1
|
Wang X, Zhao X, Li R, Zhang J, Li X, Liu L. Pea whey wastewater as a medium additive for the production of docosahexaenoic acid (C22:6 n3). Prep Biochem Biotechnol 2025:1-8. [PMID: 39827398 DOI: 10.1080/10826068.2025.2453833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
In this study, the potential of pea whey wastewater (PWW) as a substrate for the biosynthesis of docosahexaenoic acid (DHA) was investigated by culturing the strain Aurantiochytrium limacinum SFD-1502. The results showed that culturing SFD-1502 in PWW alone resulted in poor growth, possibly due to an insufficient carbon source. The addition of glucose and monosodium glutamate to PWW resulted in a significant improvement in cell growth, and the dry weight of the cells reaching 43.45 ± 0.39 g/L g/L, comparable to that of the control (using artificial seawater fermentation medium), despite the lipid content in the cells and the DHA proportion in the lipids were slightly lower than those of the control. Subsequent studies demonstrated that the presence of raffinose family oligosaccharides, a higher concentration of arginine, and a lower concentration of Na+ relative to artificial seawater in PWW resulted in the reduction of cellular lipids and the proportion of DHA. Furthermore, the chemical oxygen demand (COD) of PWW was reduced by approximately 60% during the fermentation. Consequently, the utilization of PWW in A. limacinum culture for DHA production is a viable and cost-effective strategy.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiangying Zhao
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ruiguo Li
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jiaxiang Zhang
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xia Li
- Qingdao Langyatai Group Co., Ltd, Qindao, China
| | - Liping Liu
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
2
|
Zhang X, Liu J, Wang X, Fan W, Chen M. Integrated production of xylose and docosahexaenoic acid from hemicellulose and cellulose in corncob. Int J Biol Macromol 2024; 277:134176. [PMID: 39096834 DOI: 10.1016/j.ijbiomac.2024.134176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Exploring efficient and comprehensive utilization of agricultural waste to produce high value-added products has been global research hotspot. In this study, a novel process for integrated production of xylose and docosahexaenoic acid (DHA) from hemicellulose and cellulose in corncob was developed. Corncob was treated with dilute H2SO4 at 121 °C for 1 h and xylose was readily produced with a recovery yield of 79.35 %. The corncob residue was then subject to alkali pretreatment under optimized conditions of 0.1 g NaOH/g dry solid, 60 °C for 2 h, and the contents of cellulose, hemicellulose, and lignin in the resulting residue were 87.49 %, 7.58 % and 2.31 %, respectively. The cellulose in the residue was easily hydrolyzed by cellulase, yielding 74.87 g/L glucose with hydrolysis efficiency of 77.02 %. Remarkably, the corncob residue hydrolysate supported cell growth and DHA production in Schizochytrium sp. ATCC 20888 well, and the maximum biomass of 32.71 g/L and DHA yield of 4.63 g/L were obtained, with DHA percentage in total fatty acids of 36.89 %. This study demonstrates that the corncob residue generated during xylose production, rich in cellulose, can be effectively utilized for DHA production by Schizochytrium sp., offering a cost-effective and sustainable alternative to pure glucose.
Collapse
Affiliation(s)
- Xinran Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jingwen Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xin Wang
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Weiwei Fan
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Ming Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Zhang Y, Cai L, Dong Z, Wu B, Gong Y, Zhang B, Wang B, Kang J, Ke T, Xu Z, Storebakken T, Shi B. Evaluation of intervention effects of dietary coenzyme Q10 supplementation on oxidized fish oil-induced stress response in largemouth bass Micropterus salmoides. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108604. [PMID: 36758654 DOI: 10.1016/j.fsi.2023.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The aim of this experiment was to investigate whether dietary coenzyme Q10 could alleviate stress response of Micropterus salmoides caused by oxidized fish oil. Four isonitrogenous and isoenergetic diets were formulated to contain 100% fresh fish oil (FFO), 50% fresh fish oil + 50% oxidized fish oil (BFO), 100% oxidized fish oil (OFO) and 100% oxidized fish oil + 0.1% coenzyme Q10 (QFO) and were fed to Micropterus salmoides (95 ± 0.60 g) for 70 days. Higher weight gain rate was recorded in fish fed diet supplemented with coenzyme Q10 (CoQ10). FFO and BFO significantly increased contents of fat and energy in whole-body, while protein and energy retention significantly decreased in fish fed OFO. Apparent digestibility of energy and fat showed a significant decrease trend with increased the proportion of dietary oxidized fish oil. Fish fed OFO significantly increased activities of superoxide dismutase and catalase, while CoQ10 supplementation significantly reduced activities of alanine aminotransferase and aspartate aminotransferase in plasma. Contents of n-3 polyunsaturated fatty acids and highly unsaturated fatty acids, especially EPA and DHA in liver and muscle significantly decreased in fish fed OFO. Transcriptome analysis indicated that a total of 1238, 1189 and 1773 differentially expressed genes (DEGs, |log2(fold change) | >= 1 and q-value<=0.001) were found in the three comparison groups (FFO vs. OFO, FFO vs. QFO, OFO vs. QFO), respectively. After KEGG enrichment, the main changed pathways in the two comparison groups (FFO vs. OFO, OFO vs. QFO) related to the immune system. Dietary OFO up-regulated the expression of immune-related genes and inflammatory factors, while dietary CoQ10 supplementation reduced these effects.
