1
|
Li Y, Yu B, Liu C, Xia S, Luo Y, Zheng P, Cong G, Yu J, Luo J, Yan H, He J. Effects of dietary genistin supplementation on reproductive performance, immunity and antioxidative capacity in gestating sows. Front Vet Sci 2024; 11:1489227. [PMID: 39641093 PMCID: PMC11618539 DOI: 10.3389/fvets.2024.1489227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Genistin is an isoflavone of soybean, with estrogenic activity. This experiment was conducted to investigate its effect on reproductive performance, antioxidant capacity, and immunity in gestating sows. Seventy-two sows (Landrace × Yorkshire) were selected and randomly divided into two treatment groups (n = 36) based on their backfat thickness, parity and fed with basal diet or supplementation of 150 mg/ kg genistin to the basal diet based on DMI for the entire gestation period. Results showed that dietary genistin supplementation significantly increased the average number of live born per litter (p < 0.05), and tended to increase the number of healthy piglets per litter (p = 0.058), but decreased the average weight of live born per litter (p < 0.05). Dietary genistin supplementation significantly decreased the number of mummified and stillbirths per litter (p < 0.05). Moreover, the average daily feed intake (ADFI) and total feed intake of the gestating sows were also increased in the genistin-supplemented group (p < 0.05). Genistin significantly increased the serum concentrations of catalase (CAT), immunoglobulin A (IgA), IgG, and IgM at 35 days of gestation (p < 0.05). The serum concentrations of interleukin-10 (IL-10) and interferon-γ (IFN-γ) were also increased upon genistin supplementation (p < 0.05). However, genistin supplementation tended to decrease the serum concentrations of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and leptin at 85 days of gestation (p = 0.081 and p = 0.096, respectively). Interestingly, genistin supplementation decreased the transcript abundance of interferon-γ (IFN-γ) and placental imprinting gene H19, but significantly increased the transcript abundance of insulin-like growth factor I (IGF-I) and amino acid transporters such as the sodium-coupled neutral amino acid transporter 2 (SNTA2) and SNAT4 in the placenta (p < 0.05). These results suggested that dietary genistin supplementation during gestation can improve the reproductive performance of sows, which was probably associated with improving of antioxidant capacity and immunity, as well as changes of transcript abundance of critical functional genes in the placenta.
Collapse
Affiliation(s)
- Yuchen Li
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Chunxue Liu
- Anyou Biotechnology Group Co., Ltd., Taicang, China
| | | | - Yuheng Luo
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Ping Zheng
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | | | - Jie Yu
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Junqiu Luo
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Zheng Y, Li Y, Yu B, Huang Z, Luo Y, Zheng P, Mao X, Yu J, Tan H, Luo J, Yan H, He J. Grape seed proanthocyanidins improves growth performance, antioxidative capacity, and intestinal microbiota in growing pigs. Front Microbiol 2024; 15:1501211. [PMID: 39633810 PMCID: PMC11615056 DOI: 10.3389/fmicb.2024.1501211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
Grape seed proanthocyanidin (GSP) is a kind of plant polyphenols with a wide variety of biological activities. In this study, we explored the effect of dietary GSP supplementation on growth performance, nutrient digestibility, and intestinal microbiota in growing pigs. A total of 180 growing pigs (30.37 ± 0.31 kg) were randomly assigned to five treatment groups, each consisting of six replicate pens with six pigs per pen. The pigs received either a basal diet (control) or a basal diet supplemented with GSP at 15, 30, 60, or 120 mg/kg. The trial lasted for 33 days, and blood and fecal samples were collected for biochemical measurements. GSP supplementation at a dose from 30 to 120 mg/kg decreased the ratio of feed intake to gain (F:G) (p < 0.05). GSP also increased the digestibility of dry matter, crude protein, ether extract, and gross energy (p < 0.05). GSP supplementation at 30 mg/kg increased the serum concentrations of immunoglobulin (Ig) A (p < 0.05). Interestingly, GSP supplementation at 60 mg/kg decreased the serum concentrations of urea and malondialdehyde (p < 0.05). However, the serum concentrations of glutathione peroxidase and total superoxide dismutase were significantly increased upon GSP supplementation (p < 0.05). Importantly, GSP supplementation at 120 mg/kg significantly increased the abundance of the phylum Firmicutes, but decreased the abundance of phylum Bacteroidetes and Epsilonbacteraeota in the feces (p < 0.05). Moreover, GSP supplementation significantly elevated the abundance of genus Lactobacillus, but decreased the abundance of genus Prevotellaceae NK3B31 (p < 0.05). Dietary GSP supplementation improves the growth performance and nutrient digestibility in growing pigs, which may be associated with enhancement of the antioxidative capacity, as well as improvement in gut microbiota. This study may promote the use of GSP in animal nutrition and the feed industry.
