins, albeit large inter-year variability was observed and related to different climate and weather conditions. Straws had higher mycotoxin contents than kernels and regarding DON occurrence tritordeum was found to be the most contaminated group on average for both harvesting years, while barley was the less contaminated one. Emerging mycotoxin ENN B showed comparable contents in kernels compared to straw, with a ratio close to 1 for tritordeum and barley. Regarding the occurrence of the other evaluated mycotoxins, T-2 and HT-2 toxins have been spotted in a few tritordeum samples, while ZEN has been frequently found only in straw from the harvesting year 2020. The data collected confirms the occurrence of multiple Fusarium mycotoxins in straws also from asymptomatic plants, highlighting concerns related to feed safety and animal health. The susceptibility of Tritordeum, hereby reported for the first time, suggests that careful measures in terms of monitoring, breeding, and cultural choices should be applied when dealing with his emerging crop.
Collapse
Affiliation(s)
- Marco Gozzi
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/a, 43100, Parma, Italy.
| | - Massimo Blandino
- Department of Agricultural Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Renato Bruni
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/a, 43100, Parma, Italy
| | - Luca Capo
- Department of Agricultural Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Laura Righetti
- Laboratory of Organic Chemistry, Wageningen University, 6708, WE, Wageningen, The Netherlands
- Wageningen Food Safety Research, Wageningen University & Research, P.O. Box 230, 6700, AE, Wageningen, The Netherlands
| | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/a, 43100, Parma, Italy
| |
Collapse
|
2
|
Varga E, Soros C, Fodor P, Cserháti M, Sebők R, Kriszt B, Geosel A. Accumulation of HT-2 toxin from contaminated mushroom compost by edible Agaricus bisporus. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:803-816. [PMID: 35394401 DOI: 10.1080/19440049.2022.2037723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Wheat straw is commonly used as a cellulose source in mushroom compost and could be a secondary source of mycotoxin contamination in the food chain. We cultivated edible Agaricus bisporus and Pleurotus ostreatus on T-2/HT-2 artificially-contaminated mushroom compost and developed and in-house validated an UHPLC-MS/MS method for determination of T-2, HT-2, T2-triol and T2-tetraol in mushroom compost and mushroom basidiocarp. A rapid phase I metabolization of T-2 and HT-2 in mushroom compost was observed. In Agaricus bisporus, basidiocarps 8-15 µg kg-1 accumulation of HT-2 calculated on wet weight was measured. No detectable mycotoxins were found in Pleurotus ostreatus basidiocarp.
Collapse
Affiliation(s)
- Emese Varga
- Department of Food- and Analytical Chemistry, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Csilla Soros
- Department of Food- and Analytical Chemistry, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Peter Fodor
- Department of Food- and Analytical Chemistry, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Mátyás Cserháti
- Department of Environmental Protection and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Rózsa Sebők
- Department of Environmental Protection and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Balázs Kriszt
- Department of Environmental Protection and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Andras Geosel
- Department of Vegetable and Mushroom Growing, Institute of Horticultural Science, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| |
Collapse
|
3
|
Boyle LA, Edwards SA, Bolhuis JE, Pol F, Šemrov MZ, Schütze S, Nordgreen J, Bozakova N, Sossidou EN, Valros A. The Evidence for a Causal Link Between Disease and Damaging Behavior in Pigs. Front Vet Sci 2022; 8:771682. [PMID: 35155642 PMCID: PMC8828939 DOI: 10.3389/fvets.2021.771682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022] Open
Abstract
Damaging behaviors (DB) such as tail and ear biting are prevalent in pig production and reduce welfare and performance. Anecdotal reports suggest that health challenges increase the risk of tail-biting. The prevalence of tail damage and health problems show high correlations across batches within and between farms. There are many common risk factors for tail-biting and health problems, notably respiratory, enteric and locomotory diseases. These include suboptimal thermal climate, hygiene, stocking density and feed quality. The prevalence of tail damage and health problems also show high correlations across batches within and between farms. However, limited evidence supports two likely causal mechanisms for a direct link between DB and health problems. The first is that generalized poor health (e.g., enzootic pneumonia) on farm poses an increased risk of pigs performing DB. Recent studies indicate a possible causal link between an experimental inflammation and an increase in DB, and suggest a link between cytokines and tail-biting. The negative effects of poor health on the ingestion and processing of nutrients means that immune-stimulated pigs may develop specific nutrient deficiencies, increasing DB. The second causal mechanism involves tail-biting causing poor health. Indirectly, pathogens enter the body via the tail lesion and once infected, systemic spread of infection may occur. This occurs mainly via the venous route targeting the lungs, and to a lesser extent via cerebrospinal fluid and the lymphatic system. In carcasses with tail lesions, there is an increase in lung lesions, abscessation, arthritis and osteomyelitis. There is also evidence for the direct spread of pathogens between biters and victims. In summary, the literature supports the association between poor health and DB, particularly tail-biting. However, there is insufficient evidence to confirm causality in either direction. Nevertheless, the limited evidence is compelling enough to suggest that improvements to management and housing to enhance pig health will reduce DB. In the same way, improvements to housing and management designed to address DB, are likely to result in benefits to pig health. While most of the available literature relates to tail-biting, we suggest that similar mechanisms are responsible for links between health and other DB.
