1
|
Liu X, Ji Y, Lv H, Lv Z, Guo Y, Nie W. Microbiome and metabolome reveal beneficial effects of baicalin on broiler growth performance and intestinal health. Poult Sci 2025; 104:104678. [PMID: 39721274 PMCID: PMC11732485 DOI: 10.1016/j.psj.2024.104678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024] Open
Abstract
Normal function and health of the intestinal tract were necessary for the growth and development of broilers. Baicalin (BA) possessed a variety of biological activities. The objective of this study was to examine the impact of BA on the growth performance, intestinal barrier function, intestinal microbiota, and mucosal metabolism in broilers. A total of 720 21-day-old broilers were randomly allocated into 3 groups and fed with either basal diet (Con group) or basal diet supplemented with 6 or 12 mg/kg baicalin (BA6 and BA12 groups) for a continuous feeding period of 40 days. Results showed that BA had a trend towards improving (P = 0.086) the 60-day body weight of broilers, and the BA12 group exhibited significantly higher (P < 0.05) average daily gain from day 39 to 60 compared to the Con group. Additionally, in the BA12 group, the ratio of villus height to crypt depth and the expression levels of tight junction protein-related genes significantly increased (P < 0.05), while intestinal permeability significantly decreased (P < 0.05). Supplementation with 12 mg/kg BA significantly enhanced antioxidant capacity, promoted (P < 0.05) crypt proliferation, increased (P < 0.05) immunoglobulin levels, upregulated (P < 0.05) IL-2 and IL-8 mRNA levels, and downregulated (P < 0.05) IL-4 and TGF-β2 mRNA levels. Metabolomics analysis revealed that BA improved the metabolic characteristics of intestinal mucosa, significantly upregulating pathways associated with ascorbate and aldarate metabolism, glyoxylate and dicarboxylate metabolism, phosphatidylinositol signaling system, alpha-linolenic acid metabolism, and galactose metabolism. 16S rRNA sequencing results indicated that BA increased the richness of intestinal microbiota community and the relative abundance of Actinobacteria phylum, while reducing the relative abundance of contains mobile elements, potentially pathogenic, and facultatively anaerobic. Overall, 12 mg/kg BA improved intestinal health by modulating intestinal barrier function, antioxidant capacity, immunity, intestinal microbiota, and intestinal mucosal metabolism levels, ultimately enhancing broiler growth performance.
Collapse
Affiliation(s)
- Xingbo Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yunru Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Huiyuan Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Beijing Centre Biology Co., Ltd., Beijing, 102600, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wei Nie
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Zhao C, Li Y, Wang H, Solomon AI, Wang S, Dong X, Song B, Ren Z. Dietary supplementation with compound microecological preparations: effects on the production performance and gut microbiota of lactating female rabbits and their litters. Microbiol Spectr 2025; 13:e0006724. [PMID: 39611688 PMCID: PMC11705915 DOI: 10.1128/spectrum.00067-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 08/04/2024] [Indexed: 11/30/2024] Open
Abstract
Early weaning is frequently accompanied by a significant increase in diarrhea and mortality rates, which reduces rabbits' performance. Although antibiotics can reduce pathogenic bacteria, they also harm beneficial microorganisms and disrupt the normal intestinal microbiota balance. In order to find non-residue and non-toxic alternatives to antibiotics to ensure the safety of animal products, we conducted a study on the effect of compound microecological preparations supplementation on lactating female rabbits and their offspring. A total of 60 female rabbits were randomly assigned to four groups: CON, supplemented with probiotics at 3, 6, and 9 g/female rabbit/day from day 24 of gestation until weaning. We observed that probiotics supplementation significantly enhanced production performance (P < 0.05), immune and antioxidant function (P < 0.05), as well as intestinal flora composition in lactating rabbits and their offspring. Notably, compared with the control group, the experimental group exhibited a 19.23%, 44.22%, and 24.57% increase in milk yield (P = 0.002). Regarding rabbit growth performance, the average body weight of young rabbits in the experimental group showed a