Collapse
Affiliation(s)
- Yuexing Zhang
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Linwei Cai
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Zhiyong Dong
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China; Norwegian University of Life Science, Faculty of Bioscience, Department of Animal and Aquaculture Science, NO-1432, Ås, Norway
| | - Bowen Wu
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Yangyang Gong
- Zhejiang NHU Co., Ltd., Xinchang, Zhejiang, 312500, China
| | - Baoping Zhang
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Bo Wang
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Jiaming Kang
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Tianhong Ke
- Application R&D Centre for Asian and Pacific, Bühler Group, Liyang, Jiangsu, 213300, China
| | - Zhijin Xu
- Zhoushan Fisheries Research Institute of Zhejiang, Zhoushan, Zhejiang, 316000, China
| | - Trond Storebakken
- Norwegian University of Life Science, Faculty of Bioscience, Department of Animal and Aquaculture Science, NO-1432, Ås, Norway
| | - Bo Shi
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China.
| |
Collapse
|
4
|
Oleaginous Heterotrophic Dinoflagellates—Crypthecodiniaceae. Mar Drugs 2023; 21:md21030162. [PMID: 36976211 PMCID: PMC10055936 DOI: 10.3390/md21030162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The heterotrophic Crypthecodinium cohnii is a major model for dinoflagellate cell biology, and a major industrial producer of docosahexaenoic acid, a key nutraceutical and added pharmaceutical compound. Despite these factors, the family Crypthecodiniaceae is not fully described, which is partly attributable to their degenerative thecal plates, as well as the lack of ribotype-referred morphological description in many taxons. We report here significant genetic distances and phylogenetic cladding that support inter-specific variations within the Crypthecodiniaceae. We describe Crypthecodinium croucheri sp. nov. Kwok, Law and Wong, that have different genome sizes, ribotypes, and amplification fragment length polymorphism profiles when compared to the C. cohnii. The interspecific ribotypes were supported by distinctive truncation-insertion at the ITS regions that were conserved at intraspecific level. The long genetic distances between Crypthecodiniaceae and other dinoflagellate orders support the separation of the group, which includes related taxons with high oil content and degenerative thecal plates, to be ratified to the order level. The current study provides the basis for future specific demarcation-differentiation, which is an important facet in food safety, biosecurity, sustainable agriculture feeds, and biotechnology licensing of new oleaginous models.
Collapse
|
5
|
Ibrahim D, Abd El-Hamid MI, Al-Zaban MI, ElHady M, El-Azzouny MM, ElFeky TM, Al Sadik GM, Samy OM, Hamed TA, Albalwe FM, Alenezi MA, Omar AE. Impacts of Fortifying Nile Tilapia ( Oreochromis niloticus) Diet with Different Strains of Microalgae on Its Performance, Fillet Quality and Disease Resistance to Aeromonas hydrophila Considering the Interplay between Antioxidant and Inflammatory Response. Antioxidants (Basel) 2022; 11:2181. [PMID: 36358553 PMCID: PMC9686914 DOI: 10.3390/antiox11112181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 09/06/2023] Open
Abstract
The oxidative stress facing fish during intensive production brings about diseases and mortalities that negatively influence their performance. Along with that, the increased awareness of omega-3 polyunsaturated fatty acids (omega-3-PUFAs) health benefits has been triggered the introduction of alternative additives in aqua feed that cause not only modulation in fish immune response but also fortification of their fillet. In this context, the role of microalgae mix (NSS) containing Nannochloropsis oculate and Schizochytrium and Spirulina species, which were enriched with bioactive molecules, especially EPA and DHA, was assessed on Nile tilapia's performance, fillet antioxidant stability, immune response, and disease resistance. Varying levels of NSS (0.75, 1.5, and 3%) were added to Nile tilapia's diet for 12 weeks and then a challenge of fish with virulent Aeromonas hydrophila (A. hydrophila) was carried out. Results showed that groups fed NSS, especially at higher levels, showed an improved WG and FCR, which corresponded with enhanced digestive enzymes' activities. Higher