Collapse
Affiliation(s)
- Laura A. Boyle
- Teagasc Animal and Grassland Research and Innovation Centre, Cork, Ireland
- *Correspondence: Laura A. Boyle
| | - Sandra A. Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - J. Elizabeth Bolhuis
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | | | - Manja Zupan Šemrov
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Ljubljana, Slovenia
| | - Sabine Schütze
- Chamber of Agriculture of North Rhine-Westphalia, Animal Health Services, Bad Sassendorf, Germany
| | - Janicke Nordgreen
- Faculty of Veterinary Medicine, Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Nadya Bozakova
- Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Evangelia N. Sossidou
- Ellinikos Georgikos Organismos-DIMITRA (ELGO-DIMITRA), Veterinary Research Institute, Thessaloniki, Greece
| | - Anna Valros
- Department of Production Animal Medicine, Research Centre for Animal Welfare, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Ulrich S, Gottschalk C, Biermaier B, Bahlinger E, Twarużek M, Asmussen S, Schollenberger M, Valenta H, Ebel F, Dänicke S. Occurrence of type A, B and D trichothecenes, zearalenone and stachybotrylactam in straw. Arch Anim Nutr 2021; 75:105-120. [PMID: 33615927 DOI: 10.1080/1745039x.2021.1877075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Straw is the main by-product of grain production, used as bedding material and animal feed. If produced or stored under adverse hygienic conditions, straw is prone to the growth of filamentous fungi. Some of them, e.g. Aspergillus, Fusarium and Stachybotrys spp. are well-known mycotoxin producers. Since studies on mycotoxins in straw are scarce, 192 straw samples (wheat n = 80; barley n = 79; triticale n = 12; oat n = 11; rye n = 12) were collected across Germany within the German official feed surveillance and screened for the presence of 21 mycotoxins. The following mycotoxins (positive samples for at least one mycotoxin n = 184) were detected: zearalenone (n = 86, 6.0-785 μg/kg), nivalenol (n = 51, 30-2,600 μg/kg), deoxynivalenol (n = 156, 20-24,000 μg/kg), 15-acetyl-deoxynivalenol (n = 34, 20-2,400 μg/kg), 3-acetyl-deoxynivalenol (n = 16, 40-340 μg/kg), scirpentriol (n = 14, 40-680 μg/kg), T-2 toxin (n = 67, 10-250 μg/kg), HT-2 toxin (n = 92, 20-800 μg/kg), T-2 tetraol (n = 13, 70-480 μg/kg). 15-monoacetoxyscirpenol (30 μg/kg) and T-2 triol (60 μg/kg) were only detected in one barley sample. Macrocyclic trichothecenes (satratoxin G, F, roridin E, and verrucarin J) were also found in only one barley sample (quantified as roridin A equivalent: total 183 μg/kg). The occurrence of stachybotrylactam was monitored for the first time in four samples (n = 4, 0.96-7.4 μg/kg). Fusarenon-X, 4,15-diacetoxyscirpenol, neosolaniol, satratoxin H and roridin-L2 were not detectable in the samples. The results indicate a non-negligible contribution of straw to oral and possibly inhalation exposure to mycotoxins of animals or humans handling contaminated straw.
Collapse
Affiliation(s)
- Sebastian Ulrich
- Bacteriology and Mycology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Christoph Gottschalk
- Chair of Food Safety, Department of Veterinary Sciences, Veterinary Faculty, Ludwig-Maximilians-Universität Munich, Oberschleissheim, Germany
| | - Barbara Biermaier
- Bayerische Kontrollbehörde für Lebensmittelsicherheit und Veterinärwesen, Kulmbach, Germany
| | - Eunike Bahlinger
- Chair of Food Safety, Department of Veterinary Sciences, Veterinary Faculty, Ludwig-Maximilians-Universität Munich, Oberschleissheim, Germany
| | - Magdalena Twarużek
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Bydgoszcz, Poland
| | - Sarah Asmussen
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | | - Hana Valenta
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Braunschweig, Germany
| | - Frank Ebel
- Bacteriology and Mycology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Braunschweig, Germany
| |
Collapse
|
5
|
Cao L, Jiang Y, Zhu L, Xu W, Chu X, Zhang Y, Rahman SU, Feng S, Li Y, Wu J, Wang X. Deoxynivalenol Induces Caspase-8-Mediated Apoptosis through the Mitochondrial Pathway in Hippocampal Nerve Cells of Piglet. Toxins (Basel) 2021; 13:toxins13020073. [PMID: 33498252 PMCID: PMC7909276 DOI: 10.3390/toxins13020073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Deoxynivalenol (DON) is a common trichothecene mycotoxin found worldwide. DON has broad toxicity towards animals and humans. However, the mechanism of DON-induced neurotoxicity in vitro has not been fully understood. This study investigated the hypothesis that DON toxicity in neurons occurs via the mitochondrial apoptotic pathway. Using piglet hippocampal nerve cells (PHNCs), we evaluated the effects of different concentrations of DON on typical indicators of apoptosis. The obtained results demonstrated that DON treatment inhibited PHNC proliferation and led to morphological, biochemical, and transcriptional changes consistent with apoptosis, including decreased mitochondrial membrane potential, mitochondrial release of cytochrome C (CYCS) and apoptosis inducing factor (AIF), and increased abundance of active cleaved-caspase-9 and cleaved-caspase-3. Increasing concentrations of DON led to decreased B-cell lymphoma-2 (Bcl-2) expression and increased expression of BCL2-associated X (Bax) and B-cell lymphoma-2 homology 3 interacting domain death agonist (Bid), which in turn increased transcriptional activity of the transcription factors AIF and P53 (a tumor suppressor gene, promotes apoptosis). The addition of a caspase-8 inhibitor abrogated these effects. These results reveal that DON induces apoptosis in PHNCs via the mitochondrial apoptosis pathway, and caspase-8 is shown to play an important role during apoptosis regulation.