significant increase of 3.59%, 10.22%, and 6.74% at day 35 (P = 0.022), whereas the average daily gain (ADG) of rabbits aged between 21 and 35 days was significantly elevated by 4.94%, 17.06%, and 6.28% in the experimental group (P < 0.001). In conclusion, probiotics supplementation can significantly enhance lactation performance, promote growth and disease resistance in rabbits, as well as improve intestinal health when administered at a dosage of 6 g/day. Moreover, the limited sample size in this study may hinder the detection of subtle effects, and augmenting the sample size will bolster the reliability of the study findings. IMPORTANCE The intestinal environment of rabbits is fragile and susceptible to environmental influences, leading to inflammatory intestinal diseases. Adding antibiotics to rabbit feed can achieve the effect of preventing and treating inflammation, which can also lead to the imbalance of the gut microbiota and residual antibiotics in agricultural products. Composite probiotics are live microbial feed additives composed of various ratios of probiotics and have become the most promising alternative to antibiotics due to their residue-free and non-toxic properties. The aim of this study was to investigate the impact of compound probiotics on lactating female rabbits and their offspring. Our findings highlight the potential of compound microecological preparations as an effective strategy for enhancing lactation performance, immune function, and antioxidant capacity in rabbits. The supplementation of probiotics through rabbit milk offers a promising approach to optimize the growth and health outcomes of newborn rabbits.
Collapse
Affiliation(s)
- Chengcheng Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Youhao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ahamba Ifeanyi Solomon
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianggui Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bing Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Yang C, Liu B, Pan L, Xia D, Sun C, Zheng X, Chen P, Hu H, Zhou Q. Impact of Soybean Bioactive Peptides on Growth, Lipid Metabolism, Antioxidant Ability, Molecular Responses, and Gut Microbiota of Oriental River Prawn ( Macrobrachium nipponense) Fed with a Low-Fishmeal Diet. BIOLOGY 2024; 14:11. [PMID: 39857242 PMCID: PMC11763103 DOI: 10.3390/biology14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025]
Abstract
The substitution of fishmeal with high-level soybean meal in the diet of crustaceans usually induces lipid accumulation and oxidative stress in the hepatopancreas. Therefore, it is essential to alleviate these adverse effects. In the present study, SBPs were used to alleviate the negative effects of a fishmeal decrease on the growth performance, lipid metabolism, antioxidant capacity, and gut microbiota of oriental river prawn (Macrobrachium nipponense) in an 8-week feeding trial. Three isonitrogenic and isolipidic diets were prepared as follows: R (reference diet with 32% fishmeal), CT (control diet with 22% fishmeal), and SBP (22% fishmeal with 1.25 g/kg soybean bioactive peptides). The prawns (initial biomass per tank 17 g) were randomly divided into three groups with four replicates. The results showed that the low-fishmeal diet induced the following: (1) the inhibition of growth performance and survival of prawns; (2) an increase in triglyceride content in the hepatopancreas and hemolymph and downregulation of carnitine palmitoyl transferase 1 (cpt1) gene expression; (3) a reduction in antioxidant enzymes' activities and their genes expression levels and an increase malondialdehyde (MDA) content; and (4) an increase in the abundance of the conditional pathogen Pseudomonas in the gut. SBPs supplementation in the CT diet effectively alleviated most of the above adverse effects. SBPs enhanced inducible nitric oxide synthase (iNOS) activity to synthesize nitric oxide (NO) by activating the imd-relish pathway. Most importantly, SBPs increased the potential probiotic Rikenellaceae_RC9_gut_group abundance and decreased the abundance of the conditional pathogen Pseudomonas in the gut. In conclusion, SBPs supplementation can improve low-fishmeal-diet-induced growth inhibition by regulating the gut microbiota composition to ameliorate lipid deposition and oxidative stress and strengthen immune status in oriental river prawn.
Collapse
Affiliation(s)
- Chang Yang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (C.Y.); (B.L.); (C.S.)
