1
|
Chen Z, Zheng X, Shu X, Hua G, Zhu R, Sun L, Chen J. Supplemental L-arginine promotes hepatocyte proliferation and alters liver fatty acid metabolism in the late embryonic phase: an RNA-seq analysis. Poult Sci 2024; 103:104175. [PMID: 39216267 PMCID: PMC11402549 DOI: 10.1016/j.psj.2024.104175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
The in ovo feeding (IOF) of L-arginine (L-Arg) to chick embryos is a viable method for improving early intestinal development, subsequently leading to an acceleration in growth rate during the posthatch stage. However, the liver, being the pivotal organ for energy metabolism in poultry, the precise effects and mechanisms of L-Arg on the liver development and metabolism remain unclear. To elucidate these, the present study injected 2 doses of L-Arg (10 mg/egg and 15 mg/egg) into the embryos of Hongyao chickens at 17.5 d of incubation, subsequently incubating them until d 19 for further analysis. IOF of 15 mg L-Arg/egg significantly increased the organ indices of liver and small intestine, as well as the duodenal villus height/crypt depth. RNA-Seq analysis of liver tissues showed that the metabolism of xenobiotics, amino acid metabolism, and the fatty acid metabolism were significantly enriched in L-Arg injection group. The core differentially expressed genes (DEGs) were primarily involved in cell proliferation and fatty acid metabolism. The CCK8 assays revealed that supplemental L-Arg significantly enhanced the proliferation of primary embryo hepatocytes and leghorn male hepatoma (LMH) cells. Upregulation of core DEGs, including HBEGF, HES4, NEK3, EGR1, and USP2, significantly promoted the proliferation of liver cells. Additionally, analysis of triglyceride and total cholesterol content, as well as oil red O staining, indicated that supplemental L-Arg effectively reduced lipid accumulation. Overall, L-Arg supplementation in late chick embryos may promote early liver and small intestine development by reducing liver lipid deposition and enhancing energy efficiency, necessitating further experimental validation. This study provides profound insights into the molecular regulatory network of L-Arg in promoting the development of chicken embryos. The identified DEGs that promote cell proliferation and lipid metabolism can serve as novel targets for further developing methods to enhance early development of chicken embryos.
Collapse
Affiliation(s)
- Ziwei Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xiaotong Zheng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xin Shu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Guoying Hua
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Runbang Zhu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Liumei Sun
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jianfei Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
2
|
Zhao M, Li J, Shi Q, Shan H, Liu L, Geng T, Yu L, Gong D. The Effects of In Ovo Feeding of Selenized Glucose on Selenium Concentration and Antioxidant Capacity of Breast Muscle in Neonatal Broilers. Biol Trace Elem Res 2023; 201:5764-5773. [PMID: 36899096 DOI: 10.1007/s12011-023-03611-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023]
Abstract
This study aims to investigate the impacts of in ovo feeding (IOF) of selenized glucose (SeGlu) on selenium (Se) level and antioxidant capacity of breast muscle in newborn broilers. After candling on 16 day of incubation, a total of 450 eggs were randomly divided into three treatments. On the 17.5th day of incubation, eggs in a control treatment were injected with 0.1 mL of physiological saline (0.75%), while the 2nd group and 3rd group were supplied with 0.1 mL of physiological saline containing 10 μg Se from SeGlu (SeGlu10 group) and 20 μg Se from SeGlu (SeGlu20 group). The results showed that in ovo injection in both SeGlu10 and SeGlu20 increased the Se level and reduced glutathione concentration (GSH) in pectoral muscle of hatchlings (P < 0.05). Compared with the control group, the SeGlu20-treated chicks significantly enhanced the activity of the superoxide dismutase (SOD) and mRNA expression of NAD(P)H quinone dehydrogenase 1 (NQO1) in breast muscle, while there was upregulation in mRNA expressions of glutathione peroxidase 1 (GPX-1) and thioredoxin reductase 1 (TrxR1) and higher total antioxidant capacity (T-AOC) in SeGlu10 treatment (P < 0.05). However, no significant difference on enzyme activities of glutathione peroxidase (GR), glutathione reductase, thioredoxin reductase, concentration of malondialdehyde, and free radical scavenging ability (FRSA) of superoxide radical (O2-•) and hydroxyl radical (OH•) was observed among the three treatments (P > 0.05). Therefore, IOF of SeGlu enhanced Se deposition in breast muscle of neonatal broilers. In addition, in ovo injection of SeGlu could increase the antioxidant capacity of newborn chicks possibly through upregulating the mRNA expression of GPX1, TrxR1, and NQO1, as well as the SOD activity.
Collapse
Affiliation(s)
- Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Jiahui Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Qiao Shi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Haoshu Shan
- Zhenjiang Animal Disease Prevention and Control Center, Zhenjiang, 212009, People's Republic of China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Lei Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China.
| |
Collapse
|
3
|
Ayalew H, Wang J, Wu S, Qiu K, Tekeste A, Xu C, Lamesgen D, Cao S, Qi G, Zhang H. Biophysiology of in ovo administered bioactive substances to improve gastrointestinal tract development, mucosal immunity, and microbiota in broiler chicks. Poult Sci 2023; 102:103130. [PMID: 37926011 PMCID: PMC10633051 DOI: 10.1016/j.psj.2023.103130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023] Open
Abstract
Early embryonic exogenous feeding of bioactive substances is a topic of interest in poultry production, potentially improving gastrointestinal tract (GIT) development, stimulating immunization, and maximizing the protection capability of newly hatched chicks. However, the biophysiological actions and effects of in ovo administered bioactive substances are inconsistent or not fully understood. Thus, this paper summarizes the functional effects of bioactive substances and their interaction merits to augment GIT development, the immune system, and microbial homeostasis in newly hatched chicks. Prebiotics, probiotics, and synbiotics are potential bioactive substances that have been administered in embryonic eggs. Their biological effects are enhanced by a variety of mechanisms, including the production of antimicrobial peptides and antibiotic responses, regulation of T lymphocyte numbers and immune-related genes in either up- or downregulation fashion, and enhancement of macrophage phagocytic capacity. These actions occur directly through the interaction with immune cell receptors, stimulation of endocytosis, and phagocytosis. The underlying mechanisms of bioactive substance activity are multifaceted, enhancing GIT development, and improving both the innate and adaptive immune systems. Thus summarizing these modes of action of prebiotics, probiotics and synbiotics can result in more informed decisions and also provides baseline for further research.