Collapse
Affiliation(s)
- Yuyang Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| | - Yan Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| | - Huize Tan
- Wens Foodstuff Group Co., Ltd., Yunfu, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Mei H, Li Y, Wu S, He J. Natural plant polyphenols contribute to the ecological and healthy swine production. J Anim Sci Biotechnol 2024; 15:146. [PMID: 39491001 PMCID: PMC11533317 DOI: 10.1186/s40104-024-01096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/25/2024] [Indexed: 11/05/2024] Open
Abstract
The absence of trace amounts of natural bioactive compounds with important biological activities in traditional dietary models for global farm animals, coupled with an incomplete theoretical system for animal nutrition, has led to unbalanced and inadequate animal nutrition. This deficiency has adversely impacted animal health and the ecological environment, presenting formidable challenges to the advancement of the swine breeding industry in various countries around the world toward high-quality development. Recently, due to the ban of antibiotics for growth promotion in swine diets, botanical active compounds have been extensively investigated as feed additives. Polyphenols represent a broad group of plant secondary metabolites. They are natural, non-toxic, pollution-free, and highly reproducible compounds that have a wide range of physiological functions, such as antioxidant, anti-inflammatory, immunomodulatory, antiviral, antibacterial, and metabolic activities. Accordingly, polyphenols have been widely studied and used as feed additives in swine production. This review summarizes the structural characteristics, classification, current application situation, general properties of polyphenols, and the latest research advances on their use in swine production. Additionally, the research and application bottlenecks and future development of plant polyphenols in the animal feed industry are reviewed and prospected. This review aims to stimulate the in-depth study of natural plant polyphenols and the research and development of related products in order to promote the green, healthy, and high-quality development of swine production, while also providing ideas for the innovation and development in the theoretical system of animal nutrition.
Collapse
Affiliation(s)
- Huadi Mei
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China
| | - Yuanfei Li
- Jiangxi Province Key Laboratory of Genetic Improvement of Indigenous Chicken Breeds, Institute of Biotechnology, Nanchang Normal University, Nanchang, Jiangxi, 330000, China
| | - Shusong Wu
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China.
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China.
| |
Collapse
|
4
|
Ahmad S, Ahsan F, Ansari JA, Mahmood T, Bano S, Shahanawaz M. Bioflavonoid Daidzein: Therapeutic Insights, Formulation Advances, and Future Directions. Drug Res (Stuttg) 2024; 74:433-455. [PMID: 39299251 DOI: 10.1055/a-2379-6849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Bioflavonoids, are a diverse group of phytonutrients that are widely distributed in fruits, vegetables, grains, teas, and certain medicinal herbs. They are characterized by their antioxidant properties and play essential roles in plant biology, such as providing color to fruits and flowers, protecting plants from environmental stresses. Daidzein, a bioflavonoid classified under natural products, is sourced from plants like soybeans and legumes. It exists in forms such as glycosides and aglycones, with equol and trihydroxy isoflavone being key metabolites formed by gut bacteria. Known for its wide-ranging therapeutic potential, daidzein has shown effects on cardiovascular health, cancer, diabetes, skin conditions, osteoporosis, and neurodegenerative disorders. Its mechanisms include interaction with estrogen receptors, antioxidative and anti-inflammatory properties, and modulation of apoptosis and cell cycles. Recent advances in formulation technologies aimed at enhancing daidzein's bioavailability and efficacy are critically evaluated, including nanoparticle-based delivery systems and encapsulation strategies. Researchers have developed advanced formulations like nanoparticles and liposomes to enhance daidzein's solubility, stability, bioavailability, and targeted delivery. Considered a promising nutraceutical, daidzein warrants further exploration into its molecular actions and safety profile to fully realize its clinical potential. This review offers a succinct overview encompassing therapeutic benefits, chemical characteristics, historical uses, toxicology insights, recent advancements in delivery systems, and future directions for daidzein research.
