1
|
Zhuang Y, Abdelsattar MM, Fu Y, Zhang N, Chai J. Butyrate metabolism in rumen epithelium affected by host and diet regime through regulating microbiota in a goat model. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:41-55. [PMID: 39628645 PMCID: PMC11612656 DOI: 10.1016/j.aninu.2024.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 12/06/2024]
Abstract
The rumen is an important organ that enables ruminants to digest nutrients. However, the biological mechanism by which the microbiota and its derived fatty acids regulate rumen development is still unclear. In this study, 18 female Haimen goats were selected and slaughtered at d 30, 60, and 90 of age. Multi-omics analyses (rumen microbial sequencing, host transcriptome sequencing, and rumen epithelial metabolomics) were performed to investigate host-microbe interactions from preweaning to postweaning in a goat model. With increasing age, and after the introduction of solid feed, the increased abundances of Prevotella and Roseburia showed positive correlations with volatile fatty acid (VFA) levels and morphological parameters (P < 0.05). Epithelial transcriptomic analysis showed that the expression levels of hub genes, including 3-hydroxy-3-methylglutaryl-CoA synthase isoform 2 (HMGCS2), enoyl-CoA hydratase, short chain 1 (ECHS1), and peroxisome proliferator activated receptor gamma (PPARG), were positively associated with animal phenotype (P < 0.05). These hub genes were mainly correlated to VFA metabolism, oxidative phosphorylation, and the mammalian target of rapamycin (mTOR) and peroxisome proliferator activated receptor (PPAR) signaling pathways (P < 0.05). Moreover, the primary metabolites in the epithelium changed from glucose preweaning to (R)-3-hydroxybutyric acid (BHBA) and acetoacetic acid (ACAC) postweaning (P < 0.05). Diet and butyrate were the major factors shaping epithelial metabolomics in young ruminants (P < 0.05). Multi-omics analysis showed that the rumen microbiota and VFA were mainly associated with the epithelial transcriptome, and that alterations in gene expression influenced host metabolism. The "butanoate metabolism" pathway, which transcriptomic and metabolomic analyses identified as being upregulated with age, produces ketones that regulate the "oxidative phosphorylation" pathway, which could provide energy for the development of rumen papillae. Our findings reveal the changes that occur in the rumen microbiota, host transcriptome, and metabolome with age, and validate the role of microbiota-derived VFA in manipulating host gene expression and subsequent metabolism. This study provides insight into the molecular mechanisms of host-microbe interactions in goats and supplies a theoretical basis and guidance for precise nutritional regulation during the critical time window for rumen development of young ruminants.
Collapse
Affiliation(s)
- Yimin Zhuang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528225, China
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mahmoud M. Abdelsattar
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuze Fu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Naifeng Zhang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Chai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528225, China
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
2
|
Zhuang Y, Lv X, Cui K, Chai J, Zhang N. Early Solid Diet Supplementation Influences the Proteomics of Rumen Epithelium in Goat Kids. BIOLOGY 2023; 12:biology12050684. [PMID: 37237498 DOI: 10.3390/biology12050684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
It is well known that solid diet supplementation in early life can significantly promote rumen development and metabolic function in young ruminants. However, the changes in the expressed proteome and related metabolism in rumen epithelium in response to a supplemented solid diet remain unclear. In this study, rumen epithelial tissue from goats in three diet regimes including milk replacer only (MRO), milk replacer supplemented concentrate (MRC), and milk replacer supplemented concentrate plus alfalfa pellets (MCA) were collected for measurement of the expression of epithelial proteins using proteomic technology (six per group). The results showed that solid diet significantly improved the growth performance of goats, enhanced the ability of rumen fermentation, and promoted the development of epithelial papilla (p < 0.05). Proteome analysis revealed the distinct difference in the expressed protein in the MRC and MCA group compared with the MRO group (42 upregulated proteins and 79 downregulated proteins in MRC; 38 upregulated proteins and 73 downregulated proteins in MCA). Functional analysis showed that solid diet supplementation activated a variety of molecular functions in the epithelium, including protein binding, ATP binding, structural constituent of muscle, etc., in the MRC and MCA groups. Meanwhile, the expression of proteins related to fatty acid metabolism, the PPAR signaling pathway, valine, leucine, and isoleucine degradation, and butanoate metabolism were upregulated, being stimulated by solid feed. In contrast, the proteins associated with carbohydrate digestion and absorption and glycosaminoglycan degradation were downregulated. In addition, the protein expression of enzymes involved in ketone body synthesis in the rumen was generally activated, which was caused by solid feed. In summary, solid feed promoted the development of rumen epithelium by changing the expression of proteins related to fatty acid metabolism, energy synthesis, and signal transduction. The ketone body synthesis pathway might be the most important activated pathway, and provides energy for rumen development.
