1
|
Chen F, Zhao L, Huang L, Zhuo Y, Xu S, Lin Y, Che L, Feng B, Wu D, Fang Z. Synergistic effects of multi-enzyme supplementation on nutrient digestion and absorption in the foregut and hindgut. Front Vet Sci 2025; 12:1554919. [PMID: 40070914 PMCID: PMC11893834 DOI: 10.3389/fvets.2025.1554919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
This study was conducted to investigate the effect of dietary multi-enzyme (MCPC) supplementation on synergistically enhancing the functions of both the foregut and hindgut, ultimately improving the nutrient digestion and utilization throughout the gastrointestinal tract. In vitro results demonstrated that MCPC increased the phosphorus and reducing sugar levels in the supernatant during enzymatic hydrolysis. Furthermore, during the fermentation of the enzymatic hydrolysis products, MCPC significantly increased the FRD0 value of the enzymatic hydrolysis products from both the positive control (PC) and negative control 1 (NC1) diets (p < 0.05). MCPC reduced the T1/2 value of in vitro fermentation products from the PC diet (p < 0.01), and decreased the VF (p = 0.082) and K (p < 0.05) values for the NC1 diet. Additionally, 72 crossbred barrows [Duroc × (Landrace × Yorkshire)], weighing 25 kg, were fed one of six diets until their live weight approached 50 kg. The basal diets consisted of PC, NC1 and negative control 2 (NC2), while the remaining three diets were prepared by adding 100 mg/kg MCPC to the respective basal diets. The results showed that MCPC supplementation significantly upregulated the expression of solute carrier family 17 member 4 (SLC17A4) and vitamin D receptor (VDR) genes in the duodenum (p < 0.05), while downregulating the expression of Calbindin-D28k (CaBP-D28K) and solute carrier family 1 member 4 (SLC1A4) genes (p < 0.05) in growing pigs. Moreover, MCPC supplementation significantly upregulated the expression of VDR, glucose transporter 2 (GLUT2) and intestinal fatty acid binding protein (FABP2) genes in the jejunum of growing pigs. Furthermore, MCPC supplementation significantly increased the relative abundances of Bacteroidota, Prevotella and Phascolarctobacterium (p < 0.05), while reducing the relative abundances of Verrucomicrobiota and Clostridium_sensu_stricto_1 (p < 0.05) in the colon of growing pigs. In conclusion, MCPC enhances nutrient digestion and absorption in the foregut, provides fermentable substrates for hindgut microbial fermentation, and improves gut microbiota composition. This improves hindgut fermentation and supports the synergistic interaction between the foregut and hindgut, ultimately improving nutrient utilization and benefiting animal health.
Collapse
Affiliation(s)
- Fangyuan Chen
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lianpeng Zhao
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lingjie Huang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, China
| |
Collapse
|
2
|
Yong F, Liu B, Li H, Hao H, Fan Y, Datsomor O, Han R, Jiang H, Che D. Relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization, energy metabolism, and gut microbiota in growing pigs. J Anim Sci Biotechnol 2025; 16:1. [PMID: 39748438 PMCID: PMC11697959 DOI: 10.1186/s40104-024-01129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/14/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND There is a growing focus on using various plant-derived agricultural by-products to increase the benefits of pig farming, but these feedstuffs are fibrous in nature. This study investigated the relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization, energy metabolism, and gut microbiota in growing pigs. METHODS Thirty-six growing barrows (47.2 ± 1.5 kg) were randomly allotted to 6 dietary treatments with 2 apparent viscosity levels and 3 β-glucan-to-arabinoxylan ratios. In the experiment, nutrient utilization, energy metabolism, fecal microbial community, and production and absorption of short-chain fatty acid (SCFA) of pigs were investigated. In vitro digestion and fermentation models were used to compare the fermentation characteristics of feedstuffs and ileal digesta in the pig's hindgut. RESULTS The production dynamics of SCFA and dry matter corrected gas production of different feedstuffs during in vitro fermentation were different and closely related to the physical properties and chemical structure of the fiber. In animal experiments, increasing the dietary apparent viscosity and the β-glucan-to-arabinoxylan ratios both increased the apparent ileal digestibility (AID), apparent total tract digestibility (ATTD), and hindgut digestibility of fiber components while decreasing the AID and ATTD of dry matter and organic matter (P < 0.05). In addition, increasing dietary apparent viscosity and β-glucan-to-arabinoxylan ratios both increased gas exchange, heat production, and protein oxidation, and decreased energy deposition (P < 0.05). The dietary apparent viscosity and β-glucan-to-arabinoxylan ratios had linear interaction effects on the digestible energy, metabolizable energy, retained energy (RE), and net energy (NE) of the diets (P < 0.05). At the same time, the increase of dietary apparent viscosity and β-glucan-to-arabinoxylan ratios both increased SCFA production and absorption (P < 0.05). Increasing the dietary apparent viscosity and β-glucan-to-arabinoxylan ratios increased the diversity and abundance of bacteria (P < 0.05) and the relative abundance of beneficial bacteria. Furthermore, increasing the dietary β-glucan-to-arabinoxylan ratios led to a linear increase in SCFA production during the in vitro fermentation of ileal digesta (P < 0.001). Finally, the prediction equations for RE and NE were established. CONCLUSION Dietary fiber physicochemical properties alter dietary fermentation patterns and regulate nutrient utilization, energy metabolism, and pig gut microbiota composition and metabolites.
