1
|
Han GP, Lim B, Kim JM, Kim DY, Kim HW, Kil DY. Transcriptomic analysis of the liver, jejunum, and uterus in different production stages of laying hens. Poult Sci 2025; 104:105329. [PMID: 40449105 DOI: 10.1016/j.psj.2025.105329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/20/2025] [Accepted: 05/21/2025] [Indexed: 06/02/2025] Open
Abstract
Egg production in laying hens is related to very complex and elaborate processes involving the cooperation of various tissues. Laying hens undergo this complicated production process in different production stages during overall laying periods. However, many previous studies have focused on a single tissue or specific production stage. Thus, we compared multi-tissue transcriptome profiles across different production stages using RNA-seq to understand which overall metabolic changes occur in laying hens as the stage progresses. Laying hens at three distinct production stages of early-phase (EP, 30 wk of age), mid-phase (MP, 46 wk of age), and late-phase (LP, 60 wk of age) were used to analyze transcriptomic changes for the liver, jejunum, and uterus tissues. Weighted gene co-expression network analysis was adopted to detect core modules and central genes, and finally identified 11 co-expression modules. In the liver and jejunum, the expression of genes (e.g., FABP2, FABP7, PPARG) related to fatty acid synthesis was increased with production stages. However, the expression of genes (e.g., GSTA2, BLB1 and BLB2) related to immune responses, including xenobiotic metabolism pathway and the herpes simplex virus 1 infection pathway, was increased in EP compared with other stages. Moreover, the expression of genes related to calcium signaling pathways (e.g., CACNA2D1) and muscle contraction metabolism (e.g., ACTG2 and RYR2) in the uterus was decreased as laying hens were aged. The current findings pave the way for future investigations into the physiological changes in laying hens across different production stages. This research also provides a foundation for elucidating the multi-tissue transcriptome in laying hens and identifying potential genes regulating various biological processes during overall laying periods.
Collapse
Affiliation(s)
- Gi Ppeum Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Byeonghwi Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Deok Yun Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Hyun Woo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
2
|
Gao C, Chen Y, Zhang Z, Xu D, Liu X, Wang D, Shi L, Wang X, Chen H, Hao E. LAYING RATE WAS CORRELATED WITH MICROBIAL Fecal microbiota transplantation improves the laying performance by changing the gut microbiota composition in late laying period. Poult Sci 2025; 104:105064. [PMID: 40120240 PMCID: PMC11981753 DOI: 10.1016/j.psj.2025.105064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
This research investigated the differences and succession patterns of microbes in different ages, the performance of laying hens, and the effect of Fecal Microbiota Transplantation (FMT) on aged laying hens. First, based on the different laying rates and age, we divided the laying hens into four groups: 75-week-old high-yield (OH, laying rate (LR) > 90%), 75-week-old low-yield (OL, LR < 60%), 75-week-old non-laying hens (OZ, LR = 0%) and 35-week-old high-yield (YH, LR > 90%) with 5 replicates in each group and 6 chickens in each replicate. The microbial metabolic patterns between different ages and laying rates were determined using 16S rDNA technology. Then, to verify the results of microbiome research, we utilized FMT technology to transplant the gut microbiota from OH to OZ (OZFMT-OH), thereby revealing the connection between gut microbes and production performance. The results showed that high-yielding hens (YH and OH groups) had higher levels of Superoxide dismutase (SOD) and Immunoglobulin A (IgA) compared to OL and OZ groups. The Villus height to Crypt depth ratio(V/C) was significantly higher in the YH group than in 75-week-old hens (P < 0.05). Alpha diversity indicated higher microbial diversity in the YH group compared to older hens (P < 0.05), with YH hens harboring more Megamonas, OH hens more Bacteroides, and OL and OZ groups showing higher levels of harmful bacteria. The villus height, V/C, mucosal layer thickness, cup cell number acetic acid level, and LR in the OZFMT-OH group were significantly higher than those in the OZ group (P < 0.05), while the IL-2 level, crypt depth and cecal intestinal wall thickness were significantly lower than those in OZ group (P < 0.05). FMT also changed the morphological structure of grade follicles and small yellow follicles, improved the microbe composition of cecum and increased Bacteroides abundance. In the late laying period, if the intestinal flora cannot maintain the dynamic balance and carry out timely replacement, the production performance may be decreased, and the increase of Bacteroides abundance in the intestinal tract can improve the intestinal health and production performance of laying hens in the late laying period.