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (C.Y.); (B.L.); (C.S.)
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (L.P.); (D.X.); (X.Z.)
| | - Liangkun Pan
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (L.P.); (D.X.); (X.Z.)
| | - Dong Xia
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (L.P.); (D.X.); (X.Z.)
| | - Cunxin Sun
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (C.Y.); (B.L.); (C.S.)
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (L.P.); (D.X.); (X.Z.)
| | - Xiaochuan Zheng
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (L.P.); (D.X.); (X.Z.)
| | - Peng Chen
- Jiangsu FIELD Technology Co., Ltd., Huaian 223001, China; (P.C.); (H.H.)
| | - He Hu
- Jiangsu FIELD Technology Co., Ltd., Huaian 223001, China; (P.C.); (H.H.)
| | - Qunlan Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (C.Y.); (B.L.); (C.S.)
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (L.P.); (D.X.); (X.Z.)
| |
Collapse
|
4
|
Singarayar MS, Chandrasekaran A, Balasundaram D, Veerasamy V, Neethirajan V, Thilagar S. Prebiotics: Comprehensive analysis of sources, structural characteristics and mechanistic roles in disease regulation. Microb Pathog 2024; 197:107071. [PMID: 39447658 DOI: 10.1016/j.micpath.2024.107071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Prebiotics are nondigestible components that comprise short-chain carbohydrates, primarily oligosaccharides, which are converted into beneficial compounds by probiotics. Various plant substances with prebiotic properties provide substantial health benefits and are used to prevent different diseases and for medical and clinical applications. Consuming prebiotics gives impeccable benefits since it aids in gut microbial balance. Prebiotic research is primarily concerned with the influence of intestinal disorders. The proposed review will describe recent data on the sources, structures, implementation of prebiotics and potential mechanisms in preventing and treating various disorders, with an emphasis on the gut microbiome. Prebiotics have a distinctive impact on the gastro intestine by explicitly encouraging the growth of probiotic organisms like Bifidobacteria and Lactobacilli. This in turn augments the body's inherent ability to fend off harmful pathogens. Prebiotic carbohydrates may also provide other non-specific advantages due to their fermentation in the large intestine. Additional in vivo research is needed to fully comprehend the interactions between prebiotics and probiotics ingested by hosts to improve their nutritional and therapeutic benefits.
Collapse
Affiliation(s)
- Magdalin Sylvia Singarayar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| | - Ajithan Chandrasekaran
- Department of Horticulture, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | | | - Veeramurugan Veerasamy
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| | - Vivek Neethirajan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| | - Sivasudha Thilagar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| |
Collapse
|
5
|
Chen B, Silvaraju S, Almunawar SNA, Heng YC, Lee JKY, Kittelmann S. Limosilactobacillus allomucosae sp. nov., a novel species isolated from wild boar faecal samples as a potential probiotic for domestic pigs. Syst Appl Microbiol 2024; 47:126556. [PMID: 39467427 DOI: 10.1016/j.syapm.2024.126556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 10/30/2024]
Abstract
Six strains, WILCCON 0050, WILCCON 0051, WILCCON 0052, WILCCON 0053, WILCCON 0054, WILCCON 0055T, were isolated from four different faecal samples of wild boars on Pulau Ubin, Singapore, Singapore. Based on core genome phylogenetic analysis, the six strains formed a distinct clade within the genus Limosilactobacillus (Lm.), with the most closely related type strain being Lm. mucosae DSM 13345T. The minimum ANI, dDDH, and AAI values within these six strains were 97.8%, 78.8%, and 98.6%, respectively. In contrast, the ANI, dDDH, and AAI values with Lm. mucosae DSM 13345T were lower, ranging between 94.8-95.1%, 57.1-59.0%, and 95.9-97.0%, respectively. While ANI and AAI were close to the thresholds of 95% and 97% for bacterial species delineation, respectively, dDDH was significantly lower than the threshold value of 70%. Based on our phylogenomic, phenotypic and chemotaxonomic analyses, we propose a novel species with the name Limosilactobacillus allomucosae sp. nov., with WILCCON 0055T (DSM 117632T = LMG 33563T) as the designated type strain. In vitro investigations revealed the strains' ability to break down raffinose-family oligosaccharides, and to utilize prebiotics such as xylo-oligosaccharides and galacturonic acid, thereby enhancing fibre digestion and nutrient absorption. Moreover, strong auto-aggregation properties, as well as resistance to low pH and porcine bile were observed, suggesting their potential survival and persistence during passage through the gut. The high bile tolerance of these strains appears to be attributed to their ability to deconjugate a wide range of conjugated bile compounds. In silico analysis indicated a strong potential for mucin-binding activity, which aids their colonization in the gut. These characteristics indicate the potential suitability of strains of Lm. allomucosae as probiotics for domestic pigs.