Collapse
Affiliation(s)
- Feng Yong
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Bo Liu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Huijuan Li
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Houxu Hao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yueli Fan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Osmond Datsomor
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Rui Han
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hailong Jiang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.
| | - Dongsheng Che
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
3
|
Jo H, Kim BG. Effects of dietary fiber in gestating sow diets - A review. Anim Biosci 2023; 36:1619-1631. [PMID: 37641826 PMCID: PMC10623041 DOI: 10.5713/ab.23.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023] Open
Abstract
The objective of this review was to provide an overview of the effects of dietary fiber (DF) on reproductive performance in gestating sows. Dietary fibers have been suggested to modulate microbiota in the intestine and the immune system of gestating sows and to improve gut health. Thus, DF may help alleviate the adverse effects of the stressful production cycle of gestating sows. These benefits may subsequently result in improved reproductive performance of sows. Previous studies have reported changes in microbiota by providing gestating sows with DF, and the responses of microbiota varied depending on the source of DF. The responses by providing DF to gestating sows were inconsistent for antioxidative capacity, hormonal response, and inflammatory response among the studies. The effects of DF on reproductive performance were also inconsistent among the previous studies. Potential reasons contributing to these inconsistent results would include variability in reproductive performance data, insufficient replication, influence of other nutrients contained in the DF diets, characteristics of DF, and experimental periods. The present meta-analysis suggests that increasing the total DF concentration by 10 percentage units (e.g., 12% to 22% as-fed basis) in gestating sow diets compared to the control group improves the litter born alive by 0.49 pigs per litter. However, based on the present review, questions remain regarding the benefits of fibers in gestating sow diets. Further research is warranted to clarify the mode of action of fibers and the association with subsequent reproductive performance in gestating sows.