Collapse
Affiliation(s)
- Chong Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Yifan Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Zhenhong Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Dahai Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xuelu Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Dehe Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Lei Shi
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Xuechang Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Hui Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Erying Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China.
| |
Collapse
|
3
|
Dong R, Liu H, Zhang H, Wu F, Xiu H, Chen S, Yin X, Zhou X. Effects of Bacillus subtilis ZY1 on production performance, egg quality, serum parameters and intestinal health in laying hens. Poult Sci 2025; 104:105120. [PMID: 40319583 PMCID: PMC12099773 DOI: 10.1016/j.psj.2025.105120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 05/07/2025] Open
Abstract
To evaluate the effects of Bacillus subtilis ZY1 supplementation, production performance, egg quality, serum parameters, and intestinal health in laying hens were investigated. A total of 240 healthy 59-week-old Hy-Line Brown laying hens were randomly assigned to four groups: a control group (Con) fed a basal diet and three treatment groups supplemented with Bacillus subtilis ZY1 at levels of 0.05 % (LG), 0.1 % (MG), and 0.2 % (HG). The duration of trial lasted eleven weeks, including a one-week pre-feeding phase. The results indicated that dietary supplementation with ZY1 increased the egg laying rate in the LG and HG groups (P < 0.05) as well as improved the qualified egg rate in the LG and MG groups (P < 0.05). Moreover, the LG group also demonstrated superior egg quality and enhanced antioxidant capacity and immune function by decreasing the level of MDA (42.47 %) and improving the content of T-AOC, GSH-Px, CAT, SOD, IgM and IgG (34.31 %, 23.92 %, 37.68 %, 31.64 %, 14.01 %, and 17.84 %, respectively) in serum samples (P < 0.05). The changes in biochemical parameters such as AST, LDH, TG (12.40 %, 13.79 %, and 32.13 % decreased, respectively) and Ca (41.35 % increased) were particularly pronounced in LG groups (P < 0.05), indicating that ZY1 supplementation enhanced metabolic capacity of laying hens (P < 0.05). Furthermore, laying hens in the treatment groups exhibited significantly increased villus height (VH) and an elevated villus height-to-crypt depth ratio (VH/CD) within their duodenal tissues (P < 0.05). These findings suggest that dietary supplementation with ZY1 effectively improves production performance, egg quality, serum parameters, and intestinal health in laying hens; notably, a dosage of 0.05 % ZY1 was identified as the optimal level for these improvements. This study provides valuable insights into optimizing the application of Bacillus subtilis ZY1 in laying hen management practices.
Collapse
Affiliation(s)
- Rongrong Dong
- School of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050000, PR China
| | - Hao Liu
- Department of Asset and Laboratory Management, Hebei University of Science and Technology, Shijiazhuang 050000, PR China
| | - Huan Zhang
- School of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050000, PR China
| | - Fengyang Wu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, PR China
| | - Haidong Xiu
- School of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050000, PR China
| | - Shiwei Chen
- Hengshui River Animal Husbandry Co. Ltd., Hengshui, 053311, PR China
| | - Xinxiang Yin
- Hebei Keweixian Biotechnology Co. Ltd., Hengshui, 053300, PR China
| | - Xiaohui Zhou
- School of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050000, PR China.
| |
Collapse
|
4
|
Ji X, Tong W, Sun X, Xiao L, Wu M, Li P, Hu Y, Liang Y. Dietary Effects of Different Proportions of Fermented Straw as a Corn Replacement on the Growth Performance and Intestinal Health of Finishing Pigs. Animals (Basel) 2025; 15:459. [PMID: 39943228 PMCID: PMC11816350 DOI: 10.3390/ani15030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/15/2024] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
The aim of the present study was to investigate the dietary effects of replacing corn with different proportions of fermented straw on the growth performance and intestinal health of finishing pigs. A total of 275 healthy commercial finishing pigs aged 126 days (average body weight, 82.96 ± 3.07 kg) were randomly allocated into three groups: the control (CTR, basal diet) group, the 5% fermented straw (FJJG5, replacing 5% of the corn) group, and the 10% fermented straw (FJJG10, replacing 10% of the corn) group. There were six replicates in each group and 14-16 pigs per replicate. On day 39 of the experiment, one animal from each replicate was slaughtered for sampling and for further analysis. The results showed that the finishing pigs in the FJJG10 group had a reduced average daily weight gain and an increased feed-to-gain ratio. The FJJG5 group had reduced total cholesterol, high-density lipoprotein, and low-density lipoprotein in their serum, while the FJJG5 and FJJG10 groups had reduced contents of lactate dehydrogenase. In addition, the FJJG5 group exhibited increased T-SOD activity and MDA content in the colon, while the FJJG10 group also showed increased T-AOC activity in their serum and increased contents of MDA in the colon. The FJJG5 group exhibited increased activities of jejunal disaccharidase and lipase, while the FJJG10 group exhibited decreased jejunal crypt depths. Moreover, the FJJG5 group presented an increased relative expression of APOA4, LPL, and MUC2 but decreased SLC7A7 and IL-10 in the jejunum and APOA4 in the colon. The FJJG10 group exhibited a decreased relative expression of SLC7A7 and IL-10 in the jejunum and decreased MMP13, KCNJ13, APOA4, SLC7A7, LPL, and IL-10 in the colon. Furthermore, the FJJG5 group exhibited an increased relative abundance of Lactobacillus in colon contents, while the FJJG10 group had a reduced relative abundance of streptococcus. In conclusion, 5% fermented straw can improve the lipid metabolism and colon microbiota structure of finishing pigs, while 10% fermented straw has adverse effects on the growth performance and intestinal health of finishing pigs.