Collapse
Affiliation(s)
- Habtamu Ayalew
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shugeng Wu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ayalsew Tekeste
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Changchun Xu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dessalegn Lamesgen
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sumei Cao
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
4
|
Yenilmez F. Effect of In Ovo Vitamin C Injection against Mobile Phone Radiation on Post-Hatch Performance of Broiler Chicks. Vet Sci 2022; 9:613. [PMID: 36356090 PMCID: PMC9698731 DOI: 10.3390/vetsci9110613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 08/27/2024] Open
Abstract
This study aimed to investigate the effect of in ovo injection of vitamin C to reduce the harmful effects of electromagnetic waves (EMWs) emitted from mobile phones on chicken embryos. In this study, a total of 750 fertilized eggs of Ross 308 were exposed to EMWs for 1050 min during the incubation period. On the 17th day of incubation, the eggs were divided into three groups and solutions were injected into the amnion sac of embryos. The chicks were housed separately in accordance with in ovo treatments for 5 wk after hatching. An in ovo vitamin C injection resulted in a lower hatching weight. The post-hatch mortality or production efficiency factor of birds in the in ovo vitamin C injection group and the intact egg group were comparable, and were better than that of the other negative control group. In ovo vitamin C injection in eggs subjected to EMWs significantly increased their body weight gain, carcass weight, abdominal fat weight, and AST levels, but reduced spleen weight and PON-1 levels. In conclusion, an in ovo vitamin C injection in eggs subject to mobile phone EMWs improved the post-hatch performance of chicks, but low PON and high AST activities indicate an increase in oxidative damage among broiler chicks.
Collapse
Affiliation(s)
- Fatma Yenilmez
- Plant and Animal Production Department, Vocational School of Tufanbeyli, Cukurova University, Adana 01640, Turkey
| |
Collapse
|
5
|
Dai D, Zhang HJ, Qiu K, Qi GH, Wang J, Wu SG. Supplemental L-Arginine Improves the Embryonic Intestine Development and Microbial Succession in a Chick Embryo Model. Front Nutr 2021; 8:692305. [PMID: 34692742 PMCID: PMC8526724 DOI: 10.3389/fnut.2021.692305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Early colonization of intestinal microbiota plays an important role in intestinal development. However, the microbial succession at an embryonic stage and its assembly patterns induced by prenatal nutrition are unknown. In the present study, we used a chick embryo model to investigate the effects of in ovo feeding (IOF) of L-arginine (Arg) on the intestinal development and microbial succession of embryos. A total of 216 fertile eggs were randomly distributed into 2 groups including the non-injected control group and IOF of Arg group with 7 mg/egg. The results showed that IOF Arg increased the intestinal index, absolute weight of jejunum, and improved jejunal morphology in terms of villus width and surface area (p < 0.05). The relative mRNA expressions of mTOR and 4E-BP1 were up-regulated and accompanied by higher contents of Mucin-2 in the Arg group (p < 0.05). There was a significant elevation in contents of serum glucose and high-density lipoprotein cholesterol, whereas there was a decreased low-density lipoprotein cholesterol in the Arg group (p < 0.05). Additionally, Proteobacteria and Firmicutes were major intestinal bacteria species at the embryonic stage. However, Arg supplementation targeted to shape assembly patterns of microbial succession and then changed microbial composition (p = 0.05). Meanwhile, several short-chain fatty acids (SCFAs)-producing bacteria, such as Roseburia, Blautia, and Ruminococcus were identified as biomarkers in the Arg group (LDA > 3, p < 0.05). Accordingly, significant elevated concentrations of SCFAs, including lactic acid and formic acid, were observed in the Arg group (p < 0.05), accompanied by the higher concentration of butyric acid (0.05 < p < 0.10). In conclusion, prenatal Arg supplementation improved embryonic intestine development by regulating glucose and lipid homeostasis to supply more energy for chick embryos. The possible mechanism could be the roles of Arg in shaping the microbial assembly pattern and succession of the embryonic intestine, particularly the enrichment of potential probiotics. These findings may contribute to exploring nutritional strategies to establish health-promoting microbiota by manipulating prenatal host-microbe interactions for the healthy development of neonates.
Collapse
Affiliation(s)
- Dong Dai
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Jun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Qiu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-Hai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-Geng Wu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Hassan F, Arshad MA, Hassan S, Bilal RM, Saeed M, Rehman MS. Physiological role of Arginine in growth performance, gut health and immune response in broilers: a review. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1925198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- F. Hassan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
| | - M. A. Arshad
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
| | - S. Hassan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
| | - R. M. Bilal
- College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - M. Saeed
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - M. S. Rehman
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
7
|
Gouda A, Tolba SA, Mahrose KM. Influences of vitamin A, L-carnitine, and folic acid in ovo feeding on embryo and hatchling characteristics and general health status in ducks. Anim Biotechnol 2021; 33:150-158. [PMID: 33406975 DOI: 10.1080/10495398.2020.1864389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The current investigation was conducted to test the potential effects of in ovo feeding of vitamin A, L-carnitine, and folic acid on embryonic growth and post-hatch performance. A total of 450 fertile duck eggs were randomly distributed into two experiments of five groups/experiment (255 eggs/experiment and 45 egg/group). The experimental groups were: negative control (non-injected eggs), positive control (eggs were injected with 0.1 ml sterile deionized; DI water/egg), and three other treatments in which vitamin A, L-carnitine, and folic acid were injected (1 mg of each nutrient dissolved in 0.1 ml sterile DI water/egg). All-in ovo injected groups with vitamin A, L-carnitine, and folic acid increased the embryo weight, residual yolk weight, heart weight, hatchability percentage, and embryo length at the 25th day of incubation. At hatching, all micronutrients-in ovo injected treatments increased the duckling's weight, levels of blood hemoglobulin, plasma triiodothyronine, and thyroxin, insulin-like growth factor1, total protein, albumin, and globulin, compared with the controls in both experiments. Conclusively, the in ovo feeding of the present micronutrients showed positive impacts on embryonic development, hatchling health status of ducklings.