Collapse
Affiliation(s)
- Sana Ahmad
- Department of Pharmacy, Integral University, Dasauli, Kursi road, Lucknow (U.P.)-India
| | - Farogh Ahsan
- Department of Pharmacy, Integral University, Dasauli, Kursi road, Lucknow (U.P.)-India
| | - Javed Akhtar Ansari
- Department of Pharmacy, Integral University, Dasauli, Kursi road, Lucknow (U.P.)-India
| | - Tarique Mahmood
- Department of Pharmacy, Integral University, Dasauli, Kursi road, Lucknow (U.P.)-India
| | - Shahzadi Bano
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow (U.P.)-India
| | - Mo Shahanawaz
- Department of Pharmacy, Integral University, Dasauli, Kursi road, Lucknow (U.P.)-India
| |
Collapse
|
5
|
Ahmad S, Ahsan F, Ansari JA, Mahmood T, Shamim A, Bano S, Tiwari R, Ansari VA, Shafiurrahman, Kesari M. A review on daidzein as food supplement: Exploring its phytopharmacological and preclinical status. EFOOD 2024; 5. [DOI: 10.1002/efd2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 09/04/2024] [Indexed: 01/05/2025] Open
Abstract
AbstractA natural product is a compound or substance originating from a living organism and found in nature. Daidzein belongs to the class of bioflavonoids, which are plant‐derived compounds with various biological activities. Predominantly exists in soybeans and several legumes in either glycoside or aglycone forms. Its primary chemical constituents include metabolites like equol and trihydroxy isoflavone, generated through the influence of intestinal bacteria. Daidzein has exhibited pharmacological impacts on different ailments, including cardiovascular disease, cancer, diabetes, skin disorders, osteoporosis, and neurodegenerative disorders. Daidzein's mechanisms of action involve interactions with estrogen receptors, as well as its antioxidant and anti‐inflammatory properties, along with its ability to regulate apoptosis and the cell cycle. In efforts to enhance its solubility, stability, bioavailability, and targeting, daidzein has been innovatively formulated into novel dosage forms, including nanoparticles, liposomes, microemulsions, and nanosuspensions. As a promising nutraceutical, daidzein presents multiple health benefits and holds potential for various clinical applications. Additional investigation is required to comprehend the molecular mechanisms of this phenomenon and assess its safety. The purpose of this review is to provide a short description of the therapeutic properties, chemical composition, traditional use, toxicology profile, new insights on the dosage form, and future prospects of daidzein.