Collapse
Affiliation(s)
- Xiaoguang Ji
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Wenfei Tong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (W.T.); (M.W.); (P.L.)
| | - Xiangxue Sun
- Hubei Lan Good Microbial Technology Co., Ltd., Yichang 443100, China; (X.S.); (L.X.)
| | - Lei Xiao
- Hubei Lan Good Microbial Technology Co., Ltd., Yichang 443100, China; (X.S.); (L.X.)
| | - Mengjun Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (W.T.); (M.W.); (P.L.)
| | - Peng Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (W.T.); (M.W.); (P.L.)
| | - Yonggang Hu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yunxiang Liang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
5
|
Wu L, Zhang T, Luo Z, Xiao H, Wang D, Wu C, Fang X, Li J, Zhou J, Miao J, Tan H, Wang Y, Liu Q, Huang J. Impact of gut microbial diversity on egg production performance in chickens. Microbiol Spectr 2025; 13:e0192724. [PMID: 39807896 PMCID: PMC11792489 DOI: 10.1128/spectrum.01927-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025] Open
Abstract
Chickens are one of the most economically important poultry species, and their egg-laying performance is a crucial economic trait. The intestinal microbiome plays a significant role in the egg-laying performance. To clarify the diversity of chicken intestinal microbiota and its connection to egg-laying performance, this study utilized 16S rRNA sequencing technology to characterize the intestinal microbiomes of 101 chickens from 13 breeds with varying levels of egg production. The results reveal significant differences in gut microbiota structure among chicken groups with varying egg production levels. High egg-producing chickens showed significantly higher abundances of Firmicutes, Proteobacteria, and Lactobacillus, while low egg-producing chickens displayed greater microbial α-diversity and more complex community structures. These differences in gut microbiota influence key physiological functions, including nutrient absorption and hormone regulation through metabolic pathways, and directly affect egg production performance. The low and medium production groups partially overlapped on the principal coordinates analysis plot, whereas the high-production group was distinctly separate. This study provides a scientific basis and intestinal microbiome data for selecting probiotics related to high egg production in chickens. IMPORTANCE This study elucidates the critical role of gut microbiota in the egg-laying performance of chickens, a key economic indicator in the poultry industry. By employing 16S rRNA sequencing, we uncovered distinct microbial profiles associated with varying levels of egg production. High egg-producing chickens exhibit a higher abundance of specific bacterial taxa, such as Firmicutes and Proteobacteria, which are linked to enhanced nutrient absorption and metabolic efficiency. Conversely, lower and medium egg-producing chickens display greater microbial diversity, suggesting a more complex but less efficient gut ecosystem. Our findings provide valuable insights into the relationship between gut microbiota and egg production, offering a scientific foundation for the selection of probiotics that could potentially improve the egg-laying performance of chickens. This research not only advances our understanding of avian gut microbiology but also has practical implications for optimizing poultry farming practices and enhancing economic outcomes.