Collapse
Affiliation(s)
- Hyunwoong Jo
- Department of Animal Science and Technology, Konkuk University, Seoul 05029,
Korea
| | - Beob Gyun Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029,
Korea
| |
Collapse
|
4
|
Gao LM, Liu GY, Wang HL, Wassie T, Wu X, Yin YL. Impact of dietary supplementation with N-carbamoyl-aspartic acid on serum metabolites and intestinal microflora of sows. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:750-763. [PMID: 36054758 DOI: 10.1002/jsfa.12186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/25/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND N-Carbamoyl-aspartic acid (NCA) is a critical precursor for de novo biosynthesis of pyrimidine nucleotides. To investigate the cumulative effects of maternal supplementation with NCA on the productive performance, serum metabolites and intestinal microbiota of sows, 40 pregnant sows (∼day 80) were assigned into two groups: (1) the control (CON) and (2) treatment (NCA, 50 g t-1 NCA). RESULTS Results showed that piglets from the NCA group had heavier birth weight than those in the CON group (P < 0.05). In addition, maternal supplementation with NCA decreased the backfat loss of sows during lactation (P < 0.05). Furthermore,16S-rRNA sequencing results revealed that maternal NCA supplementation decreased the abundance of Cellulosilyticum, Fournierella, Anaerovibrio, and Oribacterium genera of sows during late pregnancy (P < 0.05). Similarly, on the 14th day of lactation, maternal supplementation with NCA reduced the diversity of fecal microbes of sows as evidenced by significantly lower observed species, Chao1, and Ace indexes, and decreased the abundance of Lachnospire, Faecalibacterium, and Anaerovorax genera, while enriched the abundance of Catenisphaera (P < 0.05). Untargeted metabolomics showed that a total of 48 differentially abundant biomarkers were identified, which were mainly involved in metabolic pathways of arginine/proline metabolism, phenylalanine/tyrosine metabolism, and fatty acid biosynthesis, etc. CONCLUSION: Overall, the results indicated that NCA supplementation regulated intestinal microbial composition of sows and serum differential metabolites related to arginine, proline, phenylalanine, tyrosine, and fatty acids metabolism that may contribute to regulating the backfat loss of sows, and the birth weight and diarrhea rate of piglets. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lu-Min Gao
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Science, Beijing, China
| | - Gang-Yi Liu
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| | - Hong-Ling Wang
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| | - Teketay Wassie
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| | - Xin Wu
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Science, Beijing, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yu-Long Yin
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Science, Beijing, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
5
|
Pan L, Feng S, Li W, Zhu W. Sorghum tannin extract impedes in vitro digestibility and fermentability of nutrients in the simulated porcine gastrointestinal tract. J Anim Sci 2023; 101:skad126. [PMID: 37100756 PMCID: PMC10195193 DOI: 10.1093/jas/skad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/22/2023] [Indexed: 04/28/2023] Open
Abstract
The site and extent of digestion of sorghum nutrients affected by tannins in the intestine are not clarified. Porcine small intestine digestion and large intestine fermentation were simulated in vitro to determine the effects of sorghum tannin extract on the digestion and fermentation characteristics of nutrients in the mimicked porcine gastrointestinal tract. In experiment 1, low-tannin sorghum grain without or with 30 mg/g sorghum tannin extract were digested by porcine pepsin and pancreatin to measure in vitro digestibility of nutrients. In experiment 2, the lyophilized porcine ileal digesta from 3 barrows (Duroc × Landrace × Yorkshire, 27.75 ± 1.46 kg) fed the low-tannin sorghum grain without or with 30 mg/g sorghum tannin extract and the undigested residues from experiment 1 were, individually, incubated with fresh pig cecal digesta as inoculums for 48 h to simulate the porcine hindgut fermentation. The results revealed that sorghum tannin extract decreased in vitro digestibility of nutrients both by pepsin hydrolysis or pepsin-pancreatin hydrolysis (P < 0.05). Although enzymatically unhydrolyzed residues provided more energy (P = 0.09) and nitrogen (P < 0.05) as fermentation substrates, the microbial degradation of nutrients from unhydrolyzed residues and porcine ileal digesta were both decreased by sorghum tannin extract (P < 0.05). Regardless of unhydrolyzed residues or ileal digesta as fermentation substrates, microbial metabolites including the accumulative gas production excluding the first 6 h, total short-chain fatty acid and microbial protein content in the fermented solutions were decreased (P < 0.05). The relative abundances of Lachnospiraceae AC2044 and NK4A136 and Ruminococcus_1 was decreased by sorghum tannin extract (P < 0.05). In conclusion, sorghum tannin extract not only directly decreased the chemical enzymatic digestion of nutrients in the simulated anterior intestine, but also directly inhibited the microbial fermentation including microbial diversities and metabolites in the simulated posterior intestine of pigs. The experiment implies that the decreased abundances of Lachnospiraceae and Ruminococcaceae by tannins in the hindgut may weaken the fermentation capacity of microflora and thus impair the nutrient digestion in the hindgut, and ultimately reduce the total tract digestibility of nutrients in pigs fed high tannin sorghum.