Collapse
Affiliation(s)
- Sana Ahmad
- Department of Pharmacy Integral University Lucknow Uttar Pradesh India
| | - Farogh Ahsan
- Department of Pharmacy Integral University Lucknow Uttar Pradesh India
| | | | - Tarique Mahmood
- Department of Pharmacy Integral University Lucknow Uttar Pradesh India
| | - Arshiya Shamim
- Department of Pharmacy Integral University Lucknow Uttar Pradesh India
| | - Shahzadi Bano
- Department of Chemistry Integral University Lucknow Uttar Pradesh India
| | - Reshu Tiwari
- Department of Pharmacy Integral University Lucknow Uttar Pradesh India
| | | | - Shafiurrahman
- Department of Pharmacy Integral University Lucknow Uttar Pradesh India
| | - Mithilesh Kesari
- Department of Pharmacy Integral University Lucknow Uttar Pradesh India
| |
Collapse
|
6
|
Duan X, Wang X, Li Z, Liu C, Bao Y, Shi W, Zhao X. Effects of supplemental feeding of Chinese herbal mixtures to perinatal sows on antioxidant capacity and gut microbiota of sows and their offspring piglets. Front Microbiol 2024; 15:1459188. [PMID: 39328912 PMCID: PMC11424466 DOI: 10.3389/fmicb.2024.1459188] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
The stress response of pig herds poses a significant challenge in the pig breeding industry, and investigating strategies to mitigate this stress is of paramount importance. The objective of this study was to investigate the impacts of supplemental feeding of Chinese herbal mixtures to perinatal sows on antioxidant capacity and gut microbiota of sows and their offspring piglets. A total of 60 healthy sows (Large white) at fourth parity were randomly assigned to five treatment groups. The control group received a basal diet, while the TRT1 group received a basal diet supplemented with 2kg/t Bazhen powder (BZP). The TRT2, TRT3, and TRT4 groups were fed a basal diet supplemented with 1kg/t, 2kg/t, and 3kg/t Qi-Zhu- Gui-Shao soothing liver and replenishing blood powder (QZGSP), respectively. The trial lasted for 5weeks, starting from day 100 of gestation until day 21 of delivery. The results demonstrated that the inclusion of 2kg/t and 3kg/t QZGSP significantly enhanced the antioxidant capacity of sows and their offspring piglets to different degrees, thereby effectively alleviating oxidative stress. Analysis of gut microbiota revealed that QZGSP influenced the composition of gut microbiota in both sows and their offspring piglets. Specifically, at the genus level, the abundance of Christensenellaceae_R-7_group in the gut microbiota of sows in the TRT4 group was significantly lower than that in the TRT1 group (p < 0.05), while the relative abundance of Lactobacillus in the gut microbiota of sows in the TRT4 group was significantly higher than that in the CON group (p < 0.05). Furthermore, at the genus level, compared to those in the TRT1 group, piglets from the TRT4 group exhibited a significant decrease in relative abundance of Escherichia-Shigella, Parabacteroides, and Methanobrevivacter (p < 0.05), but a significant increase in Phascolarctobacterium (p < 0.05). Spearman correlation analysis indicated a positive correlation between relative abundance of Christensenellaceae_R-7_group and serum contents of T-AOC and CAT (p < 0.05), as well as a negative correlation with serum concentration MDA (p < 0.05). Additionally, there was a positive correlation between relative abundance Lactobacillus and serum levels SOD (p < 0.01) and GSH-Px (p < 0.05). Therefore, supplementation of 3kg/t QZGSP in the periparturient sow diet significantly augmented antioxidant capacity in both sows and offspring piglets, while concurrently modulating the composition and structure of their intestinal microflora. The findings from this study demonstrate that QZGSP represents a beneficial feed additive for perinatal sows.
Collapse
Affiliation(s)
- Xuelei Duan
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Zhaonian Li
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Chenggong Liu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding, China
- Hebei Provincial Traditional Chinese Veterinary Medicine Technology Innovation Center, Baoding, China
| | - Xinghua Zhao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| |
Collapse
|
7
|
Haridevamuthu B, Sudhakaran G, Pachaiappan R, Kathiravan MK, Manikandan K, Almutairi MH, Almutairi BO, Arokiyaraj S, Arockiaraj J. Daidzein ameliorates nonmotor symptoms of manganese-induced Parkinsonism in zebrafish model: Behavioural and biochemical approach. Br J Pharmacol 2024; 181:2947-2963. [PMID: 38679467 DOI: 10.1111/bph.16382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/14/2024] [Accepted: 03/08/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND AND PURPOSE Parkinson's disease (PD) is a prevalent neurodegenerative movement disorder characterized by motor dysfunction. Environmental factors, especially manganese (Mn), contribute significantly to PD. Existing therapies are focused on motor coordination, whereas nonmotor features such as neuropsychiatric symptoms are often neglected. Daidzein (DZ), a phytoestrogen, has piqued interest due to its antioxidant, anti-inflammatory, and anxiolytic properties. Therefore, we anticipate that DZ might be an effective drug to alleviate the nonmotor symptoms of Mn-induced Parkinsonism. EXPERIMENTAL APPROACH Naïve zebrafish were exposed to 2 mM of Mn for 21 days and intervened with DZ. Nonmotor symptoms such as anxiety, social behaviour, and olfactory function were assessed. Acetylcholinesterase (AChE) activity and antioxidant enzyme status were measured from brain tissue through biochemical assays. Dopamine levels and histology were performed to elucidate neuroprotective mechanism of DZ. KEY RESULTS DZ exhibited anxiolytic effects in a novel environment and also improved intra and inter fish social behaviour. DZ improved the olfactory function and response to amino acid stimuli in Mn-induced Parkinsonism. DZ reduced brain oxidative stress and AChE activity and prevented neuronal damage. DZ increased DA level in the brain, collectively contributing to neuroprotection. CONCLUSION AND IMPLICATIONS DZ demonstrated a promising effect on alleviating nonmotor symptoms such as anxiety and olfactory dysfunction, through the mitigation of cellular damage. These findings underscore the therapeutic potential of DZ in addressing nonmotor neurotoxicity induced by heavy metals, particularly in the context of Mn-induced Parkinsonism.