Collapse
Affiliation(s)
- Liping Wu
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Tao Zhang
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Zhihua Luo
- Forestry Bureau of Yushui District, Xinyu City, Nanchang, China
| | - Huiyuan Xiao
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, Nanchang, China
| | - Di Wang
- Tonggu County, Jiangxi Province Agriculture Rural Water Resources Bureau, Yichun, China
| | - Cailong Wu
- Jinxian Hengrong Ecological Agriculture Development Co. Ltd., Nanchang, China
| | - Xinyan Fang
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jiawei Li
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jing Zhou
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Junjie Miao
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Hongli Tan
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yanan Wang
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Qing Liu
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jianhua Huang
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
6
|
Xiao C, Li X, Ding Z, Zhang H, Lv W, Yang C, He D, Zhu L. Enhancing Growth and Gut Health in Squabs: The Impact of Fermented Mixed Feed. Animals (Basel) 2024; 14:1411. [PMID: 38791629 PMCID: PMC11117316 DOI: 10.3390/ani14101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The purpose of this study was to evaluate the effect of fermented mixed feed (FMF) (soybean meal-rapeseed meal-corn bran (6:3:1, m/m/m)) on the growth performance, intestinal microbial communities, and metabolomes of squabs. One hundred and eighty 1-day-old squabs were randomly allocated to two groups, each containing six replicates of fifteen squabs cared for by 60 pairs of breeding pigeons secreting crop milk. Each pair of breeding pigeons cared for three squabs. The control group was fed a basal diet, while the experimental group was fed the basal diet containing 5% FMF. The results showed that daily weight gain, carcass weight, villus height, and the mRNA level of ZO-1 in the ileum were increased in the birds fed FMF compared to the control squabs (p < 0.05). Greater abundances of beneficial bacteria such as Lactobacillus, Bifidobacteria, and Bacillus as well as fewer harmful bacteria (i.e., Enterococcus, Veillonella, and Corynebacterium) in the ilea of squabs fed FMF. Six differential metabolites were identified in the FMF-treated squabs; one metabolite was increased (ω-salicoyisalicin) and five were decreased (3-benzoyloxy-6-oxo-12-ursen-28-oic acid, estradiol-17-phenylpropionate, aminotriazole, phosphatidyl ethanolamine (22:6/0:0), and 1-arachidonoylglycerophosphoinositol). Positive correlations were observed between the abundance of Lactobacillus and villus height. Overall, FMF treatment improved both growth and intestinal health in pigeons, suggesting potential benefits for pigeon production.
Collapse
Affiliation(s)
- Changfeng Xiao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.X.); (X.L.); (Z.D.); (W.L.); (C.Y.); (D.H.)
| | - Xin Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.X.); (X.L.); (Z.D.); (W.L.); (C.Y.); (D.H.)
| | - Zhizhao Ding
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.X.); (X.L.); (Z.D.); (W.L.); (C.Y.); (D.H.)
| | - Hongcai Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Wenwei Lv
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.X.); (X.L.); (Z.D.); (W.L.); (C.Y.); (D.H.)
| | - Changsuo Yang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.X.); (X.L.); (Z.D.); (W.L.); (C.Y.); (D.H.)
| | - Daqian He
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.X.); (X.L.); (Z.D.); (W.L.); (C.Y.); (D.H.)
| | - Lihui Zhu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.X.); (X.L.); (Z.D.); (W.L.); (C.Y.); (D.H.)
| |
Collapse
|
7
|
Wang H, Wu J, Hu M, Zhang H, Zhou X, Yang S, He K, Yan F, Jin H, Chen S, Zhao A. Effects of dietary supplement of ε-polylysine hydrochloride on laying performance, egg quality, serum parameters, organ index, intestinal morphology, gut microbiota and volatile fatty acids in laying hens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3069-3079. [PMID: 38072654 DOI: 10.1002/jsfa.13198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/05/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND ε-polylysine hydrochloride (ε-PLH) is a naturally occurring antimicrobial peptide extensively utilized in the food and medical industries. However, its impact on animal husbandry remains to be further explored. Therefore, the present study aimed to determine the effect of ε-PLH on laying hens' health and laying performance. RESULTS Dietary supplementation with ε-PLH to the diet significantly increased average egg weight during weeks 1-8. Meanwhile, compared with the control group, supplementation with ε-PLH decreased the feed egg ratio during weeks 9-12 and egg breakage rate during weeks 9-16 ,whereas it increased eggshell strength during weeks 1-4 and 13-16 . The ε-PLH 0.05% group increased yolk percentage during weeks 5-8 and yolk color during weeks 1-4 . Furthermore, ε-PLH supplementation significantly increased the concentrations of total protein, albumin, globulin and reproductive hormones estradiol, as well as decreased interleukin-1 beta and malondialdehyde in the serum. Compared with the control group, supplementation with 0.05% ε-PLH significantly increased the relative abundance of Cyanobacteria and Gastranaerophilales and decreased the abundance of Desulfovibrio and Streptococcus in the cecum microbiota. In addition, ε-PLH 0.1% supplementation also increased acetic acid content in the cecum. CONCLUSION Dietary supplementation with ε-PLH has a positive impact on both productive performance and egg quality in laying hens. Furthermore, ε-PLH can also relieve inflammation by promoting the immunity and reducing oxidative damage during egg production. ε-PLH has been shown to improve intestinal morphology, gut microbial diversity and intestinal health. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Jianqing Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Moran Hu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Haoxin Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Xiaolong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Songbai Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Ke He
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Feifei Yan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Hangfeng Jin
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Shaojie Chen
- Zhejiang Silver-Elephant Bio-Engineering Co., Ltd, Taizhou, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
8
|
Lian X, Shi M, Liang Y, Lin Q, Zhang L. The Effects of Unconventional Feed Fermentation on Intestinal Oxidative Stress in Animals. Antioxidants (Basel) 2024; 13:305. [PMID: 38539839 PMCID: PMC10967513 DOI: 10.3390/antiox13030305] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 12/10/2024] Open
Abstract
Unconventional feed, which is abundant in China, contains anti-nutritional factors and toxins; however, these can be greatly reduced with microbial fermentation, thus improving the nutrient content of the feed, enhancing animal appetites, and ultimately significantly improving the intestinal health and growth performance of animals. When oxidative stress occurs, fermented feed can effectively reduce the damage caused by stress to the gastrointestinal tract, accelerate the removal of gastrointestinal abnormalities, improve the ability to resist intestinal stress, and ensure the efficient production of animals. This review introduces the application of unconventional fermented feed in animal production, and expounds upon the function of unconventional fermented feed in animals with oxidative stress symptoms, so as to provide a theoretical reference for the development and application of unconventional fermented feed in antioxidative stress reduction.