Collapse
Affiliation(s)
- Long Pan
- National Center for International Research on Animal Gut Nutrition, Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Shaoxuan Feng
- National Center for International Research on Animal Gut Nutrition, Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wang Li
- National Center for International Research on Animal Gut Nutrition, Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Weiyun Zhu
- National Center for International Research on Animal Gut Nutrition, Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
6
|
Zhuo Y, Huang Y, He J, Hua L, Xu S, Li J, Che L, Lin Y, Feng B, Wu D. Effects of Corn and Broken Rice Extrusion on the Feed Intake, Nutrient Digestibility, and Gut Microbiota of Weaned Piglets. Animals (Basel) 2022; 12:ani12070818. [PMID: 35405808 PMCID: PMC8997032 DOI: 10.3390/ani12070818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Extruded cereals are largely used in newly weaned piglet diets to increase nutrient digestibility and palatability. Our findings showed that corn and broken rice extrusion diets generated negative effects on average daily feed intake (−63.5 g/day, p = 0.054) and average daily gain (−60.6 g/d, p = 0.015) in weaned piglets. Decreased feed intake was associated with increased plasma levels of the gut-derived hormones, glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), which may have been attributed to increased microbiota pathogen abundance, including Sarcina, Clostridium_sensu_strictio_1, and Terrisporobacter, and decreased short-chain fatty acid-producing microbiota, such as Lactobaillaceae and Bifidobateriaceae. Our results showed that extruded cereals should be used cautiously when formulating diets for newly weaned piglets. Abstract In this study, we investigated the effects of corn and rice extrusion diets on feed intake, nutrient digestibility, and gut microbiota in weaned piglets. Animals were divided into four dietary groups and fed a controlled diet containing (1) 62.17% corn (CORN), 15% soybean, 10% extruded full-fat soybean, and 6% fishmeal (2) half the corn replaced by extruded corn (ECORN), (3) broken rice (RICE), and (4) extruded broken rice (ERICE) for 28 days. Rice supplementation increased dry matter total tract digestibility and gross energy. Extruded cereals generated a lower average daily feed intake (ADFI) at 15–28 and 1–28 days, decreased average daily growth (ADG) at 15–28 and 1–28 days, and a lowered body weight (BW) on day 28, regardless of cereal type. Dietary extruded cereals increased the appetite-regulating hormones glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). Piglets fed extruded cereals displayed low short-chain fatty acid (SCFA) levels in plasma and low Lactobaillaceae and Bifidobateriaceae levels in feces, whereas a higher abundance of the potential pathogens Sarcina, Clostridium_sensu_strictio_1 and Terrisporobacter was observed. Piglets fed extruded cereals displayed significantly lower gas and SCFA levels during in vitro fermentation. Combined, 50% corn substituted with extruded corn or broken rice decreased piglet growth performance, possibly by altering their microbiota.
Collapse
|
7
|
Wang X, Zhang L, Qin L, Wang Y, Chen F, Qu C, Miao J. Physicochemical Properties of the Soluble Dietary Fiber from Laminaria japonica and Its Role in the Regulation of Type 2 Diabetes Mice. Nutrients 2022; 14:329. [PMID: 35057510 PMCID: PMC8779286 DOI: 10.3390/nu14020329] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
Laminaria japonica is a large marine brown alga that is annually highly productive. However, due to its underutilization, its potential value is substantially wasted. For example, a lot of Laminaria japonica cellulose remains unused during production of algin. The soluble dietary fiber (SDF) was prepared from the byproducts of Laminaria japonica, and its physicochemical properties were explored. SDF exhibits good water-holding, oil-holding, water-absorbing swelling, glucose and cholesterol absorption capacity, and inhibitory activity of α-amylase and α-glucosidase. In addition, the beneficial effects of SDF in diabetic mice include reduced body weight, lower blood glucose, and relieved insulin resistance. Finally, the intestinal flora and metabolomic products were analyzed from feces using 16S amplicon and LC-MS/MS, respectively. SDF not only significantly changed the composition and structure of intestinal flora and intestinal metabolites, but also significantly increased the abundance of beneficial bacteria Akkermansia, Odoribacter and Bacteroides, decreased the abundance of harmful bacteria Staphylococcus, and increased the content of bioactive substances in intestinal tract, such as harmine, magnolol, arachidonic acid, prostaglandin E2, urimorelin and azelaic acid. Taken together, these findings suggest that dietary intake of SDF alleviates type 2 diabetes mellitus disease, and provides an important theoretical basis for SDF to be used as a functional food.
Collapse
Affiliation(s)
- Xixi Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (X.W.); (F.C.)