Collapse
Affiliation(s)
- Binbin Chen
- Wilmar International Limited, Wilmar Innovation Centre, Singapore, Singapore
| | | | | | - Yu Chyuan Heng
- Wilmar International Limited, Wilmar Innovation Centre, Singapore, Singapore
| | - Jolie Kar Yi Lee
- Wilmar International Limited, Wilmar Innovation Centre, Singapore, Singapore
| | - Sandra Kittelmann
- Wilmar International Limited, Wilmar Innovation Centre, Singapore, Singapore.
| |
Collapse
|
6
|
Zhang P, Xue Y, Cao Z, Guo Y, Pang X, Chen C, Zhang W. Raffinose Ameliorates DSS-Induced Colitis in Mice by Modulating Gut Microbiota and Targeting the Inflammatory TLR4-MyD88-NF-κB Signaling Pathway. Foods 2024; 13:1849. [PMID: 38928791 PMCID: PMC11203344 DOI: 10.3390/foods13121849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to explore the protective effects of raffinose (Raf) against inflammatory bowel disease in mice with colitis. Mice were administered 100, 200, or 400 mg/kg Raf for 21 d, followed by drinking-water containing 3% dextran sulfate sodium salt (DSS) for 3 d. Thereafter, the phenotype, pathological lesions in the colon, cytokines levels, and gut microbiota were evaluated. Treatment with Raf reduced the severity of the pathological changes in the colon, mitigating the reduction in colon length. Following Raf intervention, serum levels of inflammatory cytokines (IL-2, IL-6, IL-1β, and TNF-α) tended to return to normal. These results suggest that the anti-inflammatory effects of Raf are associated with a reduction in TLR4-MyD88-NF-κB pathway expression in mouse colonic tissues. Analysis of gut microbiota abundance and its correlation with colitis parameters revealed that DSS-induced dysbiosis was partially mitigated by Raf. In conclusion, Raf exerts a protective effect in colitis by modulating the gut microbiota and TLR4-MyD88-NF-κB pathway.