Collapse
Affiliation(s)
- Xiao Lian
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (X.L.); (M.S.); (Y.L.); (Q.L.)
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Mingyu Shi
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (X.L.); (M.S.); (Y.L.); (Q.L.)
| | - Ying Liang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (X.L.); (M.S.); (Y.L.); (Q.L.)
| | - Qinlu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (X.L.); (M.S.); (Y.L.); (Q.L.)
| | - Lingyu Zhang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (X.L.); (M.S.); (Y.L.); (Q.L.)
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
9
|
Zhang M, Yang Z, Wu G, Xu F, Zhang J, Luo X, Ma Y, Pang H, Duan Y, Chen J, Cai Y, Wang L, Tan Z. Effects of Probiotic-Fermented Feed on the Growth Profile, Immune Functions, and Intestinal Microbiota of Bamei Piglets. Animals (Basel) 2024; 14:647. [PMID: 38396614 PMCID: PMC10886304 DOI: 10.3390/ani14040647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Purebred Bamei piglets present problems, including slow growth, respiratory disease, and post-weaning stress. This study investigated the effects of Lactobacillus plantarum QP28-1- and Bacillus subtilis QB8-fermented feed supplementation on the growth performance, immunity, and intestinal microflora of Bamei piglets from Qinghai, China. A total of 48 purebred Bamei piglets (25 days; 6.8 ± 0.97 kg) were divided into the following four groups for a 28-day diet experiment: basal feed (CK); diet containing 10% Lactobacillus plantarum-fermented feed (L); diet containing 10% Bacillus subtilis-fermented feed (B); and diet containing a mixture of 5% Lactobacillus plantarum + 5% Bacillus subtilis-fermented feed (H). The daily weight gain and daily food intake of group H increased (p < 0.05), and the feed/weight gain ratios of the groups fed with fermented feed decreased more than that of the CK group. The levels of three immune factors, namely immunoglobulin (Ig)M, IgG, and interferon-γ, were higher (p < 0.05), whereas those of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 were lower (p < 0.05) in the fermented feed groups than in the CK group. Total protein was higher (p < 0.05), while urea nitrogen, total cholesterol and triglycerides were lower (p < 0.05) in the mixed-fermented feed group than in the CK group. Analysis of the gut microbiota showed that the addition of fermented feed increased the α-diversity of the gut microbiota, increasing the abundances of probiotics including Lactobacillus, Muribaculaceae, Ruminococcaceae, Prevotellaceae, and Rikenellaceae. Additionally, correlation analysis demonstrated that several of these probiotic bacteria were closely related to serum immunity. In conclusion, fermented feed supplementation rebuilt the intestinal microbiota of Bamei piglets, thereby reducing the feed/weight ratio, improving feed intake, and enhancing immunity.
Collapse
Affiliation(s)
- Miao Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
| | - Zhenyu Yang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
| | - Guofang Wu
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (G.W.); (J.Z.); (X.L.); (Y.M.)
| | - Fafang Xu
- Bamei Pig Original Breeding Base of Huzhu County, Haidong 810600, China;
| | - Jianbo Zhang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (G.W.); (J.Z.); (X.L.); (Y.M.)
| | - Xuan Luo
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (G.W.); (J.Z.); (X.L.); (Y.M.)
| | - Yuhong Ma
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (G.W.); (J.Z.); (X.L.); (Y.M.)
| | - Huili Pang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
| | - Yaoke Duan
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
| | - Jun Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
| | - Yimin Cai
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
- Japan International Research Center for Agricultural Sciences, Crop, Livestock and Environment Division, Tsukuba 305-8686, Japan
| | - Lei Wang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (G.W.); (J.Z.); (X.L.); (Y.M.)