Collapse
|
6
|
Zhu L, Yi X, Ma C, Luo C, Kong L, Lin X, Gao X, Yuan Z, Wen L, Li R, Wu J, Yi J. Betulinic Acid Attenuates Oxidative Stress in the Thymus Induced by Acute Exposure to T-2 Toxin via Regulation of the MAPK/Nrf2 Signaling Pathway. Toxins (Basel) 2020; 12:toxins12090540. [PMID: 32842569 PMCID: PMC7551141 DOI: 10.3390/toxins12090540] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
T-2 toxin, the most toxic of the trichothecenes, is widely found in grains and feeds, and its intake poses serious risks to the health of humans and animals. An important cytotoxicity mechanism of T-2 toxin is the production of excess free radicals, which in turn leads to oxidative stress. Betulinic acid (BA) has many biological activities, including antioxidant activity, which is a plant-derived pentacyclic triterpenoid. The protective effects and mechanisms of BA in blocking oxidative stress caused by acute exposure to T-2 toxin in the thymus of mice was studied. BA pretreatment reduced ROS production, decreased the MDA content, and increased the content of IgG in serum and the levels of SOD and GSH in the thymus. BA pretreatment also reduced the degree of congestion observed in histopathological tissue sections of the thymus induced by T-2 toxin. Besides, BA downregulated the phosphorylation of the p38, JNK, and ERK proteins, while it upregulated the expression of the Nrf2 and HO-1 proteins in thymus tissues. The results indicated that BA could protect the thymus against the oxidative damage challenged by T-2 toxin by activating Nrf2 and suppressing the MAPK signaling pathway.
Collapse
Affiliation(s)
- Lijuan Zhu
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Xianglian Yi
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Chaoyang Ma
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Chenxi Luo
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Li Kong
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Xing Lin
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Xinyu Gao
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Zhihang Yuan
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Changsha 410128, China
| | - Lixin Wen
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Changsha 410128, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Rongfang Li
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Changsha 410128, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Jing Wu
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Changsha 410128, China
- Correspondence: (J.W.); (J.Y.)
| | - Jine Yi
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Changsha 410128, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
- Correspondence: (J.W.); (J.Y.)
| |
Collapse
|
7
|
The role and regulatory mechanism of autophagy in hippocampal nerve cells of piglet damaged by deoxynivalenol. Toxicol In Vitro 2020; 66:104837. [DOI: 10.1016/j.tiv.2020.104837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/04/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022]
|
8
|
Intra-Group Lethal Gang Aggression in Domestic Pigs (Sus scrofa domesticus). Animals (Basel) 2020; 10:ani10081287. [PMID: 32731463 PMCID: PMC7459786 DOI: 10.3390/ani10081287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Aggression between pigs in pig husbandry is common during regrouping but rare in stable social groups. Farmers report the occurrence of lethal gang aggression in stable groups of pigs, whereby the group attacks one group member until it is dead. Our aim was to document this extreme type of aggression and to identify potential causes. Forty-two farmers, experiencing lethal gang aggression or not, filled out a survey about their farm management. From 91 victims, information was obtained on their injuries and body condition. Gang aggression occurred more on farms with deep straw bedding, a housing type commonly associated with better animal welfare. However, the presence of straw may also be related to other factors, which could not be disentangled here. Gang aggression did not relate to the genetic line, breeding company or feed type. It equally occurred between females and males and tended to occur more in winter. Victims were covered in injuries, but had a healthy body condition, whereas survivors had a lower body condition. Overall, the cause seems multi-factorial, and further research on the occurrence of lethal gang aggression is needed. Abstract Intraspecific coalitional aggression is rare among all species, especially within stable social groups. We report here numerous cases of intraspecific lethal gang aggression within stable groups of domestic pigs. The objective was to describe this extreme aggression and to identify potential causes. Management data were collected from farms with (n = 23) and without (n = 19) gang aggression. From one farm, 91 victims were assessed for skin injuries and body condition score. Lethal gang aggression was significantly associated with deep straw bedding, which may be related to various other factors. Gang aggression tended to occur more in winter, and was unrelated to genetic line, breeding company, group size or feed type. It occurred equally in female-only and mixed sex groups (male-only groups were not represented), from around eight weeks of age. Injuries typically covered the whole body and were more severe on the front of the body. Victims who survived had a lower body condition score and fewer injuries than victims found dead. There are still many unknowns as to why this abnormal social behaviour occurs and it deserves further research attention, both for its applied relevance to animal welfare as for the evolutionary background of lethal gang aggression.