Collapse
Affiliation(s)
- Ahmed Gouda
- Animal Production Department, Agricultural & Biological Research Division, National Research Center, Dokki, Egypt
| | - Samar A Tolba
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Khalid M Mahrose
- Animal and Poultry Department, Faculty of Technology and Development, Zagazig University, Sharkia, Egypt
| |
Collapse
|
8
|
Ruan D, Fouad AM, Fan QL, Huo XH, Kuang ZX, Wang H, Guo CY, Deng YF, Zhang C, Zhang JH, Jiang SQ. Dietary L-arginine supplementation enhances growth performance, intestinal antioxidative capacity, immunity and modulates gut microbiota in yellow-feathered chickens. Poult Sci 2020; 99:6935-6945. [PMID: 33248609 PMCID: PMC7705054 DOI: 10.1016/j.psj.2020.09.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/30/2020] [Accepted: 09/15/2020] [Indexed: 01/23/2023] Open
Abstract
This study investigated the effects of dietary Arginine (Arg) on performance, intestinal antioxidative capacity, immunity, and gut microbiota in Chinese yellow-feathered chickens. One thousand two hundred 1-day-old female Qingyuan partridge chickens were randomly assigned to 5 groups with 6 replicates of 40 birds each. Chickens were fed diets with 5 levels of total Arg (8.5, 9.7, 10.9, 12.1, and 13.3 g/kg) without antibiotics for 30 d. The ADFI, ADG, and feed conversion ratio were improved with dietary Arg levels (P < 0.05). The proportions of CD3+ and CD4+/CD8+ lymphocytes responded in a linear (P < 0.05) manner and those of CD4+ in a linear or quadratic (P < 0.05) manner as dietary Arg levels increased. Dietary Arg level had a linear (P < 0.05) or quadratic (P < 0.05) effect on the gene expression of glutathione peroxidase 1, heme oxygenase 1, nuclear factor erythroid 2-related factor 2, and the activities of glutathione peroxidase and total antioxidative capacity in the jejunum and ileum. The relative expression of IL-1β, myeloid differentiation primary response 88, and Toll-like receptor 4 decreased linearly (P < 0.05) in the ileum with increasing dietary Arg levels; secretory IgA contents were increased. In addition, sequencing data of 16S rRNA indicated that dietary Arg increased the relative abundance of Firmicutes phylum, Romboutsia and Candidatus Arthromitus genera, while decreased that of Clostridium sensu stricto 1. A diet containing 12.1 g Arg/kg promoted growth performance, intestinal antioxidation, and innate immunity and modulated gut microbiota in yellow-feathered chickens.
Collapse
Affiliation(s)
- D Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - A M Fouad
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Q L Fan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - X H Huo
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Z X Kuang
- Guangdong Aijiankang Biotechnology Co., Ltd., Qingyuan 511500, China
| | - H Wang
- Guangdong Aijiankang Biotechnology Co., Ltd., Qingyuan 511500, China
| | - C Y Guo
- CJ International Trading Co., Ltd., Shanghai 201107, China
| | - Y F Deng
- CJ International Trading Co., Ltd., Shanghai 201107, China
| | - C Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - J H Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - S Q Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| |
Collapse
|
9
|
The Role of Arginine in Disease Prevention, Gut Microbiota Modulation, Growth Performance and the Immune System of Broiler Chicken – A Review. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2019-0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The effect of dietary arginine on disease prevention, immune system modulation, the gut micro-biota composition and growth of broiler chicken was reviewed. The main aim of poultry production is the maximization of profit at the least possible cost. This objective can mainly be achieved by ensuring that there is no interference in growth or disease outbreak and by feeding chicken with the best possible level of nutrients. With the ban on antibiotic growth promoters, attention is shifted towards other nutrition methods to prevent diseases and promote growth. More attention is therefore given to protein diets in animal nutrition due to their importance as essential part of active biological compounds in the body, assisting in the breakdown of body tissue and helping in the physiological processes of the animal. Arginine plays important function in serving as building blocks of proteins and polypeptides. It performs other roles during the regulation of important biochemical functions such as maintenance, growth, reproduction and immunity. Arginine cannot be synthesized by the body so it has to be supplemented in the diet. When arginine is supplemented above the recommended level, the gut mucosa is protected, immunosuppression is alleviated, diseases like necrotic enteritis, infectious bursal disease and coccidiosis in broiler chickens are prevented. There is an improvement in growth resulting from the increase in intestinal absorption, barrier function and microbiota composition.