| | - Zhongfang Tan
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
| |
Collapse
|
10
|
Konkol D, Popiela E, Opaliński S, Lipińska A, Tymoszewski A, Krasowska A, Łukaszewicz M, Korczyński M. Effects of fermented rapeseed meal on performance, intestinal morphology, the viscosity of intestinal content, phosphorus availability, and egg quality of laying hens. Poult Sci 2024; 103:103256. [PMID: 37980734 PMCID: PMC10684812 DOI: 10.1016/j.psj.2023.103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023] Open
Abstract
Fermented rapeseed meal has the potential to partial replace soybean meal in feed mixtures for poultry without a negative impact on the health condition and performance of birds. This is due to the fact that the fermentation process can reduce the amount of antinutritional factors, improve the use of nutrients and impart probiotic properties to rapeseed meal. Therefore, this study was undertaken to investigate the effect of fermented rapeseed meal on the performance, egg quality, intestinal morphometry, the viscosity of intestinal content and total phosphorus availability. A total of 108 Lohmann Brown laying hens at 26 wk of age were used in the 90-day study. All hens were randomly divided into 3 treatment groups, with 12 replicates (cages) each, as follows: control group received no rapeseed meal, the URSM group received 3% unfermented rapeseed meal and the FRSM group received 3% fermented rapeseed meal. In the case of performance, egg traits, sensory evaluation of eggs, the viscosity of intestinal content and the availability of total phosphorus, if the distribution was normal, a 1-way analysis of variance was performed. If the distribution was not normal, the Kruskal-Wallis test was performed. In the case of histomorphometric evaluation of the intestine, if the distribution was normal, the Student t test for independent samples was performed. If not, a Mann-Whitney U test was performed. The performed analyses showed that the supplementation of fermented rapeseed meal had no negative effect on the performance of birds and the quality of eggs. Fermented rapeseed meal was also associated with improved histomorphometric parameters of the small intestine compared to the group receiving unfermented rapeseed meal in the feed. Laying hens from FRSM group were characterized by significantly lower viscosity of intestinal content (P < 0.05) compared to URSM group. Phosphorus in FRSM group was significantly more available to the birds (P < 0.05) compared to URSM group. These results suggest that supplementation with fermented rapeseed meal may be beneficial, especially in times of unstable prices of soybean meal and problems with its availability.
Collapse
Affiliation(s)
- Damian Konkol
- Department of Animal Nutrition and Feed Sciences, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland.
| | - Ewa Popiela
- Department of Environmental Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Sebastian Opaliński
- Department of Environmental Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Anna Lipińska
- Department of Animal Physiology and Biostructure, Wroclaw University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Adam Tymoszewski
- Chair of Drug and Cosmetics Biotechnology, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Anna Krasowska
- Department of Biotransformation, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Marcin Łukaszewicz
- Department of Biotransformation, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Mariusz Korczyński
- Department of Animal Nutrition and Feed Sciences, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| |
Collapse
|
11
|
Li C, Gao J, Guo S, He B, Ma W. Effects of Curcumin on the Egg Quality and Hepatic Lipid Metabolism of Laying Hens. Animals (Basel) 2023; 14:138. [PMID: 38200869 PMCID: PMC10778355 DOI: 10.3390/ani14010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Curcumin, the major active compound of turmeric, has shown potential benefits for poultry health and production in various studies. However, its specific role in enhancing the egg quality and liver health of laying hens, as well as its underlying mechanisms, have yet to be determined. Here, a total of 600 Su Qin No.1 Laying hens, aged 55 weeks and with similar laying rates, were randomly placed into five groups, with 10 replicates of 12 hens each. Curcumin doses of 0, 100, 200, 400, and 800 mg/kg were added to the basal diet to form the experimental groups. After an 8-week feeding period, no significant changes were observed in the production performance of laying hens due to curcumin supplementation. However, additional tests revealed that a 200 mg/kg curcumin supplementation improved albumen height, yolk color, Haugh unit, and eggshell thickness, while reducing the thin albumen's weight and proportion. This was accompanied by a significant down-regulation of the mRNA expression level of the Prolactin Receptor (Prlr) in the oviduct magnum. Furthermore, the number of hepatic lipid droplets and the hepatic triglyceride (TG) content, as well as malondialdehyde (MDA) levels were significantly reduced, indicating improved hepatic lipid metabolism and oxidative status. This was accompanied by a significant reduction in the expressions of sterol regulatory element binding protein-1 gene (Srebp-1), fatty acid synthase gene (Fasn), as well as fatty acid synthase (FASN), which are closely related to fatty acid synthesis in the liver. Overall, these findings suggest that curcumin supplementation at a dosage of 200 mg/kg could lead to significant improvements in egg quality and hepatic lipid metabolism.