Collapse
Affiliation(s)
- Yimin Zhuang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaokang Lv
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Cui
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Chai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528225, China
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Naifeng Zhang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Zhu H, Guan X, Pu L, Shen L, Hua H. Acute toxicity, biochemical and transcriptomic analysis of Procambarus clarkii exposed to avermectin. PEST MANAGEMENT SCIENCE 2023; 79:206-215. [PMID: 36129128 DOI: 10.1002/ps.7189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/29/2022] [Accepted: 09/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pesticides are extensively applied globally. Pesticide residues induce calamitous effects on the environment and untargeted organisms. Public concerns for the safety of freshwater organisms and the challenges posed by aquatic contaminants remain high. In the present study, the acute toxicity of avermectins (AVMs) to the crayfish, Procambarus clarkii was evaluated. We also evaluated the potential effects of AVM on the biochemical and transcriptomic status of the hepatopancreas and gastrointestinal tract in P. clarkii. RESULTS The 24, 48, 72, 96 h median lethal concentrations (LC50 ) of AVM on crayfish were 2.626, 1.162, 0.723, 0.566 mg L-1 , respectively. The crayfish were then exposed to 0.65 mg L-1 of AVM for 96 h. AVM significantly altered biochemical parameters including AChE and CAT activities in the hepatopancreas, and AChE, SOD and Na + -K + -ATPase activities in the gastrointestinal tract at several time points. Furthermore, transcriptomic analysis identified 953 and 1851 differentially-expressed genes (DEGs) in the hepatopancreas and gastrointestinal tract, respectively. KEGG enrichment showed that the gene expression profiles of the hepatopancreas and gastrointestinal tract were distinct from each other. The DEGs in the hepatopancreas were mostly enriched with stress-response pathways, while the majority of the DEGs in the gastrointestinal tract belonged to metabolism-related pathways. CONCLUSION We demonstrated that the AVM induced acute toxicity, oxidative stress, osmoregulation disturbance, neurotoxicity and transcriptome imbalance in crayfish. These findings unraveled the detrimental effects of AVMs exposure on crayfish. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongyuan Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianjun Guan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lei Pu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liyang Shen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongxia Hua
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Wen Q, Zhou J, Sun X, Ma T, Liu Y, Xie Y, Wang L, Cheng J, Wen J, Wu J, Zou J, Liu S, Liu J. Urine metabolomics analysis of sleep quality in deep-underground miners: A pilot study. Front Public Health 2022; 10:969113. [PMID: 36062104 PMCID: PMC9437423 DOI: 10.3389/fpubh.2022.969113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 01/25/2023] Open
Abstract
Background In previous questionnaire surveys of miners, sleep disorders were found among underground workers. The influence of the special deep-underground environment and its potential mechanism are still unclear. Therefore, this study intends to utilize LC-MS metabolomics to study the potential differences between different environments and different sleep qualities. Methods Twenty-seven miners working at 645-1,500 m deep wells were investigated in this study, and 12 local ground volunteers were recruited as the control group. The Pittsburgh Sleep Quality Index (PSQI) was used to examine and evaluate the sleep status of the subjects in the past month, and valuable basic information about the participants was collected. PSQI scores were obtained according to specific calculation rules, and the corresponding sleep grouping and subsequent analysis were carried out. Through liquid chromatography-mass spectrometry (LC-MS) non-targeted metabolomics analysis, differences in metabolism were found by bioinformatics analysis in different environments. Results Between the deep-underground and ground (DUvsG) group, 316 differential metabolites were identified and 125 differential metabolites were identified in the good sleep quality vs. poor sleep quality (GSQvsPSQ) group. The metabolic pathways of Phenylalanine, tyrosine and tryptophan biosynthesis (p = 0.0102) and D-Glutamine and D-glutamate metabolism (p = 0.0241) were significantly enriched in DUvsG. For GSQvsPSQ group, Butanoate metabolism was statistically significant (p = 0.0276). L-Phenylalanine, L-Tyrosine and L-Glutamine were highly expressed in the deep-underground group. Acetoacetic acid was poorly expressed, and 2-hydroxyglutaric acid was highly expressed in good sleep quality. Conclusions The influence of the underground environment on the human body is more likely to induce specific amino acid metabolism processes, and regulate the sleep-wake state by promoting the production of excitatory neurotransmitters. The difference in sleep quality may be related to the enhancement of glycolytic metabolism, the increase in excitatory neurotransmitters and the activation of proinflammation. L-phenylalanine, L-tyrosine and L-glutamine, Acetoacetic acid and 2-hydroxyglutaric acid may be potential biomarkers correspondingly.