Collapse
|
9
|
Taroncher M, Pigni MC, Diana MN, Juan-García A, Ruiz MJ. Does low concentration mycotoxin exposure induce toxicity in HepG2 cells through oxidative stress? Toxicol Mech Methods 2020; 30:417-426. [PMID: 32306886 DOI: 10.1080/15376516.2020.1757000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to determine whether exposure to low concentrations of deoxynivalenol (DON), T-2 toxin (T-2) and patulin (PAT) in a human hepatocellular carcinoma cell line (HepG2) exerts toxic effects through mechanisms related to oxidative stress, and how cells deal with such exposure. Cell viability was determined by the MTT and protein content (PC) assays over 24, 48 and 72 h. The IC50 values detected ranged from >10 to 2.53 ± 0.21 μM (DON), 0.050 ± 0.025 to 0.034 ± 0.007 μM (T-2) and 2.66 ± 0.66 to 1.17 ± 0.21 µM (PAT). The key players in oxidative stress are the generation of reactive oxygen species (ROS), lipid peroxidation (LPO) and mitochondrial membrane potential (MMP) dysfunction. The results obtained showed that PAT, DON and T-2 did not significantly increase LPO or ROS production with respect to the controls. Moreover, PAT and DON did not alter MMP, though T-2 increased MMP at the higher concentrations tested (17 and 34 nM). In conclusion, the exposure of HepG2 cells to nontoxic concentrations of T-2 condition them against subsequent cellular oxidative conditions induced by even higher concentrations of mycotoxin.
Collapse
Affiliation(s)
- Mercedes Taroncher
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Maria-Chiari Pigni
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Maria-Natalia Diana
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Ana Juan-García
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Maria-Jose Ruiz
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
10
|
Ekwomadu TI, Dada TA, Nleya N, Gopane R, Sulyok M, Mwanza M. Variation of Fusarium Free, Masked, and Emerging Mycotoxin Metabolites in Maize from Agriculture Regions of South Africa. Toxins (Basel) 2020; 12:E149. [PMID: 32121210 PMCID: PMC7150761 DOI: 10.3390/toxins12030149] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/09/2019] [Accepted: 01/08/2020] [Indexed: 02/05/2023] Open
Abstract
The presence of mycotoxins in cereal grain is a very important food safety issue with the occurrence of masked mycotoxins extensively investigated in recent years. This study investigated the variation of different Fusarium metabolites (including the related regulated, masked, and emerging mycotoxin) in maize from various agriculture regions of South Africa. The relationship between the maize producing regions, the maize type, as well as the mycotoxins was established. A total of 123 maize samples was analyzed by a LC-MS/MS multi-mycotoxin method. The results revealed that all maize types exhibited a mixture of free, masked, and emerging mycotoxins contamination across the regions with an average of 5 and up to 24 out of 42 investigated Fusarium mycotoxins, including 1 to 3 masked forms at the same time. Data obtained show that fumonisin B1, B2, B3, B4, and A1 were the most prevalent mycotoxins and had maximum contamination levels of 8908, 3383, 990, 1014, and 51.5 µg/kg, respectively. Deoxynivalenol occurred in 50% of the samples with a mean concentration of 152 µg/kg (max 1380 µg/kg). Thirty-three percent of the samples were contaminated with zearalenone at a mean concentration of 13.6 µg/kg (max 146 µg/kg). Of the masked mycotoxins, DON-3-glucoside occurred at a high incidence level of 53%. Among emerging toxins, moniliformin, fusarinolic acid, and beauvericin showed high occurrences at 98%, 98%, and 83%, and had maximum contamination levels of 1130, 3422, and 142 µg/kg, respectively. Significant differences in the contamination pattern were observed between the agricultural regions and maize types.