T-AOC was detected in muscle tissues of NSS3.0% fed fish with remarkable reduction in ROS, H2O2, and MDA contents, which came in parallel with upregulation of GSH-Px, CAT, and SOD genes. Notably, the contents of EPA and DHA in fillet were significantly increased with increasing the NSS levels. The mean log10 counts of pathogenic Vibrio and Staphylococcus species were reduced, and conversely, the populations of beneficial Lactobacillus and Bacillus species were increased more eminent after supplementation of NSS3.0% and NSS1.5%. Moreover, regulation of the immune response (lysozyme, IgM, ACH50, NO, and MPO), upregulation of IL-10, TGF-β, and IgM, and downregulation of IL-1β, TNF-α, HSP70,and COX-2 were observed following dietary higher NSS levels. After challenge, reduction in A. hydrophila counts was more prominent, especially in NSS3.0% supplemented group. Taken together, the current study encourages the incorporation of such microalgae mix in Nile tilapia's diet for targeting maximum performance, superior fillet quality, and protection against A. hydrophila.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mayasar I. Al-Zaban
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamed ElHady
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mona M. El-Azzouny
- Department of Bacteriology, Animal Health Research Institute (AHRI), Zagazig Branch, Agriculture Research Center (ARC), Zagazig 44511, Egypt
| | - Tamer Mohamed ElFeky
- Department of Bacteriology, Animal Health Research Institute (AHRI), Mansura Lab, Agriculture Research Center (ARC), Mansura 35516, Egypt
| | - Gehan M. Al Sadik
- Department of Bacteriology, Animal Health Research Institute (AHRI), Zagazig Branch, Agriculture Research Center (ARC), Zagazig 44511, Egypt
| | - Omima M. Samy
- Department of Pathology and Clinical Pathology, Animal Health Research Institute (AHRI), Zagazig Branch, Agriculture Research Center (ARC), Zagazig 44511, Egypt
| | - Thoria A. Hamed
- Department of Biochemistry, Animal Health Research Institute (AHRI), Zagazig Branch, Agriculture Research Center (ARC), Zagazig 44511, Egypt
| | - Fauzeya Mateq Albalwe
- Department of Biology, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia
| | | | - Anaam E. Omar
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
6
|
Impact of Omega-3 Fatty Acids Nano-Formulation on Growth, Antioxidant Potential, Fillet Quality, Immunity, Autophagy-Related Genes and Aeromonas hydrophila Resistance in Nile Tilapia (Oreochromis niloticus). Antioxidants (Basel) 2022; 11:antiox11081523. [PMID: 36009242 PMCID: PMC9405413 DOI: 10.3390/antiox11081523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 01/02/2023] Open
Abstract
In modern aquaculture, enriching Nile tilapia’s diet with omega-3 poly-unsaturated fatty acids (PUFAs) not only plays an important role in its general health but also fortifies its fillet with omega-3-PUFAs. However, the major challenge affecting their delivery is their high instability due to oxidative deterioration. Thus, the prospective incorporation of omega-3-PUFAs into nanocarriers can enhance their stability and bioactivity. In this regard, the effect of reformulated omega-3-NPs was investigated on Nile tilapia’s performance, flesh antioxidant stability, immunity, and disease resistance. Four fish groups supplemented with omega-3-PUFAs-loaded nanoparticles (omega-3 NPs) at levels of 0, 1, 2, and 3 g/kg diet and at the end of feeding trial fish challenged with Aeromonas hydrophila. Fish performance (weight gain and feed conversion) was improved in groups supplemented with omega-3-NPs (2 and 3 g/kg diet). The deposition of omega-3-PUFAs in fish flesh elevated with increasing dietary omega-3-NPs. Simultaneously the oxidative markers (H2O2, MDA, and reactive oxygen species) in fish flesh were reduced, especially with higher omega-3-NPs. Post-challenge, downregulation of IL-1β, IL-6, IL-8, TNF-α, and caspase-1 were noticed after dietary supplementation of omega-3-NPs. Moreover, mRNA expression of autophagy-related genes was upregulated while the mTOR gene was downregulated with higher omega-3 NPs levels. Lower expression of A. hydrophila ahyI and ahyR genes were detected with omega-3 NPs supplementation. In conclusion, omega-3-NPs application can fortify tilapia flesh with omega-3-PUFAs and augment its performance, immunity, and disease resistance against Aeromonas hydrophila.
Collapse
|