1
|
Lien CY, Tixier-Boichard M, Wu SW, Chen CF. Identification of quantitative trait locus and positional candidate loci influencing chicken egg quality under tropical conditions. Trop Anim Health Prod 2024; 56:359. [PMID: 39460847 DOI: 10.1007/s11250-024-04197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/11/2024] [Indexed: 10/28/2024]
Abstract
Egg quality is a vital factor in the poultry industry. High-quality eggs not only meet consumer expectations for appearance, taste, and nutritional value but also have high marketability, profitability, and consumer satisfaction. Accordingly, we executed our research with the purpose of determining chromosomal regions and genetic markers associated with egg quality in an F2 cross-bred chicken population under tropical conditions; we determined these through a genome-wide association study and quantitative trait locus (QTL) mapping. This population was created by cross-breeding the L2 line of Taiwan Country chickens, which is adapted to local conditions in Taiwan, with an experimental line (R-line) of Rhode Island Red layer chickens, which was developed by the French National Research Institute for Agriculture, Food and the Environment. A 60 K single nucleotide polymorphism (SNP) genotyping array for chickens was employed to execute the analysis. Our analysis revealed 40 QTLs associated with egg quality under tropical conditions, namely 20 QTLs with genome-wide statistical significance and 20 QTLs with chromosome-wide statistical significance. Furthermore, we identified 93 SNPs exerting discernible effects on egg quality, with 10 of these effects exhibiting genome-wide significance and 83 exhibiting potential significance. The majority of the detected QTL regions and SNPs agreed with those identified as having an association with egg quality or production traits in previous studies, thus supporting the interrelationships determined between the studied characteristics. The findings of this study enhance the understanding regarding the genetic regulation governing chicken egg quality, thereby serving as a valuable reference for future functional investigations.
Collapse
Affiliation(s)
- C Y Lien
- Northern Region Branch, Taiwan Livestock Research Institute, Ministry of Agriculture No. 80 Tuonong Rd., Beidou Township, 52149, Changhua County, ROC, Taiwan
| | - M Tixier-Boichard
- University Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - S W Wu
- Fonghuanggu Bird and Ecology Park, National Museum of Natural Science, 1-9 Renyi Rd., Lugu Township, 55841, Nantou County, ROC, Taiwan
| | - C F Chen
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, 145 Xingda Rd., South Dist., 40227, Taichung, ROC, Taiwan.
| |
Collapse
|
2
|
Xuan L, Zheng J. Translucent eggs of laying hens: a review. Poult Sci 2024; 103:103983. [PMID: 38954901 PMCID: PMC11266994 DOI: 10.1016/j.psj.2024.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
Eggshell quality is a significant characteristic that influences consumer preferences. Eggshell translucency is a common defect in the appearance of eggshells, which are characterized by gray spots that are visible to the naked eye under natural light. The presence of various defects resulting from eggshell translucency has caused a decrease in consumer willingness to purchase eggs, leading to considerable economic losses in the egg industry. Although the impact of eggshell translucency on food safety, egg quality, and hatchability has been extensively investigated, the classification and causes of eggshell translucency remain unclear and lack a systematic summary. In recent studies, new interpretations of evaluation methods and causes of eggshell translucency have been proposed, along with numerous innovative solutions. Therefore, this paper aims to provide a comprehensive review of the evaluation methods, classification, causes, effects, and influencing factors of eggshell translucency and to summarize the treatments for translucent eggs. We believe that this review will serve as a valuable reference for researchers involved in the study of translucent eggs.