Collapse
Affiliation(s)
- Chenxuan Li
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.L.); (J.G.); (S.G.); (B.H.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiang Gao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.L.); (J.G.); (S.G.); (B.H.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Shihui Guo
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.L.); (J.G.); (S.G.); (B.H.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin He
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.L.); (J.G.); (S.G.); (B.H.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenqiang Ma
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.L.); (J.G.); (S.G.); (B.H.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Zhou X, Zhang H, Li S, Jiang Y, Deng J, Yang C, Chen X, Jiang L. Effects of different levels of Citri Sarcodactylis Fructus by-products fermented feed on growth performance, serum biochemical, and intestinal health of cyan-shank partridge birds. Sci Rep 2023; 13:20130. [PMID: 37978234 PMCID: PMC10656579 DOI: 10.1038/s41598-023-47303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023] Open
Abstract
This research aimed to investigate the effects of supplements containing fermented feed made from Citri Sarcodactylis Fructus by-products (CSFBP-Fermented feed) on the growth performance, immunological function, and gut health of broilers. 1080 cyan-shank partridge birds aged 47 days were chosen and casually distributed to four groups, each with 6 replicates and 45 birds per replicate. The experimental groups were provided with 1% (group T2), 3% (group T3) and 5% (group T4) of CSFBP-fermented feed in the basic diet, while the control group (group T1) received the basic diet. The findings revealed that supplementation with CSFBP-Fermented feed reduced ADFI and FCR and improved ADG in birds (P < 0.05). MDA levels in the serum of birds fed CSFBP-fermented feed were lower than in the control group (P < 0.05). The CAT activity in the serum of broilers increased after supplementation with 3% CSFBP-Fermented feed (P < 0.05). Supplementing broilers with CSFBP-fermented feed enhanced VH in the ileum, jejunum, and duodenum (P < 0.05). The addition of 3% CSFBP-Fermented feed decreased CD in the jejunum (P < 0.05). The addition of 3% and 5% CSFBP-Fermented feed increased the mRNA expression of ZO-1 and Occludin in the jejunum of broiler chickens and reduced the mRNA expression of IL-6 (P < 0.05). The addition of 3% CSFBP-Fermented feed increased the mRNA expression of Claudin in the jejunum of broiler chickens and reduced IL-1β mRNA expression (P < 0.05). Compared to the control group, all experimental groups exhibited decreased mRNA expression of TNF-α and INF-γ in the jejunal mucosa of the birds (P < 0.05). According to research using high-throughput sequencing of microorganisms' 16S rDNA, and an analysis of α-diversity found that supplementing broilers with 3% CSFBP-Fermented feed decreased the number of bacteria in their cecum (P < 0.05). Bacteroidota was higher in all groups after supplementation with CSFBP-Fermented feed. At the genus level, after addition with 3% CSFBP-Fermented feed, the abundance of Bacteroide and Prevotellaceae_Ga6A1_group were higher than the control group (33.36% vs 29.95%, 4.35% vs 2.94%). The abundance of Rikenellaceae_RC9_gut_group and Fusobacterium were lower than the control group (5.52% vs. 7.17%,0.38% vs. 1.33%). In summary, supplementing the diet with CSFBP-Fermented feed can promote the growth of performance by enhancing intestinal morphology, and barrier function, as well as modulating intestinal inflammatory factors and microbial composition in broilers.
Collapse
Affiliation(s)
- Xinhong Zhou
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Huaidan Zhang
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China
| | - Shiyi Li
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China
| | - Yilong Jiang
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China
| | - Jicheng Deng
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China
| | - Chuanpeng Yang
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China
| | - Xianxin Chen
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China.
| | - Li Jiang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China.