Collapse
Affiliation(s)
- Balasubramanian Haridevamuthu
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600105, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600105, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Muthu Kumaradoss Kathiravan
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Krishnan Manikandan
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006, Korea
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| |
Collapse
|
8
|
Hong C, Huang Y, Cao S, Wang L, Yang X, Hu S, Gao K, Jiang Z, Xiao H. Accurate models and nutritional strategies for specific oxidative stress factors: Does the dose matter in swine production? J Anim Sci Biotechnol 2024; 15:11. [PMID: 38273345 PMCID: PMC10811888 DOI: 10.1186/s40104-023-00964-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/01/2023] [Indexed: 01/27/2024] Open
Abstract
Oxidative stress has been associated with a number of physiological problems in swine, including reduced production efficiency. Recently, although there has been increased research into regulatory mechanisms and antioxidant strategies in relation to oxidative stress-induced pig production, it remains so far largely unsuccessful to develop accurate models and nutritional strategies for specific oxidative stress factors. Here, we discuss the dose and dose intensity of the causes of oxidative stress involving physiological, environmental and dietary factors, recent research models and the antioxidant strategies to provide theoretical guidance for future oxidative stress research in swine.
Collapse
Affiliation(s)
- Changming Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yujian Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shuting Cao
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xuefen Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shenglan Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Kaiguo Gao
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zongyong Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hao Xiao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Guangzhou, 510640, China.
| |
Collapse
|
9
|
Liu J, Liu J, Zhou S, Fu Y, Yang Q, Li Y. Effects of quercetin and daidzein on egg quality, lipid metabolism, and cecal short-chain fatty acids in layers. Front Vet Sci 2023; 10:1301542. [PMID: 38188719 PMCID: PMC10766699 DOI: 10.3389/fvets.2023.1301542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
In this study, the effects of quercetin and daidzein on egg quality, lipid metabolism, and cecal short-chain fatty acids (SCFAs) were compared in layers. Hyline brown layers at 385 days of age with a similar laying rate (81.36% ± 0.62%) and body weight (2.10 kg ± 0.04 kg) were randomly divided into three treatments, six replicates per treatment, and 20 layers per replicate. Layers in control, quercetin, and daidzein treatment were fed by a basal diet supplemented with 0 mg/kg, 500 mg/kg quercetin, and 30 mg/kg of daidzein for 10 weeks. Results showed that eggshell strength and albumen height in week 4, egg yolk diameter in week 10, and eggshell thickness and egg yolk height in weeks 4 and 10 were significantly increased in the quercetin treatment (P ≤ 0.05); contents of phospholipid (PL) and lecithin (LEC) in egg yolk and high-density lipoprotein (HDL) content in serum were significantly increased; however, contents of malondialdehyde (MDA), total cholesterol (TC), and triglyceride (TG) in egg yolk, contents of TC, TG, low-density lipoprotein (LDL), and very-low-density lipoprotein (VLDL) in serum, and contents of TC and TG in the liver were significantly decreased in the quercetin treatment (P ≤ 0.05); contents of isobutyric acid and valeric acid were significantly increased in the cecum of the quercetin treatment (P ≤ 0.05), compared with control. Moreover, egg yolk height in week 10 and eggshell thickness in weeks 4 and 10 were significantly increased in the daidzein treatment (P ≤ 0.05); contents of MDA, TC, and TG in egg yolk, TC, TG, and VLDL in serum, and TC and TG in liver were significantly decreased in the daidzein treatment (P ≤ 0.05); and HDL content was significantly increased in serum of the daidzein treatment (P ≤ 0.05) compared with control. However, daidzein did not affect SCFA content in the cecum. In conclusion, egg quality was improved by quercetin and daidzein by increasing the antioxidant ability of egg yolk and by regulating lipid metabolism in layers. Quercetin worked better than daidzein in improving egg quality under this experimental condition.