Collapse
Affiliation(s)
- Lin Xuan
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiangxia Zheng
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Liu GY, Chen XY, Liu XL, Zhou RY, Zhao XY, Xu LJ, Ning ZH, Wang DH. Further screening of SNP loci of eggshell translucency related genes and evaluation of genetic effects. Poult Sci 2024; 103:103963. [PMID: 39013295 PMCID: PMC11519685 DOI: 10.1016/j.psj.2024.103963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/18/2024] Open
Abstract
Eggshell translucency is a widespread issue in the field of egg quality. Previous research has established that the heritability of eggshell translucency is relatively low or moderate. Scientists have also successfully identified SNP loci related to eggshell translucency on different chromosomes by using gene chips and single-variant GWAS. However, the specific impact of single or multiple genes on the trait of eggshell translucency remains unknown. In an effort to investigate this, we examined 170 SNPs associated with eggshell translucency obtained by our research group. We selected 966 half-sibling laying hens from 2 generations in 3 pure lines: Dwarf Layer-White, Rhode Island Red-White Strain, and Rhode Island Red. Eggs were collected from each hen over a period of 5 consecutive days, and eggshell translucency was measured using a grading method in which the hens were divided into 2 groups: an opaque group and a translucent group. We collected blood samples from the laying hens and extracted DNA. Time of flight mass spectrometry (TOF-MS) was used for genotyping to identify SNP loci that influence the trait of eggshell translucency. The results of our analysis revealed that using TOF-MS in 3 chicken strains, we were able to eliminate loci with low gene polymorphism, genetic effect contribution less than 1%, and deviation from Hardy-Weinberg equilibrium. Ultimately, 5 SNPs (Affx-50362599, rs15050262, rs312943734, rs316121113, and rs317389181) were identified on chromosomes 1, 5, and 19. Additionally, nine candidate genes (DCN, BTG1, ZFP92, POU2F1, NUCB2, FTL, GGNBP2, ACACA, and TADA2A) were found to be associated with these SNPs. No linkage disequilibrium relationship was observed between the 2 pairs of SNP loci on chromosomes 1 and 19. Based on previous studies on the formation mechanism of eggshell translucency, we hypothesize that NUCB2, FTL, and ACACA genes may be affecting the eggshell structure through different mechanisms, such as increase the water permeability or make thin of eggshell membrane, which promote moisture or part of other egg contents and ultimately lead to the formation of eggshell translucency. These findings validate and identify five SNP loci that regulate the translucency trait, and provide molecular markers for breeding non-translucent populations. Furthermore, this study serves as a reference for further investigation of the genetic regulatory mechanisms underlying eggshell translucency.
Collapse
Affiliation(s)
- Geng-Yun Liu
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Xiang-Yu Chen
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding, 071001, China; Baoding livestock husbandry workstation, Baoding, Hebei 071001, China
| | - Xue-Lu Liu
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Rong-Yan Zhou
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Xiao-Yu Zhao
- Baoding Xingrui Agriculture and Animal Husbandry Technology Co., Ltd., Baoding, 072550, China
| | - Li-Jun Xu
- Baoding livestock husbandry workstation, Baoding, Hebei 071001, China
| | - Zhong-Hua Ning
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - De-He Wang
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
4
|
Lei Q, Zhang S, Wang J, Qi C, Liu J, Cao D, Li F, Han H, Liu W, Li D, Tang C, Zhou Y. Genome-wide association studies of egg production traits by whole genome sequencing of Laiwu Black chicken. Poult Sci 2024; 103:103705. [PMID: 38598913 PMCID: PMC11636908 DOI: 10.1016/j.psj.2024.103705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Compared to high-yield commercial laying hens, Chinese indigenous chicken breeds have poor egg laying capacity due to the lack of intensive selection. However, as these breeds have not undergone systematic selection, it is possible that there is a greater abundance of genetic variations related to egg laying traits. In this study, we assessed 5 egg number (EN) traits at different stages of the egg-laying period: EN1 (from the first egg to 23 wk), EN2 (from 23 to 35 wk), EN3 (from 35 to 48 wk), EN4 (from the first egg to 35 wk), and EN5 (from the first egg to 48 wk). To investigate the molecular mechanisms underlying egg number traits in a Chinese local chicken breed, we conducted a genome-wide association study (GWAS) using data from whole-genome sequencing (WGS) of 399 Laiwu Black chickens. We obtained a total of 3.01 Tb of raw data with an average depth of 7.07 × per individual. A total of 86 genome-wide suggestive or significant single-nucleotide polymorphisms (SNP) contained within a set of 45 corresponding candidate genes were identified and found to be associated with stages EN1-EN5. The genes vitellogenin 2 (VTG2), lipase maturation factor 1 (LMF1), calcium voltage-gated channel auxiliary subunit alpha2delta 3 (CACNA2D3), poly(A) binding protein cytoplasmic 1 (PABPC1), programmed cell death 11 (PDCD11) and family with sequence similarity 213 member A (FAM213A) can be considered as the candidate genes associated with egg number traits, due to their reported association with animal reproduction traits. Noteworthy, results suggests that VTG2 and PDCD11 are not only involved in the regulation of EN3, but also in the regulation of EN5, implies that VTG2 and PDCD11 have a significant influence on egg production traits. Our study offers valuable genomic insights into the molecular genetic mechanisms that govern egg number traits in a Chinese indigenous egg-laying chicken breed. These findings have the potential to enhance the egg-laying performance of chickens.