Collapse
|
10
|
Wang J, Lin J, Wang J, Wu S, Qi G, Zhang H, Song Z. Effects of in ovo feeding of N-acetyl-L-glutamate on early intestinal development and growth performance in broiler chickens. Poult Sci 2020; 99:3583-3593. [PMID: 32616255 PMCID: PMC7597834 DOI: 10.1016/j.psj.2020.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/07/2020] [Accepted: 04/01/2020] [Indexed: 10/28/2022] Open
Abstract
The present study determined the effects of in ovo feeding (IOF) of N-acetyl-L-glutamate (NAG) on early intestinal development and growth performance of broilers. A total of 702 fertile broiler eggs were randomly divided into 3 treatments: 1) non-punctured control group, 2) saline-injected control group, and 3) NAG solution-injected group (1.5 mg/egg). At 17.5 D of incubation, 300 μL of each solution was injected into each egg of injected groups. Results indicated that the hatchability and healthy chicken rate were not affected by NAG injection (P > 0.05). Chicks from NAG solution-injected group had significantly decreased average daily feed intake and feed conversion ratio during 1-14 D than those in the non-punctured control group (P < 0.05). Compared with the non-punctured control group, IOF of NAG significantly increased the density of goblet cells in jejunum at hatch, duodenum at 7 D, and ileum at 14 D; decreased crypt depth in jejunum at hatch; and increased villus height in duodenum and jejunum and villus height:crypt depth ratio in duodenum at 7 D (P < 0.05). The intestinal mRNA expression of Na+-dependent neutral amino acid transporter, peptide transporter, and excitatory amino acid transporter 3 did not differ between groups at 7 or 14 D. However, the mRNA expression level of rBAT in jejunum significantly increased in the NAG solution-injected group than in the non-punctured control group at 7 D (P < 0.05). In conclusion, IOF of NAG (1.5 mg/egg) accelerated the early intestinal development by enhancing intestinal immune and absorption function, thereby positively affecting the feed efficiency for the first 2 wk post-hatch.
Collapse
Affiliation(s)
- Jiguang Wang
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, P. R. China
| | - Jing Lin
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute of Chinese Academy of Agricultural Sciences, Beijing, 100081 P. R. China
| | - Jing Wang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute of Chinese Academy of Agricultural Sciences, Beijing, 100081 P. R. China
| | - Shugeng Wu
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute of Chinese Academy of Agricultural Sciences, Beijing, 100081 P. R. China
| | - Guanghai Qi
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute of Chinese Academy of Agricultural Sciences, Beijing, 100081 P. R. China
| | - Haijun Zhang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute of Chinese Academy of Agricultural Sciences, Beijing, 100081 P. R. China.
| | - Zhigang Song
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, P. R. China.
| |
Collapse
|
11
|
Ognik K, Konieczka P, Mikulski D, Jankowski J. The effect of different dietary ratios of lysine and arginine in diets with high or low methionine levels on oxidative and epigenetic DNA damage, the gene expression of tight junction proteins and selected metabolic parameters in Clostridium perfringens-challenged turkeys. Vet Res 2020; 51:50. [PMID: 32264939 PMCID: PMC7140342 DOI: 10.1186/s13567-020-00776-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
Two experiments were performed to investigate the effect of different ratios of arginine (Arg) to lysine (Lys) in diets with low (30% Lys; Experiment 1) and high (45% Lys; Experiment 2) methionine (Met) levels on selected metabolic parameters, oxidative and epigenetic DNA damage, and the mechanisms underlying intestinal barrier integrity in turkeys challenged with Clostridium perfringens. In each experiment, 108 one-day-old Hybrid Converter female turkeys were placed in 6 pens (18 birds per pen) and reared for 42 days. At 34, 36 and 37 days of age, half of the birds were subjected to C. perfringens challenge. A 3 × 2 factorial design with three levels of Arg relative to Lys (90, 100 and 110%; Arg90, Arg100 and Arg110, respectively) and C. perfringens infection (-, +) was employed. Challenging birds with C. perfringens increased lipid oxidation and the oxidation and methylation of DNA of intestinal mucosa, and down-regulated the activities of DNA-repairing enzymes. Neither the dietary treatment nor the challenge affected the markers of liver function or metabolism. Arg110 diets with the high Met level induced DNA oxidation and methylation whereas these processes were downregulated in birds fed Arg90 diets. The results indicate that Arg90 diets with high Met levels have a beneficial influence on the indicators of intestinal barrier integrity in turkeys with necrotic enteritis (NE). Despite the analyzed amino acid ratios interacted with the systems responsible for the maintenance of gut integrity in the host organism, this dietary intervention probably enabled birds to cope with NE.
Collapse
Affiliation(s)
- Katarzyna Ognik
- Department of Biochemistry and Toxicology, University of Life Sciences, 20-950, Lublin, Poland
| | - Paweł Konieczka
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland.
| | - Dariusz Mikulski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Jan Jankowski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| |
Collapse
|
12
|
Dai D, Wu SG, Zhang HJ, Qi GH, Wang J. Dynamic alterations in early intestinal development, microbiota and metabolome induced by in ovo feeding of L-arginine in a layer chick model. J Anim Sci Biotechnol 2020; 11:19. [PMID: 32175081 PMCID: PMC7063725 DOI: 10.1186/s40104-020-0427-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background Prenatal nutrition is crucial for embryonic development and neonatal growth, and has the potential to be a main determinant of life-long health. In the present study, we used a layer chick model to investigate the effects of in ovo feeding (IOF) of L-arginine (Arg) on growth, intestinal development, intestinal microbiota and metabolism. The treatments included the non-injected control, saline-injected control, and saline containing 2, 6, or 10 mg Arg groups. Results IOF Arg increased early intestinal index and villus height, and enhanced uptake of residual yolk lipid, contributing to subsequent improvement in the early growth performance of chicks. Prenatal Arg supplementation also increased the early microbial α-diversity, the relative abundance of Lactobacillales and Clostridiales, and decreased the relative abundance of Proteobacteria of cecum in chicks. Furthermore, the shift of cecal microbiota composition and the colonization of potential probiotics were accelerated by IOF of Arg. Simultaneously, metabolomics showed that metabolisms of galactose, taurine-conjugated bile acids and lipids were modulated to direct more energy and nutrients towards rapid growth of intestine at the beginning of post-hatch when embryos received IOF of Arg. Conclusions Prenatal Arg supplementation showed beneficial effects on the early intestinal development, cecal microbiota and host metabolism of layer chicks, contributing to subsequent improvement in the early growth performance. These findings provide new insight into the role of IOF of Arg in the establishment of the gut microbiota of newly-hatched layer chicks, and can expand our fundamental knowledge about prenatal nutrition, early bacterial colonization and intestinal development in neonate.