Collapse
Affiliation(s)
- Qiao Wen
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zhou
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoru Sun
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tengfei Ma
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yilin Liu
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yike Xie
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Wang
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Cheng
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jirui Wen
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiang Wu
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zou
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shixi Liu
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China,Shixi Liu
| | - Jifeng Liu
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Jifeng Liu
| |
Collapse
|
5
|
Ricci S, Petri RM, Pacífico C, Castillo-Lopez E, Rivera-Chacon R, Sener-Aydemir A, Reisinger N, Zebeli Q, Kreuzer-Redmer S. Characterization of presence and activity of microRNAs in the rumen of cattle hints at possible host-microbiota cross-talk mechanism. Sci Rep 2022; 12:13812. [PMID: 35970850 PMCID: PMC9378797 DOI: 10.1038/s41598-022-17445-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs), as important post-transcriptional regulators, are ubiquitous in various tissues. The aim of this exploratory study was to determine the presence of miRNAs in rumen fluid, and to investigate the possibility of miRNA-mediated cross-talk within the ruminal ecosystem. Rumen fluid samples from four cannulated Holstein cows were collected during two feeding regimes (forage and high-grain diet) and DNA and RNA were extracted for amplicon and small RNA sequencing. Epithelial biopsies were simultaneously collected to investigate the co-expression of miRNAs in papillae and rumen fluid. We identified 377 miRNAs in rumen fluid and 638 in rumen papillae, of which 373 were shared. Analysis of microbiota revealed 20 genera to be differentially abundant between the two feeding regimes, whereas no difference in miRNAs expression was detected. Correlations with at least one genus were found for 170 miRNAs, of which, 39 were highly significant (r > |0.7| and P < 0.01). Both hierarchical clustering of the correlation matrix and WGCNA analysis identified two main miRNA groups. Putative target and functional prediction analysis for the two groups revealed shared pathways with the predicted metabolic activities of the microbiota. Hence, our study supports the hypothesis of a cross-talk within the rumen at least partly mediated by miRNAs.
Collapse
Affiliation(s)
- Sara Ricci
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria.
| | - Renée M Petri
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| | - Cátia Pacífico
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
- Biome Diagnostics GmbH, Vienna, Austria
| | - Ezequias Castillo-Lopez
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Raul Rivera-Chacon
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Arife Sener-Aydemir
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | | | - Qendrim Zebeli
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Susanne Kreuzer-Redmer
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
6
|
Liu T, Li F, Wang W, Wang X, Ma Z, Li C, Weng X, Zheng C. Early feeding strategies in lambs affect rumen development and growth performance, with advantages persisting for two weeks after the transition to fattening diets. Front Vet Sci 2022; 9:925649. [PMID: 35968009 PMCID: PMC9366302 DOI: 10.3389/fvets.2022.925649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/04/2022] [Indexed: 11/27/2022] Open
Abstract
This study aimed to explore the effects of early feeding strategies on the growth and rumen development of lambs from pre-weaning to the transition to fattening diets. Ninety-six newborn, male lambs with similar body weights were randomly assigned to three treatments: fed starter at 42 days old + weaned at 56 days old (Ctrl, n = 36), fed starter at 7 days old + weaned at 56 days old (ES, n = 36), and fed starter at 7 days old + weaned at 28 days old (ES + EW, n = 24). The fattening diets of all lambs were gradually replaced from 60 to 70 days of age. Six randomly selected lambs from each treatment were slaughtered at 14, 28, 42, 56, 70, and 84 days of age. The results showed that the richness and diversity of rumen microbiota of lambs in the Ctrl group were distinct from those of lambs in the other groups at 42 days of age. Moreover, transcriptome analysis revealed 407, 219, and 1,211 unique differentially expressed genes (DEGs) in the rumen tissue of ES vs. Ctrl, ES vs. ES + EW, and ES + EW vs. Ctrl groups, respectively, at 42 days of age. Different early feeding strategies resulted in differences in ruminal anatomy, morphology, and fermentation in lambs from 42 to 84 days of age (P < 0.05). Lambs in the ES + EW group had a higher average starter diet intake than those in the other groups (P < 0.05) from 28 to 56 days of age, which affected their growth performance. After 42 days of age, the body and carcass weights of lambs in the ES and ES + EW groups were higher than those in the Ctrl group (P < 0.05). These findings demonstrate that feeding lambs with a starter diet at 7 days of age and weaning them at 28 days of age can promote rumen development and improve growth performance, and this advantage persists for up to 2 weeks after transition to the fattening diet.
Collapse
Affiliation(s)
- Ting Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhiyuan Ma
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiuxiu Weng
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chen Zheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Chen Zheng
| |
Collapse
|