Collapse
Affiliation(s)
- Theodora Ijeoma Ekwomadu
- Department of Biological Sciences, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Mmabatho 2735, South Africa;
| | - Toluwase Adeseye Dada
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Mmabatho 2735, South Africa; (T.A.D.); (N.N.); (M.M.)
| | - Nancy Nleya
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Mmabatho 2735, South Africa; (T.A.D.); (N.N.); (M.M.)
| | - Ramokone Gopane
- Department of Biological Sciences, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Mmabatho 2735, South Africa;
| | - Michael Sulyok
- Department of Agro Biotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), A-3430 Tulln, Austria;
| | - Mulunda Mwanza
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Mmabatho 2735, South Africa; (T.A.D.); (N.N.); (M.M.)
| |
Collapse
|
11
|
Yang M, Wu X, Zhang W, Ye P, Wang Y, Zhu W, Tao Q, Xu Y, Shang J, Zhao D, Ding Y, Yin Z, Zhang X. Transcriptional analysis of deoxynivalenol-induced apoptosis of sow ovarian granulosa cell. Reprod Domest Anim 2020; 55:217-228. [PMID: 31869480 DOI: 10.1111/rda.13610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/12/2019] [Indexed: 12/23/2022]
Abstract
Litter size is one of the most important economic traits in pig production. Recent studies identified that deoxynivalenol (DON), a widespread toxin in fodder, was associated with animal prolificacy. However, the underlying mechanisms have not yet been completely elucidated. Here, we used porcine ovary granulosa cells (pGCs) as a vector to establish DON concentration-time models and performed cell morphology and transcriptome analysis to identify and analyse the effects of DON on reproductive performance in swine. The results showed that DON can induce morphological changes and apoptosis of pGCs, while inhibiting cell proliferation. Moreover, these effects of DON on pGCs were dose-dependent. After treatment of pGCs with different concentrations of DON, the percentage of cells in S phase and G2/M phase increased. RNA-seq analyses revealed 5,937 differentially expressed genes, of which 1995 were down-regulated and 3,942 were up-regulated after DON treatment. KEGG enrichment analysis indicated important metabolic pathways such as IL-17 signalling pathway, eukaryotic ribosome synthesis pathway, RNA transport pathway and RNA degradation. Based on our results, we speculate that the effects of DON are related to the DNA damage process. Our study provides novel insights and a foundation to further understand the effect of DON on swine prolificacy.
Collapse
Affiliation(s)
- Min Yang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xudong Wu
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wei Zhang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Pengfei Ye
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yuanlang Wang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Weihua Zhu
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Qiangqiang Tao
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yiliang Xu
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jinnan Shang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Dongdong Zhao
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yueyun Ding
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zongjun Yin
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaodong Zhang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
12
|
Wang X, Jiang Y, Zhu L, Cao L, Xu W, Rahman SU, Feng S, Li Y, Wu J. Autophagy protects PC12 cells against deoxynivalenol toxicity via the Class III PI3K/beclin 1/Bcl-2 pathway. J Cell Physiol 2020; 235:7803-7815. [PMID: 31930515 DOI: 10.1002/jcp.29433] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023]
Abstract
Deoxynivalenol (DON) is a major mycotoxin from the trichothecene family of mycotoxins produced by Fusarium fungi. It can cause a variety of adverse effects on human and farm animal health. Here, we determined the effect of DON on the Class III phosphatidylinositol 3-kinase (PIK3C3)/beclin 1/B cell lymphoma-2 (Bcl-2) pathway in PC12 cells and the relationship between autophagy and apoptosis. The effects of DON were evaluated based on the apoptosis ratio; the typical indicators of autophagy, including cellular morphology, acridine orange- and monodansylcadaverine-labeled vacuoles, green fluorescent protein-microtubule associated protein 1 light chain 3 (LC3) localization, and LC3 immunofluorescence; and the expression of key autophagy-related genes and proteins, that is, PIK3C3, beclin 1, Bcl-2, LC3, and p62. The relationship between autophagy and apoptosis was analyzed by western blot analysis and flow cytometry. DON-induced PC12 cell morphological changes and autophagy significantly. PIK3C3, beclin 1, and LC3 increased in tandem with the DON concentration used; Bcl-2 and p62 expression decreased as DON concentrations increased. Moreover, the PIK3C3/beclin 1/Bcl-2 signaling pathway played a role in DON-induced autophagy. Our findings suggest that DON can induce autophagy by activating the PIK3C3/beclin 1/Bcl-2 signaling pathway and that autophagy may play a positive role in reducing DON-induced apoptosis.
Collapse
Affiliation(s)
- Xichun Wang
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunjing Jiang
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Lei Zhu
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Li Cao
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wei Xu
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Sajid Ur Rahman
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shibin Feng
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yu Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jinjie Wu
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
13
|
Elaridi J, Yamani O, Al Matari A, Dakroub S, Attieh Z. Determination of Ochratoxin A (OTA), Ochratoxin B (OTB), T-2, and HT-2 Toxins in Wheat Grains, Wheat Flour, and Bread in Lebanon by LC-MS/MS. Toxins (Basel) 2019; 11:E471. [PMID: 31409003 PMCID: PMC6723938 DOI: 10.3390/toxins11080471] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 01/10/2023] Open
Abstract
Cereals are prone to fungal infection during growth, harvesting, transportation, and/or storage. As a result, cereals such as wheat grains and wheat-derived products may be contaminated with mycotoxins leading to acute and chronic health exposure. The current study investigated the presence of the mycotoxins: ochratoxin A (OTA), ochratoxin B (OTB), T-2, and HT-2 toxins in samples of wheat grains (n = 50), wheat flour (n = 50), and bread (n = 37) from the main mills in Lebanon using LC-MS/MS. Accuracy ranged from 98-100%, recoveries from 93-105%, and intraday and interday precision were 5-7% and 9-12%, respectively. The tested wheat grains, wheat flour, and bread samples did not contain detectable levels of T-2 and HT-2 toxins and OTB. Four wheat flour samples (8% of flour samples) showed positive OTA levels ranging from 0.6-3.4 μg·kg-1 with an arithmetic mean of 1.9 ± 0.2 μg·kg-1. Only one sample contained an OTA concentration greater than the limit set by the European Union (3 μg·kg-1) for wheat-derived products. This study suggests that mycotoxin contamination of wheat grains, wheat flour, and bread in Lebanon is currently not a serious public health concern. However, surveillance strategies and monitoring programs must be routinely implemented to ensure minimal mycotoxin contamination of wheat-based products.