Collapse
Affiliation(s)
- Dong Dai
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South St., Haidian District, Beijing, 100081 China
| | - Shu-Geng Wu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South St., Haidian District, Beijing, 100081 China
| | - Hai-Jun Zhang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South St., Haidian District, Beijing, 100081 China
| | - Guang-Hai Qi
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South St., Haidian District, Beijing, 100081 China
| | - Jing Wang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South St., Haidian District, Beijing, 100081 China
| |
Collapse
|
13
|
Omidi S, Ebrahimi M, Janmohammadi H, Moghaddam G, Rajabi Z, Hosseintabar-Ghasemabad B. The impact of in ovo injection of l-arginine on hatchability, immune system and caecum microflora of broiler chickens. J Anim Physiol Anim Nutr (Berl) 2019; 104:178-185. [PMID: 31587369 DOI: 10.1111/jpn.13222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 02/01/2023]
Abstract
The present article was conducted to evaluate the effect of in ovo injection of arginine on hatchability, immune system and caecum microflora of broiler chickens. For this reason, 300 fertile eggs were used in a completely randomized design with three experimental treatments. The experimental groups included: 1%-0.5% l-arginine (100 eggs), 2%-1% l-arginine (100 eggs), 3- control [included both sham control (injection of distilled water; 50 eggs) and control (no injection; 50 eggs)], which were injected on d 14 of incubation. After hatching, chicks of each experimental group (0.5% l-arginine, 1% l-arginine, and control groups) were randomly divided into four equal groups (as replicates) and reared for 30 days. Weight and feeding of chickens were recorded. Next, blood samples of chickens were collected on day 30 to evaluate antibody titre. Also, chickens were slaughtered on 24 and 30 days of the experiment to evaluate immune system organs and caecum microflora. Based on the results, in ovo injection of l-arginine had no significant effect on hatchability, body weight, antibody titre, spleen, bursa of Fabricius and thymus weight (p > .05). On the other hand, treatments significantly affected feed intake and feed conversion ratio (p < .05). As a novel finding, in ovo injection of l-arginine increased caecal Lactobacillus (p < .01), while decreasing Coliform and Escherichia Coli bacteria (p < .01). However, treatments did not influence caecal Enterococcus (p > .05). The overall results indicated that in ovo injection of 0.5% l-arginine had a better improving effect on caecal microflora and then considered as a recommended level of the present experiment.
Collapse
Affiliation(s)
- Somayeh Omidi
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Marziyeh Ebrahimi
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Hossein Janmohammadi
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Gholamali Moghaddam
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Zolfaghar Rajabi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
14
|
Jha R, Singh AK, Yadav S, Berrocoso JFD, Mishra B. Early Nutrition Programming ( in ovo and Post-hatch Feeding) as a Strategy to Modulate Gut Health of Poultry. Front Vet Sci 2019; 6:82. [PMID: 30949488 PMCID: PMC6437089 DOI: 10.3389/fvets.2019.00082] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/27/2019] [Indexed: 01/15/2023] Open
Abstract
Healthy gastrointestinal tract (GIT) is crucial for optimum performance, better feed efficiency, and overall health of poultry. In the past, antibiotic growth promoters (AGP) were commonly used to modulate the gut health of animals. However, considering the public health concern, the use of AGP in animal feeding is banned or regulated in several jurisdictions around the world. This necessitates the need for alternative nutritional strategies to produce healthy poultry. For that, several alternatives to AGP have been attempted with some success. However, effective modulation of the gut health parameters depends on the methods and timing of the compound being available to host animals. Routinely, the alternatives to AGP and other nutrients are provided in feed or water to poultry. However, the GIT of the newly hatched poultry is functionally immature, despite going through significant morphological, cellular, and molecular changes toward the end of incubation. Thus, early growth and development of GIT are of critical importance to enhance nutrients utilization and optimize the growth of poultry. Early nutrition programming using both in ovo and post-hatch feeding has been used as a means to modulate the early growth and development of GIT and found to be an effective strategy but with inconsistent results. This review summarizes the information on in ovo and post-hatch-feeding of different nutrients and feeds additives and their effects on gut development, histomorphology, microbiology, and immunology. Furthermore, this review will provide insight on the future of early nutrition programming as a strategy to enhance gut health, thereby improving overall health and production so that the poultry industry can benefit from this technique.
Collapse
Affiliation(s)
- Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Amit Kumar Singh
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Sudhir Yadav
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | | | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
15
|
Adedokun SA, Olojede OC. Optimizing Gastrointestinal Integrity in Poultry: The Role of Nutrients and Feed Additives. Front Vet Sci 2019; 5:348. [PMID: 30766877 PMCID: PMC6366008 DOI: 10.3389/fvets.2018.00348] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/31/2018] [Indexed: 12/19/2022] Open
Abstract
Immunomodulation of the immune system by stimulating or suppressing one or both arms, is an emerging concept driven by the understanding of the host defense system. In particular, the gastrointestinal tract (GIT) functions not only as a site for digestion and absorption of nutrients but also acts as a metabolic and immunological organ. This serves as a barrier against abnormal presentation of luminal constituents, caused by dysfunctional intestinal epithelial barrier, to the mucosal immune system. Invasion by pathogens in the case of disease or stress or a massive influx of commensal bacteria overcomes the defensive mechanisms, resulting in the full activation of local dendritic cells and the expression of co-stimulatory molecules and pro-inflammatory cytokines. A growing body of literature demonstrates the immune benefits of increasing the intake of specific nutrients. This strategy involves formulating diets that encompass the bioavailability and utilization of nutrients from various food sources and understanding the dynamics of the macro and micronutrients to support all physiological functions as well as maintaining the function of the immune cells. The nature and type of feed ingredients may also play some roles on the integrity of the GIT of birds. Because dietary intake or nutritional status as well as nutrient requirements may be altered as a result of disease or stress, this may eventually alter the gut microflora and intestinal mucosal integrity, resulting in a compromised barrier of the intestinal epithelium. The weakening of the intestinal integrity could result in an increase in bacterial adherence to the mucosa, bacterial translocation, susceptibility to opportunistic bacterial infection, and mis-appropriation of nutrients. In this chapter, we will discuss the role of dietary energy and nutrients as substrates that have the potential to influence GIT's health and integrity and their roles, directly or indirectly, in modulating bird's ability to be resilient or resist infection.