Collapse
|
7
|
Boston TE, Wang F, Lin X, Kim SW, Fellner V, Scott MF, Ziegler AL, Van Landeghem L, Blikslager AT, Odle J. Prebiotic galactooligosaccharide improves piglet growth performance and intestinal health associated with alterations of the hindgut microbiota during the peri-weaning period. J Anim Sci Biotechnol 2024; 15:88. [PMID: 38867260 PMCID: PMC11170840 DOI: 10.1186/s40104-024-01047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Weaning stress reduces growth performance and health of young pigs due in part to an abrupt change in diets from highly digestible milk to fibrous plant-based feedstuffs. This study investigated whether dietary galactooligosaccharide (GOS), supplemented both pre- and post-weaning, could improve growth performance and intestinal health via alterations in the hindgut microbial community. METHODS Using a 3 × 2 factorial design, during farrowing 288 piglets from 24 litters received either no creep feed (FC), creep without GOS (FG-) or creep with 5% GOS (FG+) followed by a phase 1 nursery diet without (NG-) or with 3.8% GOS (NG+). Pigs were sampled pre- (D22) and post-weaning (D31) to assess intestinal measures. RESULTS Creep fed pigs grew 19% faster than controls (P < 0.01) prior to weaning, and by the end of the nursery phase (D58), pigs fed GOS pre-farrowing (FG+) were 1.85 kg heavier than controls (P < 0.05). Furthermore, pigs fed GOS in phase 1 of the nursery grew 34% faster (P < 0.04), with greater feed intake and efficiency. Cecal microbial communities clustered distinctly in pre- vs. post-weaned pigs, based on principal coordinate analysis (P < 0.01). No effects of GOS were detected pre-weaning, but gruel creep feeding increased Chao1 α-diversity and altered several genera in the cecal microbiota (P < 0.05). Post-weaning, GOS supplementation increased some genera such as Fusicatenibacter and Collinsella, whereas others decreased such as Campylobacter and Frisingicoccus (P < 0.05). Changes were accompanied by higher molar proportions of butyrate in the cecum of GOS-fed pigs (P < 0.05). CONCLUSIONS Gruel creep feeding effectively improves suckling pig growth regardless of GOS treatment. When supplemented post-weaning, prebiotic GOS improves piglet growth performance associated with changes in hindgut microbial composition.
Collapse
Affiliation(s)
- Timothy E Boston
- Department of Animal Science, College of Ag and Life Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Feng Wang
- Department of Animal Science, College of Ag and Life Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xi Lin
- Department of Animal Science, College of Ag and Life Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, College of Ag and Life Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Vivek Fellner
- Department of Animal Science, College of Ag and Life Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Mark F Scott
- Milk Specialties Global, Eden Prairie, MN, 55344, USA
| | - Amanda L Ziegler
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Laurianne Van Landeghem
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27695, USA
| | - Anthony T Blikslager
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jack Odle
- Department of Animal Science, College of Ag and Life Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
8
|
Cao Y, Lu J, Cai G. Quality improvement of soybean meal by yeast fermentation based on the degradation of anti-nutritional factors and accumulation of beneficial metabolites. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1441-1449. [PMID: 37822013 DOI: 10.1002/jsfa.13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Soybean meal (SBM) is the main protein source for animal diets but its anti-nutritional constituents affect animal growth and immunity. The yeast culture of soybean meal (SBM-YC) that fermented with yeast and hydrolyzed by protease simultaneously could reduce anti-nutritional factors effectively and accumulate beneficial metabolites. RESULTS The crude protein and acid-soluble protein content of SBM-YC reached 542.5 g kg-1 and 117.2 g kg-1 , respectively, and the essential amino acid content increased by 17.9%. Raffinose and stachyose decreased over 95.0%, and the organic acid content such as acetic acid, butyric acid, citric acid, lactic acid, succinic acid, and propionic acid produced by fermentation reached 6.1, 3.8, 3.6, 2.5, 1.2, and 0.4 g kg-1 , respectively. As biomarkers of yeast culture, nucleosides and their precursors reached 1.7 g kg-1 ; in particular, the inosine content increased from 0 to 0.3 g kg-1 . The total antioxidant capacity, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) free radical activity, metal chelating ability, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability were increased by 50.3%, 46.1%, 43.9%, and 20.6%, respectively. CONCLUSION This study established a diversified evaluation index, which could lay the foundations for the production and quality control of SBM-YC in the future. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yazhuo Cao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Guolin Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Liu L, Zhao D, Wang G, He Q, Song Y, Jiang Y, Xia Q, Zhao P. Adaptive Changes in Detoxification Metabolism and Transmembrane Transport of Bombyx mori Malpighian Tubules to Artificial Diet. Int J Mol Sci 2023; 24:9949. [PMID: 37373097 DOI: 10.3390/ijms24129949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The high adaptability of insects to food sources has contributed to their ranking among the most abundant and diverse species on Earth. However, the molecular mechanisms underlying the rapid adaptation of insects to different foods remain unclear. We explored the changes in gene expression and metabolic composition of the Malpighian tubules as an important metabolic excretion and detoxification organ in silkworms (Bombyx mori) fed mulberry leaf and artificial diets. A total of 2436 differentially expressed genes (DEGs) and 245 differential metabolites were identified between groups, with the majority of DEGs associated with metabolic detoxification, transmembrane transport, and mitochondrial function. Detoxification enzymes, such as cytochrome P450 (CYP), glutathione-S-transferase (GST), and UDP-glycosyltransferase, and ABC and SLC transporters of endogenous and exogenous solutes were more abundant in the artificial diet group. Enzyme activity assays confirmed increased CYP and GST activity in the Malpighian tubules of the artificial diet-fed group. Metabolome analysis showed increased contents of secondary metabolites, terpenoids, flavonoids, alkaloids, organic acids, lipids, and food additives in the artificial diet group. Our findings highlight the important role of the Malpighian tubules in adaptation to different foods and provide guidance for further optimization of artificial diets to improve silkworm breeding.