Collapse
Affiliation(s)
- Qiuxia Lei
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Shuer Zhang
- Shandong Animal Husbandry General Station, 250023, Ji'nan, China
| | - Jie Wang
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Chao Qi
- Shandong Animal Husbandry General Station, 250023, Ji'nan, China
| | - Jie Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Dingguo Cao
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Fuwei Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Haixia Han
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Wei Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Dapeng Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Cunwei Tang
- Fujian Sunnzer Biological Technology Development Co. Ltd., 354100, Guang'ze, China
| | - Yan Zhou
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China..
| |
Collapse
|
5
|
Liu GY, Shi L, Chen YF, Chen H, Zhang C, Wang YT, Ning ZH, Wang DH. Estimation of genetic parameters of eggshell translucency and production traits in different genotypes of laying hens. Poult Sci 2023; 102:102616. [PMID: 37004251 PMCID: PMC10091017 DOI: 10.1016/j.psj.2023.102616] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
The translucency of eggshells is a ubiquitous appearance problem caused by moisture translocation and the accumulation of egg contents into the eggshell ultrastructure. Previous studies have mainly investigated the causes of eggshell translucency from nutritional and environmental perspectives. However, little is known of the effect of genetics the causes of eggshell translucency on hen production performance. To evaluate the genetic parameters of eggshell translucency and other production performance indicators, we performed an experiment on 3 pure hen lines: 624 Dwarf Layer-White, 1,612 Rhode Island Red, and 813 Rhode Island Red-White. We collected eggs from each hen over 5 d and measured eggshell translucent level (TL) using the grading method. Additionally we measured indicators of each hen during the laying period, including age at laying of the first egg (AFE), body weight at laying of the first egg (BWFE), weight of the first egg (FEW), body weight at 40 wk (BW40), egg weight at 40 wk (EW40), egg production up to 40 wk of age (EN), and calculated the genetic parameters among the indicators. The results showed that the estimated heritability of TL in the 3 genotypes were 0.30, 0.24, and 0.20, respectively, suggesting a low or moderate level of heritability. We found a positive correlation between TL and AFE, with genetic correlation coefficients 0.19 to 0.41, and negative genetic correlation between TL and EN, with correlation coefficient -0.36 to -0.19. Additionally, we observed positive correlation exists between AFE and FEW, BWFE and FEW, and BW40 and EW40; and negative correlation between AFE and EN in the 3 pure lines. These results enriched the research on heritability of eggshell translucency in different hen breeds and demonstrated moderate or low heritability of the indicator. Furthermore, eggshell translucency was negatively affected by AFE and EN. Our results provide a valuable reference for predicting selection response of eggshell translucency and production performance in brood hens, and locating the genes regulating eggshell translucency.
Collapse
|
6
|
Cheng X, Ning Z. Research progress on bird eggshell quality defects: a review. Poult Sci 2023; 102:102283. [PMID: 36399932 PMCID: PMC9673113 DOI: 10.1016/j.psj.2022.102283] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
The eggshell quality declined with extending of chicken laying cycles. Eggshell quality is a crucial feature that not only affects consumer preference, but also influences producers' economic profitability. The eggshell ultrastructure consists of mammillary, palisade, and vertical crystal layers. Any defect in shell structure results in a reduction in eggshell quality. Speckled, translucent, pimpled, and soft eggshells are common defects that cause significant financial losses for farmers and food security concerns for consumers. Therefore, reducing the faulty eggshells is critical for poultry production. Defective eggshell quality has been attributed to hereditary factors and external environmental stimuli. As such, improvements can be carried out through selective breeding and environmental control of components such as temperature, moisture, and diet formula balance. In this review, the molecular mechanisms of the main eggshell quality defects (speckled, translucent, pimpled, broken, and soft-shell eggs) and the relevant improvement methods are detailed. We hope this review will serve as a useful resource for poultry production management and effectively increasing eggshell quality.
Collapse
Affiliation(s)
- Xue Cheng
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|