Collapse
Affiliation(s)
- Sunday A Adedokun
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Opeyemi C Olojede
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
16
|
Toghyani M, Tahmasebi S, Modaresi M, Ale Saheb Fosoul SS. Effect of arginine and threonine in ovo supplementation on immune responses and some serum biochemical attributes in broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1080/1828051x.2018.1529545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Majid Toghyani
- Department of Animal Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Shohreh Tahmasebi
- Department of Animal Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Mehrdad Modaresi
- Department of Animal Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | | |
Collapse
|
17
|
Li S, Ren L, Zhu X, Li J, Zhang L, Wang X, Gao F, Zhou G. Immunomodulatory effect of γ-irradiated Astragalus polysaccharides on immunosuppressed broilers. Anim Sci J 2018; 90:117-127. [PMID: 30456927 DOI: 10.1111/asj.13133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/26/2018] [Accepted: 10/15/2018] [Indexed: 12/21/2022]
Abstract
In this study, we irradiated Astragalus polysaccharides (APS) using 25 kGy 60 Co γ ray to obtain γ-irradiated Astragalus polysaccharides (IAPS) and then investigated the effects of IAPS on growth performance and immune function of cyclophosphamide (CPM)-treated broilers. The physicochemical properties of APS and IAPS (molecular weight, water solubility, viscosity, morphological and structural properties) were evaluated. Then, 384 one-day-old Arbor Acres broiler chicks with similar initial weight were randomly assigned into 6 groups: the non-treated group (control), and CPM-treated groups were fed either a basal diet or the diets containing 900 mg/kg APS, or 900, 600, 300 mg/kg IAPS, respectively. On days 16, 18, and 20, all broilers except for the control group were intramuscularly injected with 0.5 ml CPM (40 mg/kg·BW). Broilers in the control group were intramuscularly injected with 0.5 ml sterilized saline (0.75%, wt/vol). This trial lasted for 21 days. The physicochemical treatment showed that γ irradiation could decrease the molecular weight and viscosity, and increase the water solubility of APS (p < 0.05), whereas the structural properties of APS was not affected. In the animal trial, 900 mg/kg APS or 900, 600 mg/kg IAPS relieved the decreased growth performance, thymus index, T lymphocytes proliferation, serum IgG concentration, NOS activity and the increased blood heterophil:lymphocyte ratio in CPM-treated broilers (p < 0.05). CPM-induced decreases in B lymphocytes proliferation and serum IgM concentration were only increased by IAPS at 900 mg/kg (p < 0.05). Overall, both APS and IAPS alleviated CPM-induced immunosuppression. Especially, IAPS possessed better immunomodulatory effect than APS, indicating that γ irradiation could be used as an effective method to enhance the immunomodulatory activity of APS.
Collapse
Affiliation(s)
- Shan Li
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Lina Ren
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Xudong Zhu
- College of Science, Nanjing Agricultural University, Nanjing, China
| | - Jiaolong Li
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Lin Zhang
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Xiaofei Wang
- College of Science, Nanjing Agricultural University, Nanjing, China
| | - Feng Gao
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Guanghong Zhou
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Paiva JT, De Resende MDV, Resende RT, Oliveira HR, Silva HT, Caetano GC, Calderano AA, Lopes PS, Viana JMS, Silva FF. A note on transgenerational epigenetics affecting egg quality traits in meat-type quail. Br Poult Sci 2018; 59:624-628. [PMID: 30141691 DOI: 10.1080/00071668.2018.1514582] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
1. The aim of the following experiment was to estimate transgenerational epigenetic variance for egg quality traits using genealogical and phenotypic information in meat-type quail. Measured traits included egg length (EL) and width (EWD), albumen weight (AW), shell weight (SW), yolk weight (YW) and egg weight (EW). 2. A total of 391 birds were evaluated for egg quality by collecting a sample of one egg per bird, during three consecutive days, starting on the 14th d of production. Analyses were performed using mixed models including the random epigenetic effect. Variance components were estimated by the restricted maximum likelihood method. A grid-search for values for the auto-recursive parameter (λ) was used in the variance components estimation. This parameter is directly related to the reset (v) and epigenetic transmissibility (1 - v) coefficients. 3. The epigenetic effect was not significant for any of the egg quality traits evaluated. Direct heritability estimates for egg quality traits ranged in magnitude from 0.06 to 0.33, whereby the higher estimates were found for AW and SW. Epigenetic heritability estimates were low and close to zero (ranging from 0.00 to 0.07) for all evaluated traits. 4. The current breeding strategies accounting for additive genetic effect seem to be suitable for egg quality traits in meat-type quail.