Collapse
Affiliation(s)
- Lijing Liu
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Dongchao Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Genhong Wang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Qingxiu He
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Yuwei Song
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Yulu Jiang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Qingyou Xia
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| |
Collapse
|
10
|
Jiang Q, Wu W, Wan Y, Wei Y, Kawamura Y, Li J, Guo Y, Ban Z, Zhang B. Energy values evaluation and improvement of soybean meal in broiler chickens through supplemental mutienzyme. Poult Sci 2022; 101:101978. [PMID: 35793599 PMCID: PMC9260631 DOI: 10.1016/j.psj.2022.101978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
This study measured the metabolizable energy of soybean meal (SBM) and evaluated effects of soybean meal specific enzymes supplementation in corn-soybean diets on growth performance, intestinal digestion properties and energy values of 28-day-old broilers. A total of 336 one-day-old male AA broiler chickens were distributed to 7 groups in a completely random design. The birds were given 7 diets containing 6 diets with different combined soybean meals and a fasting treatment, 8 replicates per treatment and 6 birds per replicate (Trial 1). A total of 672 one-day-old male AA broiler chickens were randomly allocated to 7 dietary treatments including a control diet and 6 diets supplemented with 300 mg/kg α-galactosidase, 200 mg/kg β-mannanase, and 300 mg/kg protease individually or in combination (Trial 2). Apparent metabolizable energy (AME) of broilers was measured from d 25 to 27 in both trial 1 and trial 2. The results showed that AME values of combined soybean meals averaged 2,894 kcal/kg. Dietary β-mannanase and protease supplementation increased body weight gain (P < 0.05) during d 0 to 14, whereas did not affect the growth performance (P > 0.05) during d 14 to 28. Addition of β-mannanase in combination with other enzymes significantly increased lipase and trypsin content (P < 0.05) in ileum. In addition, dietary β-mannanase and protease supplementation individually or in combination enhanced trypsin enzyme content in jejunum (P < 0.05). The β-mannanase enzyme enhanced villus height and villus height to crypt depth ratio (P < 0.05) of ileum compared with control diet. Moreover, supplementation of enzyme except for protease enhanced raffinose and stachyose degradation ratio (P < 0.05). Dietary β-mannanase supplementation individually or in combination enhanced AME and AMEn values (P < 0.05). This study demonstrated that dietary enzyme supplementation especially β-mannanase improved intestinal digestion properties and contributed to high energy values.
Collapse
Affiliation(s)
- Qiuyu Jiang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Wei Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yan Wan
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yi Wei
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | | | - Junyou Li
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, 319-0206, Japan
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Zhibin Ban
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China; Laboratory of Animal Nutrition Metabolism, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin 136100, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Kasprowicz-Potocka M, Gulewicz P, Zaworska-Zakrzewska A. The content of raffinose oligosaccharides in legumes
and their importance for animals. JOURNAL OF ANIMAL AND FEED SCIENCES 2022. [DOI: 10.22358/jafs/149656/2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|