Collapse
Affiliation(s)
- Jomana Elaridi
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box 13-5053, Beirut 1102-2801, Lebanon.
| | - Osama Yamani
- Department of Laboratory Science and Technology, American University of Science and Technology, Achrafieh 16-6452, Lebanon
| | - Amira Al Matari
- Department of Laboratory Science and Technology, American University of Science and Technology, Achrafieh 16-6452, Lebanon
| | - Saada Dakroub
- Department of Laboratory Science and Technology, American University of Science and Technology, Achrafieh 16-6452, Lebanon
| | - Zouhair Attieh
- Department of Laboratory Science and Technology, American University of Science and Technology, Achrafieh 16-6452, Lebanon.
| |
Collapse
|
14
|
Bissonnette KM, Kolb FL, Ames KA, Bradley CA. Effect of Wheat Cultivar on the Concentration of Fusarium Mycotoxins in Wheat Stems. PLANT DISEASE 2018; 102:2539-2544. [PMID: 30252626 DOI: 10.1094/pdis-12-17-2034-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Effective control of Fusarium-mycotoxin accumulation in grain affected by Fusarium head blight (FHB) (caused by Fusarium graminearum) begins with selecting moderately resistant wheat cultivars; however, little is known about how this resistance affects mycotoxin levels in the stem. A study was conducted from 2011 to 2014 in a mist-irrigated FHB nursery in Urbana, IL to determine whether the FHB resistance class of a cultivar (very susceptible, susceptible, moderately susceptible, and moderately resistant) affects the concentration of Fusarium mycotoxins in the stem. FHB incidence, FHB severity, and Fusarium-damaged kernel ratings were collected and used to calculate FHB index; incidence, severity, and kernel damage (ISK) index; and deoxynivalenol (DON), incidence, severity, and kernel damage (DISK) index. Grain was assayed for levels of DON, and the bottom 25 cm of plant stems was collected from each plot and assayed for DON, 3-acetyl-deoxynivalenol (3ADON), and 15-acetyl-deoxynivalenol (15ADON). Significant differences in DON concentration in the grain were detected among cultivars (P = 0.0001) and for the concentration of all DON (P = 0.003), 3ADON (P = 0.03), and 15ADON (P < 0.0001) in the stem. Significant differences among resistance classes were observed for FHB index value (P < 0.0001), ISK index (P = 0.006), and DISK index (P = 0.004). In all years of this study, the concentration of DON in the grain and the concentrations of all mycotoxins in the stem were consistently lower in the moderately resistant cultivars. All three indices were poor indicators of mycotoxin concentrations in the stem. Overall, the selection of a moderately resistant cultivar provides effective control of DON accumulation in the grain and mycotoxin accumulation in the stem.
Collapse
Affiliation(s)
| | - Frederic L Kolb
- Department of Crop Sciences, University of Illinois, Urbana 61801
| | - Keith A Ames
- Department of Crop Sciences, University of Illinois, Urbana 61801
| | - Carl A Bradley
- Department of Plant Pathology, University of Kentucky Research and Education Center, Princeton 42445
| |
Collapse
|
15
|
Wang X, Tang J, Geng F, Zhu L, Chu X, Zhang Y, Rahman SU, Chen X, Jiang Y, Zhu D, Feng S, Li Y, Wu JJ. Effects of deoxynivalenol exposure on cerebral lipid peroxidation, neurotransmitter and calcium homeostasis of chicks in vivo. Toxicon 2018; 150:60-65. [DOI: 10.1016/j.toxicon.2018.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 01/13/2023]
|
16
|
Bissonnette KM, Kolb FL, Ames KA, Bradley CA. Effect of Fusarium Head Blight Management Practices on Mycotoxin Contamination of Wheat Straw. PLANT DISEASE 2018; 102:1141-1147. [PMID: 30673442 DOI: 10.1094/pdis-09-17-1385-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Management of Fusarium graminearum-associated mycotoxins in wheat grain has been extensively evaluated, but little is known about management of mycotoxins in straw. Two research trials were conducted at four locations from 2011 to 2014. The objective of the first trial was to determine the efficacy of fungicides, and the objective of the second trial was to evaluate the use of integrated disease management strategies, for the control of Fusarium head blight (FHB) and reducing the concentration of the Fusarium mycotoxins deoxynivalenol, 3-acetyl-deoxynivalenol, and 15-acetyl-deoxynivalenol in straw. In the first trial, it was determined that demethylation inhibitor (DMI) fungicides did not offer significant (P ≤ 0.05) reductions of mycotoxin concentrations in the straw compared with a no-fungicide control treatment, but significant (P ≤ 0.05) reductions in mycotoxin concentration were observed in the control when compared with treatments with the application of quinone outside inhibitor (QoI)-containing fungicides. In the second trial, mycotoxin concentrations in the straw were significantly (P ≤ 0.05) reduced in the moderately resistant cultivar compared with the susceptible cultivar, but were not affected by the use of a fungicide. The practices typically used to manage Fusarium mycotoxins in wheat grain, especially the selection of resistant cultivars and not using a QoI fungicide, may be an effective means to reduce mycotoxin concentrations in the straw.