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (L.Z.); (L.Q.); (Y.W.); (C.Q.)
| | - Liping Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (L.Z.); (L.Q.); (Y.W.); (C.Q.)
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (L.Z.); (L.Q.); (Y.W.); (C.Q.)
| | - Yanfeng Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (L.Z.); (L.Q.); (Y.W.); (C.Q.)
| | - Fushan Chen
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (X.W.); (F.C.)
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (L.Z.); (L.Q.); (Y.W.); (C.Q.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (L.Z.); (L.Q.); (Y.W.); (C.Q.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
8
|
Yu Y, Zhao F, Chen J, Zou Y, Wang YM, Liu SB, Tan HZ. Research Note: Effect of dietary cottonseed meal and soybean oil concentration on digesta passage time and amino acids digestibility in roosters. Poult Sci 2021; 100:101446. [PMID: 34607146 PMCID: PMC8496179 DOI: 10.1016/j.psj.2021.101446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/21/2022] Open
Abstract
Two experiments were conducted to study the effect of dietary cottonseed meal (CM) and soybean oil (SO) on passage time of digesta and standardized ileal digestibility (SID) of amino acids (AA). The experimental design was a 2 × 2 factorial arrangement evaluating the levels of CM (20 or 40 %) and SO (0 or 10 %). Experiment 1 estimated the effect of CM and SO on the passage time of digesta. Twenty-five Chinese yellow-feathered roosters (BW = 2.61 ± 0.08 kg; 26-wk-old) were individually weighed and allocated to 5 diets in 5 randomized complete blocks by initial BW. Experimental diet 1 contained 20% CM and 0 SO, diet 2 contained 20% CM and 10% SO, diet 3 contained 40% CM and 0% SO, diet 4 contained 40% CM and 10% SO, and a nitrogen-free diet was also fed. Passage time through the total digestive tract was determined by time-relative cumulation of dry excreta. Experiment 2 estimated the effect of CM and SO on SID of AA in CM. Thirty Chinese yellow-feathered roosters (BW = 2.91 ± 0.05 kg; 26-wk-old) were allocated to the 5 experimental diets in 6 randomized complete blocks by initial BW to determine the SID of AA. Increasing CM concentration significantly reduced the time for 50% relative cumulation of dry excreta (P < 0.05). Adding 10% SO tended to increase the time for 50% relative cumulation of dry excreta (0.05 < P < 0.10) relative to diets without SO. Dietary CM and SO did not affect the SID of indispensable AA or dispensable AA of CM significantly, but increasing dietary CM tended to reduce the SID of Lys (0.05 < P < 0.10). Increasing SO tended to reduce the SID of Met (0.05 < P < 0.10). There were no significant interactive effects of SO and CM (P > 0.10). These results suggest passage time is increased with dietary SO, and reduced with dietary CM, but digestibility of AA in CM was not significantly affected by dietary CM and SO.
Collapse
Affiliation(s)
- Y Yu
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - F Zhao
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - J Chen
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Y Zou
- Wen's Food Group Co. Ltd., Guangdong 527439, China
| | - Y M Wang
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - S B Liu
- Wen's Food Group Co. Ltd., Guangdong 527439, China
| | - H Z Tan
- Wen's Food Group Co. Ltd., Guangdong 527439, China
| |
Collapse
|
9
|
Feyera T, Hu L, Eskildsen M, Bruun TS, Theil PK. Impact of four fiber-rich supplements on nutrient digestibility, colostrum production, and farrowing performance in sows. J Anim Sci 2021; 99:6356212. [PMID: 34420055 DOI: 10.1093/jas/skab247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/19/2021] [Indexed: 12/31/2022] Open
Abstract