Collapse
Affiliation(s)
- J T Paiva
- a Department of Animal Science , Universidade Federal de Viçosa , Viçosa , Brazil
| | - M D V De Resende
- b Department of Forestry , Universidade Federal de Viçosa , Viçosa , Brazil.,c EMBRAPA Forestry Research , Colombo , Brazil
| | - R T Resende
- b Department of Forestry , Universidade Federal de Viçosa , Viçosa , Brazil
| | - H R Oliveira
- a Department of Animal Science , Universidade Federal de Viçosa , Viçosa , Brazil
| | - H T Silva
- a Department of Animal Science , Universidade Federal de Viçosa , Viçosa , Brazil
| | - G C Caetano
- a Department of Animal Science , Universidade Federal de Viçosa , Viçosa , Brazil
| | - A A Calderano
- a Department of Animal Science , Universidade Federal de Viçosa , Viçosa , Brazil
| | - P S Lopes
- a Department of Animal Science , Universidade Federal de Viçosa , Viçosa , Brazil
| | - J M S Viana
- d Department of General Biology , Universidade Federal de Viçosa , Viçosa , Brazil
| | - F F Silva
- a Department of Animal Science , Universidade Federal de Viçosa , Viçosa , Brazil
| |
Collapse
|
19
|
Paiva JT, de Resende MDV, Resende RT, de Oliveira HR, Silva HT, Caetano GC, Lopes PS, Silva FF. Transgenerational epigenetic variance for body weight in meat quails. J Anim Breed Genet 2018; 135:178-185. [PMID: 29878492 DOI: 10.1111/jbg.12329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/08/2018] [Indexed: 12/28/2022]
Abstract
We aimed to estimate transgenerational epigenetic variance for body weight using genealogical and phenotypic information in meat quails. Animals were individually weighted from 1 week after hatching, with weight records at 7, 14, 21, 28, 35 and 42 days of age (BW7, BW14, BW21, BW28, BW35 and BW42, respectively). Single-trait genetic analyses were performed using mixed models with random epigenetic effects. Variance components were estimated by the restricted maximum likelihood method. A grid search for values of autorecursive parameter (λ) ranging from 0 to 0.5 was used in the variance component estimation. This parameter is directly related to the reset coefficient (ν) and the epigenetic coefficient of transmissibility (1-ν). The epigenetic effect was only significant for BW7. Direct heritability estimates for body weight ranged in magnitude (from 0.15 to 0.26), with the highest estimate for BW7. Epigenetic heritability was 0.10 for BW7, and close to zero for the other body weights. The inclusion of the epigenetic effect in the model helped to explain the residual and non-Mendelian variability of initial body weight in meat quails.
Collapse
Affiliation(s)
- J T Paiva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - M D V de Resende
- Department of Forestry, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,EMBRAPA Forestry Research, Colombo, Paraná, Brazil
| | - R T Resende
- Department of Forestry, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - H R de Oliveira
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - H T Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - G C Caetano
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - P S Lopes
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - F F Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
20
|
Zhang XY, Wan XP, Miao LP, Zou XT, Dong XY. Effects of in ovo feeding of l-arginine on hatchability, hatching time, early posthatch development, and carcass traits in domestic pigeons ( Columba livia). J Anim Sci 2018; 95:4462-4471. [PMID: 29108055 DOI: 10.2527/jas2017.1776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The objective of this research was to test the hypothesis that in ovo feeding of arginine (Arg) may improve hatchability and posthatch performance in domestic pigeons (). A completely randomized design ( = 3) with an Arg feeding treatment (Arg group, 1.14 mg Arg dissolved in 200 μL of 0.75% NaCl buffered saline as 1% concentration compared to total Arg in the egg), a buffered saline feeding treatment (SC group, 7.5 g NaCl dissolved in 1 L sterile distilled water as the concentration of poultry physiological saline), and a nonfeeding treatment (NC group) was used. Six squabs from each treatment were randomly sampled on day of hatch (DOH), posthatch d 7 (D7), and posthatch d 14 (D14), respectively. Hatchability, hatch time, BW, organ development, and carcass traits were examined. Results showed that in ovo feeding of the Arg solution increased ( < 0.05) the hatchability and advanced ( < 0.05) the hatching time in comparison with those of the other groups. Body weight of pigeon squabs that received Arg in ovo feeding was heavier ( < 0.05) on DOH and D14 than that of the NC group, and a greater ( < 0.05) BW gain from DOH to D14 and D7 to D14 was observed. Three clusters of 12 organs were classified according to the changes of organ indices. Squabs provided the Arg in ovo feeding treatment gained a priority in organ development. The heart index and gizzard index on D7 and the proventriculus index on D14 of squabs receiving Arg in ovo feeding were increased ( < 0.05) compared to those of the other groups. The brain index on DOH, the small intestine index and pancreas index on D7, and the liver index, pancreas index, and spleen index on D14 of squabs fed Arg were higher ( < 0.05) than those of the NC group. The spleen index on D7 and the small intestine index on D14 of squabs provided the Arg feeding treatment were enhanced ( < 0.05) compared with those of the SC group. The semieviscerated carcass weight of squabs receiving Arg was higher ( < 0.05) on D14 than that of other groups. The absolute weight of breast meat yield on D7 and breast meat yield percentage on D7 and D14 were improved ( < 0.05) in the Arg group compared with the NC group. The leg meat percentage on D7 and the carcass weight, eviscerated carcass weight, and absolute weight of breast meat yield on D14 were increased ( < 0.05) in the Arg group compared with those of the SC group. The results of this study indicate that in ovo feeding of pigeon embryos with Arg may have beneficial effects on squab hatch performance and early posthatch performance.