Collapse
Affiliation(s)
| | - Frederic L Kolb
- Department of Crop Sciences, University of Illinois, Urbana 61801
| | - Keith A Ames
- Department of Crop Sciences, University of Illinois, Urbana 61801
| | - Carl A Bradley
- Department of Plant Pathology, University of Kentucky Research and Education Center, Princeton 42445
| |
Collapse
|
17
|
Bryła M, Waśkiewicz A, Ksieniewicz-Woźniak E, Szymczyk K, Jędrzejczak R. Modified Fusarium Mycotoxins in Cereals and Their Products-Metabolism, Occurrence, and Toxicity: An Updated Review. Molecules 2018; 23:E963. [PMID: 29677133 PMCID: PMC6017960 DOI: 10.3390/molecules23040963] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/05/2018] [Accepted: 04/17/2018] [Indexed: 02/03/2023] Open
Abstract
Mycotoxins are secondary fungal metabolites, toxic to humans, animals and plants. Under the influence of various factors, mycotoxins may undergo modifications of their chemical structure. One of the methods of mycotoxin modification is a transformation occurring in plant cells or under the influence of fungal enzymes. This paper reviews the current knowledge on the natural occurrence of the most important trichothecenes and zearalenone in cereals/cereal products, their metabolism, and the potential toxicity of the metabolites. Only very limited data are available for the majority of the identified mycotoxins. Most studies concern biologically modified trichothecenes, mainly deoxynivalenol-3-glucoside, which is less toxic than its parent compound (deoxynivalenol). It is resistant to the digestion processes within the gastrointestinal tract and is not absorbed by the intestinal epithelium; however, it may be hydrolysed to free deoxynivalenol or deepoxy-deoxynivalenol by the intestinal microflora. Only one zearalenone derivative, zearalenone-14-glucoside, has been extensively studied. It appears to be more reactive than deoxynivalenol-3-glucoside. It may be readily hydrolysed to free zearalenone, and the carbonyl group in its molecule may be easily reduced to α/β-zearalenol and/or other unspecified metabolites. Other derivatives of deoxynivalenol and zearalenone are poorly characterised. Moreover, other derivatives such as glycosides of T-2 and HT-2 toxins have only recently been investigated; thus, the data related to their toxicological profile and occurrence are sporadic. The topics described in this study are crucial to ensure food and feed safety, which will be assisted by the provision of widespread access to such studies and obtained results.
Collapse
Affiliation(s)
- Marcin Bryła
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland.
| | - Edyta Ksieniewicz-Woźniak
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| | - Krystyna Szymczyk
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| | - Renata Jędrzejczak
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| |
Collapse
|
18
|
Podolska G, Bryła M, Sułek A, Waśkiewicz A, Szymczyk K, Jędrzejczak R. Influence of the cultivar and nitrogen fertilisation level on the mycotoxin contamination in winter wheat. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2017. [DOI: 10.3920/qas2016.1064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- G. Podolska
- Department of Cereal Crop Production Institute of Soil Science and Plant Cultivation – State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - M. Bryła
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland
| | - A. Sułek
- Department of Cereal Crop Production Institute of Soil Science and Plant Cultivation – State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - A. Waśkiewicz
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| | - K. Szymczyk
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland
| | - R. Jędrzejczak
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland
| |
Collapse
|
19
|
Atanasova-Penichon V, Barreau C, Richard-Forget F. Antioxidant Secondary Metabolites in Cereals: Potential Involvement in Resistance to Fusarium and Mycotoxin Accumulation. Front Microbiol 2016; 7:566. [PMID: 27148243 PMCID: PMC4840282 DOI: 10.3389/fmicb.2016.00566] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/04/2016] [Indexed: 11/26/2022] Open
Abstract
Gibberella and Fusarium Ear Rot and Fusarium Head Blight are major diseases affecting European cereals. These diseases are mainly caused by fungi of the Fusarium genus, primarily Fusarium graminearum and Fusarium verticillioides. These Fusarium species pose a serious threat to food safety because of their ability to produce a wide range of mycotoxins, including type B trichothecenes and fumonisins. Many factors such as environmental, agronomic or genetic ones may contribute to high levels of accumulation of mycotoxins in the grain and there is an urgent need to implement efficient and sustainable management strategies to reduce mycotoxin contamination. Actually, fungicides are not fully efficient to control the mycotoxin risk. In addition, because of harmful effects on human health and environment, their use should be seriously restricted in the near future. To durably solve the problem of mycotoxin accumulation, the breeding of tolerant genotypes is one of the most promising strategies for cereals. A deeper understanding of the molecular mechanisms of plant resistance to both Fusarium and mycotoxin contamination will shed light on plant-pathogen interactions and provide relevant information for improving breeding programs. Resistance to Fusarium depends on the plant ability in preventing initial infection and containing the development of the toxigenic fungi while resistance to mycotoxin contamination is also related to the capacity of plant tissues in reducing mycotoxin accumulation. This capacity can result from two mechanisms: metabolic transformation of the toxin into less toxic compounds and inhibition of toxin biosynthesis. This last mechanism involves host metabolites able to interfere with mycotoxin biosynthesis. This review aims at gathering the latest scientific advances that support the contribution of grain antioxidant secondary metabolites to the mechanisms of plant resistance to Fusarium and mycotoxin accumulation.