This study aimed to investigate the impact of dietary fiber (DF) sources on sow and litter performance, and apparent total tract digestibility (ATTD) of gross energy (GE) and nutrients. A total of 48 sows were stratified for body weight at mating and randomly assigned to one of four DF sources (mixed fiber [MF], palm kernel expellers [PKE], sugar beet pulp [SBP], or soy hulls [SH]) and fed the diet from mating until farrowing. Within DF treatments, sows were supplemented with one of two extra energy sources (glycerol or sugar dissolved in water), whereas a third group (control) received water from day 108 of gestation until farrowing. The number of total born, live-born, and stillborn pigs; birth time and birth weight of the pigs; farrowing duration; and farrowing assistance (FA) were recorded. Live-born pigs were weighed again at 12 and 24 h after birth to record weight gain, which was used to estimate intake and yield of colostrum. Blood samples were collected once daily from day -3 relative to farrowing until day 1 after farrowing in sows and once from selected pigs right after birth. Fecal samples were collected on day 114 of gestation and colostrum at 0, 12, 24, and 36 h after onset of farrowing. Intake of soluble and insoluble nonstarch polysaccharides (NSP) was greater for SBP (P < 0.001) and PKE (P < 0.001) supplemented sows, respectively, when compared with other groups. Farrowing duration and stillbirth rate were not affected by DF sources, but PKE and SH supplemented sows had greater FA than SBP and MF supplemented sows (P < 0.001). Extra energy supplement did not improve the farrowing performance. Concentration (P = 0.02) and output (P = 0.04) of dry matter in colostrum, and ATTD of GE (P < 0.001) and crude protein (CP; P < 0.001) were lower for PKE supplemented sows than in sows from the remaining groups. Intake of insoluble NSP correlated negatively with ATTD of GE (P < 0.001) and CP (P < 0.001). Concentrations of glucose (P < 0.001), lactate (P < 0.001), CO2 (P < 0.001), and HCO3 (P < 0.001) in sows blood were increased with time progress relative to farrowing. Newborn pigs from PKE supplemented sows had greater concentration of lactate (P = 0.02) and lower blood pH (P = 0.02) than the remaining treatments. In conclusion, PKE supplement reduced ATTD of GE and CP, and concentration and output of dry matter in colostrum but increased FA. Results of this experiment indicated that the use of PKE as a fiber source for late gestating sows should be avoided.
Collapse
Affiliation(s)
- Takele Feyera
- Department of Animal Science, Aarhus University Campus at Foulum, Dk-8830 Tjele, Denmark
| | - Liang Hu
- Department of Animal Science, Aarhus University Campus at Foulum, Dk-8830 Tjele, Denmark
| | - Maria Eskildsen
- Department of Animal Science, Aarhus University Campus at Foulum, Dk-8830 Tjele, Denmark
| | - Thomas S Bruun
- SEGES Danish Pig Research Centre, DK-1609 Copenhagen, Denmark
| | - Peter K Theil
- Department of Animal Science, Aarhus University Campus at Foulum, Dk-8830 Tjele, Denmark
| |
Collapse
|
10
|
Crisci MA, Chen LX, Devoto AE, Borges AL, Bordin N, Sachdeva R, Tett A, Sharrar AM, Segata N, Debenedetti F, Bailey M, Burt R, Wood RM, Rowden LJ, Corsini PM, van Winden S, Holmes MA, Lei S, Banfield JF, Santini JM. Closely related Lak megaphages replicate in the microbiomes of diverse animals. iScience 2021; 24:102875. [PMID: 34386733 PMCID: PMC8346664 DOI: 10.1016/j.isci.2021.102875] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 07/14/2021] [Indexed: 02/01/2023] Open
Abstract
Lak phages with alternatively coded ∼540 kbp genomes were recently reported to replicate in Prevotella in microbiomes of humans that consume a non-Western diet, baboons, and pigs. Here, we explore Lak phage diversity and broader distribution using diagnostic polymerase chain reaction and genome-resolved metagenomics. Lak phages were detected in 13 animal types, including reptiles, and are particularly prevalent in pigs. Tracking Lak through the pig gastrointestinal tract revealed significant enrichment in the hindgut compared to the foregut. We reconstructed 34 new Lak genomes, including six curated complete genomes, all of which are alternatively coded. An anomalously large (∼660 kbp) complete genome reconstructed for the most deeply branched Lak from a horse microbiome is also alternatively coded. From the Lak genomes, we identified proteins associated with specific animal species; notably, most have no functional predictions. The presence of closely related Lak phages in diverse animals indicates facile distribution coupled to host-specific adaptation.