| |
Collapse
|
13
|
Fu Z, Ao N, Liang X, Chen J, Wang Y, Wang Q, Fu J, Liu C, Lu L. Effects of fermented feed on growth performance, serum biochemical indexes, antioxidant capacity, and intestinal health of lion-head goslings. Front Vet Sci 2023; 10:1284523. [PMID: 38026622 PMCID: PMC10652402 DOI: 10.3389/fvets.2023.1284523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The aim of this study was to evaluate the effects of fermented feed on growth performance, antioxidant indexes and intestinal health in lion-head goslings. Methods 288 male lion-head goslings (one-day-old) were randomly divided into four groups (6 replicates per group, 12 samples per replicate): control group (basal diet) and fermented feed (FF) groups (basal diet supplemented with 2.5, 5.0 and 7.5% FF, respectively). The experimental period lasted 28 days. Results The results showed that 5.0 and 7.5% FF groups decreased feed conversion rate (FCR) when compared with the control group (p < 0.05). The 5.0% FF group reduced the activity of alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) in serum; while the 7.5% FF group decreased the concentration of total cholesterol (TC), ALP and LDH activity (p < 0.05). Furthermore, the 7.5% FF group significantly increased total antioxidant capacity (T-AOC) in serum (p < 0.05); 2.5% and 5.0% FF groups significantly increased glutathione peroxidase (GSH-Px) in serum (p < 0.05); all FF groups increased the activity of superoxide dismutase (T-SOD) in serum (p < 0.05). For intestinal health, the villous height and villi/crypt ratio in jejunum were increased in all FF groups, but crypt depth was decreased (p < 0.05); The 5.0% FF groups enhanced T-AOC activity in jejunum (p < 0.05); The 2.5% and 5.0% FF groups enhanced GSH-Px activity (p < 0.05) in jejunum; All FF groups reduced malondialdehyde (MDA) level in jejunum (p < 0.05). LEfSe analysis showed that the cecum microbiota was significantly dominant in the 2.5% FF group compared to the control group including Firmicutes, Lactobacillales, Lactobacillus, and Prevotella; the flora that were significantly dominant in the 5.0% FF group compared to the control group included Bacteroidaceae, Bacteroides, Megamonas, and Prevotella; and the groups that were significantly dominant in the 7.5% FF group compared to the control group included Bacteroidota, Bacteroides, Bacteroidaceae, and Ruminococcaceae. Discussion In summary, dietary FF supplementation improved growth performance, serum biochemical parameters and antioxidant capacity of lion-head goslings, as well as improved jejunal tissue morphology and optimized intestinal flora structure. In particular, the FF addition at a dose of 7.5% was relatively more effective for lion- head goslings.
Collapse
Affiliation(s)
- Zhiqi Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Na Ao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Xiaoen Liang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Jinhuang Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Yuchuan Wang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Qing Wang
- College of Life Sciences, Jiaying University, Meizhou, China
| | - Jing Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Chunpeng Liu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
14
|
Chen X, Zhou X, Li S, Zhang H, Liu Z. Effects of tea residues-fermented feed on production performance, egg quality, antioxidant capacity, caecal microbiota, and ammonia emissions of laying hens. Front Vet Sci 2023; 10:1195074. [PMID: 37426079 PMCID: PMC10325031 DOI: 10.3389/fvets.2023.1195074] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
This study was to assess the effects of tea residues-fermented feed (TR-fermented feed) on production performance, egg quality, serum antioxidant capacity, caecal microbiota, and ammonia emissions of laying hens. A total of 1,296 Lohmann laying hens have randomly distributed four groups with six parallels and fed with diets TR-fermented feed at the rates of 0 (control), 1, 3, and 5%. The inclusion of 1% (TR)-fermented feed resulted in a significant increase in egg-laying rate and average egg weight of birds, and a reduction in the feed-to-egg ratio when compared to the control group (p < 0.05). The addition of 1 and 3% of (TR)-fermented feed significantly improved the Haugh unit of eggs (p < 0.05). The eggshell thickness was observed to increase by almost one-fold upon the inclusion of 3 and 5% (TR)-fermented feed in the basal diet (p < 0.05). The supplementation of 3% (TR)-fermented feed significantly increased the content of methionine, tyrosine, proline, essential amino acids (EAA), alpha linoleic acid (C18:3n6), docosanoic acid (C22:0), docosahexaenoic acid (C22:6n3), twenty-three carbonic acids (C23:0), ditetradecenoic acid (C24:1) and total omega-3 polyunsaturated fatty acids (∑ω-3 PUFA) in the eggs (p < 0.05). The addition of a certain amount of (TR)-fermented feed can enhance the activity of glutathione peroxidase (GSH-PX) and superoxide dismutase (SOD) in chicken serum, and reduce the level of malondialdehyde (MDA) (p < 0.05). The ammonia concentration in the hen house of laying hens in the treatment groups decreased significantly (p < 0.05). Bacteroidetes and Firmicutes, the main phyla in the cecal bacterial community, were differentially abundant in each group, comprising greater than 55 and 33%, respectively. Collectively, this research indicates that (TR)-fermented feed supplementation improves the performance of laying hens and reduces ammonia emissions and can be used in industry-scale layer production.
Collapse
Affiliation(s)
- Xianxin Chen
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Xinhong Zhou
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Shiyi Li
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Huaidan Zhang
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Zhenkun Liu
- Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Wanzhou, China
| |
Collapse
|