Collapse
Affiliation(s)
| | - Christian Barreau
- MycSA, Institut National de la Recherche Agronomique Villenave d'Ornon, France
| | | |
Collapse
|
20
|
Wang X, Xu W, Fan M, Meng T, Chen X, Jiang Y, Zhu D, Hu W, Gong J, Feng S, Wu J, Li Y. Deoxynivalenol induces apoptosis in PC12 cells via the mitochondrial pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:193-202. [PMID: 27017380 DOI: 10.1016/j.etap.2016.03.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 06/05/2023]
Abstract
Deoxynivalenol (DON) has broad toxicity in animals and humans. In this study the impact of DON treatment on apoptotic pathways in PC12 cells was determined. The effects of DON were evaluated on (i) typical indicators of apoptosis, including cellular morphology, cell activity, lactate dehydrogenase (LDH) release, and apoptosis ratio in PC12 cells, and on (ii) the expression of key genes and proteins related to apoptosis, including Bcl-2, Bax, Bid, cytochrome C (Cyt C), apoptosis inducing factor (AIF), cleaved-Caspase9, and cleaved-Caspase3. DON treatment inhibited proliferation of PC12 cells, induced significant morphological changes and apoptosis, promoted the release of Cyt C and AIF from the mitochondria, and increased the activities of cleaved-Caspase9 and cleaved-Caspase3. Bcl-2 expression decreased with increasing DON concentrations, in contrast to Bax and Bid, which were increased with increasing DON concentration. These data demonstrate that DON induces apoptosis in PC12 cells through the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Wei Xu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Mengxue Fan
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Tingting Meng
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Xiaofang Chen
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Yunjing Jiang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Dianfeng Zhu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Wenjuan Hu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Jiajie Gong
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| |
Collapse
|
21
|
Häggblom P, Nordkvist E. Deoxynivalenol, zearalenone, and Fusarium graminearum contamination of cereal straw; field distribution; and sampling of big bales. Mycotoxin Res 2015; 31:101-7. [PMID: 25665688 PMCID: PMC4412695 DOI: 10.1007/s12550-015-0220-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 11/28/2022]
Abstract
Sampling of straw bales from wheat, barley, and oats was carried out after harvest showing large variations in deoxynivalenol (DON) and zearalenone (ZEN) levels. In the wheat field, DON was detected in all straw samples with an average DON concentration of 976 μg/kg and a median of 525 μg/kg, while in four bales, the concentrations were above 3000 μg/kg. For ZEN, the concentrations were more uniform with an average concentration of 11 μg/kg. The barley straw bales were all positive for DON with an average concentration of 449 μg/kg and three bales above 800 μg/kg. In oat straw, the average DON concentration was 6719 μg/kg with the lowest concentration at 2614 μg/kg and eight samples above 8000 μg/kg. ZEN contamination was detected in all bales with an average concentration of 53 μg/kg with the highest concentration at 219 μg/kg. Oat bales from another field showed an average concentration of 16,382 μg/kg. ZEN concentrations in the oat bales were on average 153 μg/kg with a maximum at 284 μg/kg. Levels of Fusarium graminearum DNA were higher in oat straw (max 6444 pg DNA/mg straw) compared to straw from wheat or barley. The significance of mycotoxin exposure from straw should not be neglected particularly in years when high levels of DON and ZEN are also detected in the feed grain. With a limited number of samples preferably using a sampling probe, it is possible to distinguish lots of straw that should not be used as bedding material for pigs.
Collapse
Affiliation(s)
- P Häggblom
- Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute, SE-751 89, Uppsala, Sweden,
| | | |
Collapse
|