Collapse
Affiliation(s)
- Marco A. Crisci
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Lin-Xing Chen
- Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Audra E. Devoto
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Adair L. Borges
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Nicola Bordin
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Rohan Sachdeva
- Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Adrian Tett
- Department CIBIO, University of Trento, Trento, Italy
| | - Allison M. Sharrar
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | | | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Langford, Bristol, UK
| | - Rachel Burt
- Bristol Veterinary School, University of Bristol, Langford, Bristol, UK
| | - Rhiannon M. Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Paula M. Corsini
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | - Mark A. Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Shufei Lei
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Jillian F. Banfield
- Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
- The University of Melbourne, Melbourne, VIC, Australia
| | - Joanne M. Santini
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| |
Collapse
|
11
|
Yang M, Mao Z, Jiang X, Cozannet P, Che L, Xu S, Lin Y, Fang Z, Feng B, Wang J, Li J, Wu D, Zhuo Y. Dietary fiber in a low-protein diet during gestation affects nitrogen excretion in primiparous gilts, with possible influences from the gut microbiota. J Anim Sci 2021; 99:6237918. [PMID: 33871635 DOI: 10.1093/jas/skab121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022] Open
Abstract
We investigated the effects of dietary fiber (DF) supplementation in normal or low crude protein (CP) diets on reproductive performance and nitrogen (N) utilization in primiparous gilts. In total, 77 Landrace × Yorkshire pregnant gilts were randomly allocated to four dietary treatments in a 2 × 2 factorial design. The groups comprised 1) equal intake of normal CP (12.82% and 0.61% total lysine), 2) low CP (LP) (10.53% and 0.61% total lysine), and 3) with or 4) without DF supplementation (cellulose, inulin, and pectin in a 34:10:1 ratio). A low-protein diet during gestation significantly reduced daily weight gain from days 91 to 110 of pregnancy (-162.5 g/d, P = 0.004). From N balance trials conducted at days 35 to 38, 65 to 68, and 95 to 98 of pregnancy, DF addition increased fecal N excretion at days 65 to 68 (+24.1%) and 95 to 98 (+13.8%) of pregnancy (P < 0.05) but reduced urinary N excretion (P < 0.05), resulting in greater N retention at each gestational stage. DF increased fecal microbial protein levels and excretion during gestation. An LP diet also reduced urinary N excretion at different gestational stages. An in vitro fermentation trial on culture media with nonprotein N urea and ammonium bicarbonate (NH4HCO3) as the only N sources revealed that microbiota derived from feces of gestating gilts fed the high DF diet exhibited a greater capacity to convert nonprotein N to microbial protein. Microbial fecal diversity, as measured by 16S rRNA sequencing, revealed significant changes from DF but not CP diets. Gilts fed an LP diet had a higher number of stillbirths (+0.83 per litter, P = 0.046) and a lower piglet birth weight (1.52 vs. 1.37 kg, P = 0.006), regardless of DF levels. Collectively, DF supplementation to gestation diets shifted N excretion from urine to feces in the form of microbial protein, suggesting that the microbiota had a putative role in controlling N utilization from DF. Additionally, a low-protein diet during gestation negatively affected the litter performance of gilts.
Collapse
Affiliation(s)
- Min Yang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China.,Chengdu Agricultural College, Wenjiang, Chengdu 611130, People's Republic of China
| | - Zhengyu Mao
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | | | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Jianping Wang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Jian Li
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - De Wu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| |
Collapse
|
12
|
Li Y, He J, Zhang L, Liu H, Cao M, Lin Y, Xu S, Fang Z, Che L, Feng B, Jiang X, Li J, Zhuo Y, Wu D. Effects of dietary fiber supplementation in gestation diets on sow performance, physiology and milk composition for successive three parities. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Yang F, Yang J, Ruan Z, Wang Z. Fermentation of dietary fibers modified by an enzymatic‐ultrasonic treatment and evaluation of their impact on gut microbiota in mice. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Fan Yang
- School of Food Science & Engineering South China University of Technology Guangzhou P.R. China
| | - Jian Yang
- College of Pharmacy and Nutrition University of Saskatchewan Saskatoon SK Canada
| | - Zhiyang Ruan
- School of Food Science & Engineering South China University of Technology Guangzhou P.R. China
| | - Zhaomei Wang
- School of Food Science & Engineering South China University of Technology Guangzhou P.R. China
| |
Collapse
|