Collapse
|
21
|
Insights into phytase-containing transgenic Lemna minor (L.) as a novel feed additive. Transgenic Res 2018; 27:211-224. [DOI: 10.1007/s11248-018-0068-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
|
22
|
Gao T, Zhao M, Zhang L, Li J, Yu L, Gao F, Zhou G. In ovo feeding of l-arginine regulates intestinal barrier functions of posthatch broilers by activating the mTOR signaling pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1416-1425. [PMID: 28771730 DOI: 10.1002/jsfa.8609] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/23/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND During the last phase of incubation, dramatic physiological and metabolic changes occur in chick embryos, and supplies of nutrients and energy are always insufficient. This study investigated the effects of in ovo feeding (IOF) of l-arginine (Arg) on the hatchability, growth performance, intestinal development and functions of posthatch broilers. RESULTS The IOF of Arg increased (P < 0.05) the feed intake and body weight gain during 1-21 days and 1-42 days, and the intestinal weight of 7- and 21-day-old broilers, compared with non-injected control and diluent-injected groups. The IOF of Arg increased (P < 0.05) villus height (VH), ratio of VH to crypt depth (CD) and density of goblet cells, and decreased (P < 0.05) the CD in jejunum of 1-, 7- and 21-day-old broilers. The IOF of Arg also increased (P < 0.05) the percentage of proliferating cell nuclear antigen positive cells of villus, and the mRNA expressions of mucin-2, claudin-1, zonula occludens-1 and -2 in jejunal mucosa of 21-day-old broilers. Meanwhile, IOF of Arg increased (P < 0.05) the protein abundance of phosphorylated mechanistic target of rapamycin (mTOR), ribosomal protein S6 kinase 1 and eukaryotic initiation factor 4E binding protein 1 in jejunal mucosa. CONCLUSION The IOF of Arg improved the development and barrier functions of small intestine, which might be associated with activating the mTOR pathway. In addition, the improved intestinal development might explain the improvement in feed intake and consequently the growth performance of broilers. Therefore, IOF of Arg solution could be an effective technology for regulating early nutrition supply and subsequent growth development in the poultry industry. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tian Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, PR China
| | - Minmeng Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, PR China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, PR China
| | - Jiaolong Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, PR China
| | - Lanlin Yu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, PR China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, PR China
| | - Guanghong Zhou
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
23
|
Gao T, Zhao M, Zhang L, Li J, Yu L, Lv P, Gao F, Zhou G. Effect of in ovo feeding of l-arginine on the hatchability, growth performance, gastrointestinal hormones, and jejunal digestive and absorptive capacity of posthatch broilers. J Anim Sci 2017; 95:3079-3092. [PMID: 28727112 DOI: 10.2527/jas.2016.0465] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This study was conducted to investigate the effects of in ovo feeding (IOF) of Arg solution on the hatchability, growth performance, gastrointestinal hormones, serum AA, activities of digestive enzymes, and mRNA expressions of sensing receptors and nutrient transporters in the jejunum of posthatch broilers. One thousand two hundred embryonated eggs with similar weight were randomly allocated to 5 groups consisting of 8 replicates of 40 eggs each. The 5 treatments were arranged as a noninjected control, a diluent-injected (0.75% NaCl solution) group, and Arg solution-injected groups with 0.5%, 1.0%, and 2.0% Arg, all dissolved in diluent. At 17.5 d of incubation, 0.6 mL of IOF solution was injected into the amniotic fluid of each egg of the injected groups. Results showed the hatchability of the 2% Arg group was lower (linear, = 0.025) than that of the other groups, and the BW of 21-d-old broilers increased (linear, = 0.008; quadratic, = 0.003) with increasing IOF concentration of Arg. The ADFI (linear, = 0.005; quadratic, = 0.001) and ADG (linear, = 0.010; quadratic, = 0.004) increased during d 1 to 21 with increasing IOF concentration of Arg. For 7- and 21-d-old broilers, the weights of digestive organs increased (linear, < 0.05) with increasing IOF concentrations of Arg; the greatest values were observed in the 1% Arg group. For 21-d-old broilers, IOF of the 1% Arg solution increased ( < 0.05) the concentrations of ghrelin and glucagon-like peptide 2; the activities of digestive enzymes, alkaline phosphatase, maltase, and sucrase in the jejunum; and the concentrations of serum AA of Val, Met, Ile, Leu, Arg, and Pro compared with those of the noninjected control and diluent-injected group. In ovo feeding of the 1% Arg solution also increased ( < 0.05) the mRNA expressions of jejunal sensing receptors of taste receptor type 1 members 1 and 3; the G protein-coupled receptor, class C, group 6, subtype A; nutrient transporters of solute carrier family 7, members 4, 6, and 7; sodium-glucose transporter 1; and fatty acid-binding protein 1. In conclusion, the 1% Arg solution was the appropriate injection level. In ovo feeding of the 1% Arg solution did not affect the hatchability but facilitated the release of gastrointestinal hormones, increasing the digestive and absorptive capacity and finally improving the growth performance of 21-d-old broilers. Therefore, IOF of the appropriate Arg solution could be an effective technology for regulating early nutrition supply and subsequent growth development in the poultry industry.
Collapse
|
24
|
Zhao M, Gong D, Gao T, Zhang L, Li J, Lv P, Yu L, Gao F, Zhou G. In ovo feeding of creatine pyruvate increases hatching weight, growth performance, and muscle growth but has no effect on meat quality in broiler chickens. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Zhao MM, Gong DQ, Gao T, Zhang L, Li JL, Lv PA, Yu LL, Gao F, Zhou GH. In ovo feeding of creatine pyruvate modulates growth performance, energy reserves and mRNA expression levels of gluconeogenesis and glycogenesis enzymes in liver of embryos and neonatal broilers. J Anim Physiol Anim Nutr (Berl) 2017; 102:e758-e767. [DOI: 10.1111/jpn.12831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022]
Affiliation(s)
- M. M. Zhao
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
- College of Animal Science and Technology; Yangzhou University; Yangzhou China
| | - D. Q. Gong
- College of Animal Science and Technology; Yangzhou University; Yangzhou China
| | - T. Gao
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - L. Zhang
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - J. L. Li
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - P. A. Lv
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - L. L. Yu
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - F. Gao
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - G. H. Zhou
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| |
Collapse
|
26
|
Gao T, Zhao MM, Li YJ, Zhang L, Li JL, Yu LL, Gao F, Zhou GH. Effects of in ovo feeding of L-arginine on the development of digestive organs, intestinal function and post-hatch performance of broiler embryos and hatchlings. J Anim Physiol Anim Nutr (Berl) 2017; 102:e166-e175. [DOI: 10.1111/jpn.12724] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/24/2017] [Indexed: 12/14/2022]
Affiliation(s)
- T. Gao
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Nanjing Agricultural University; Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing; Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - M. M. Zhao
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Nanjing Agricultural University; Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing; Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - Y. J. Li
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Nanjing Agricultural University; Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing; Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - L. Zhang
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Nanjing Agricultural University; Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing; Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - J. L. Li
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Nanjing Agricultural University; Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing; Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - L. L. Yu
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Nanjing Agricultural University; Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing; Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - F. Gao
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Nanjing Agricultural University; Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing; Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - G. H. Zhou
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province; Nanjing Agricultural University; Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing; Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| |
Collapse
|