Collapse
Affiliation(s)
| | | | | | | | | | - Yao Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
10
|
Liu J, Fu Y, Zhou S, Zhao P, Zhao J, Yang Q, Wu H, Ding M, Li Y. Comparison of the effect of quercetin and daidzein on production performance, anti-oxidation, hormones, and cecal microflora in laying hens during the late laying period. Poult Sci 2023; 102:102674. [PMID: 37104906 PMCID: PMC10160590 DOI: 10.1016/j.psj.2023.102674] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
This study aims to compare the effect of quercetin and daidzein on production performance, anti-oxidation, hormones, and cecal microflora in laying hens during the late laying period. A total of 360 53-week-old healthy Hyline brown laying hens were randomly divided into 3 groups (control, 0.05% quercetin, and 0.003% daidzein). Diets were fed for 10 wk, afterwards 1 bird per replicate (6 replicates) were euthanized for sampling blood, liver and cecal digesta. Compared with the control, quercetin significantly increased laying rate and decreased feed-to-egg weight ratio from wk 1 to 4, wk 5 to 10, and wk 1 to 10 (P < 0.05). Quercetin significantly increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreased catalase (CAT) activity and malondialdehyde (MDA) content in serum and liver (P < 0.05) and increased content of total antioxidant capacity (T-AOC) in liver (P < 0.05). Quercetin increased content of estradiol (E2), luteinizing hormone (LH), follicle-stimulating hormone (FSH), growth hormone (GH), insulin-like growth factor 1 (IGF-1), triiodothyronine (T3) and thyroxine (T4) in serum (P < 0.05). Quercetin significantly decreased the relative abundance of Bacteroidaceae and Bacteroides (P < 0.01) and significantly increased the relative abundance of Lactobacillaceae and Lactobacillus (P < 0.05) at family and genus levels in cecum. Daidzein did not significantly influence production performance from wk 1 to 10. Daidzein significantly increased SOD activity and decreased CAT activity and MDA content in serum and liver (P < 0.05), and increased T-AOC content in liver (P < 0.05). Daidzein increased content of FSH, IGF-1, T3 in serum (P < 0.05). Daidzein increased the relative abundance of Rikenellaceae RC9 gut group at genus level in cecum (P < 0.05). Quercetin increased economic efficiency by 137.59% and 8.77%, respectively, compared with daidzein and control. In conclusion, quercetin improved production performance through enhancing antioxidant state, hormone levels, and regulating cecal microflora in laying hens during the late laying period. Quercetin was more effective than daidzein in improving economic efficiency.
Collapse
|
11
|
Yao X, Deng Z, Li H, Zhang B. Effect of processing cycles on the composition of Polygonatum cyrtonema Hua during nine-steam-nine-bask processing. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Plant-derived polyphenols in sow nutrition: An update. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:96-107. [PMID: 36632620 PMCID: PMC9823128 DOI: 10.1016/j.aninu.2022.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/07/2022]
Abstract
Oxidative stress is a potentially critical factor that affects productive performance in gestating and lactating sows. Polyphenols are a large class of plant secondary metabolites that possess robust antioxidant capacity. All polyphenols are structurally characterized by aromatic rings with multiple hydrogen hydroxyl groups; those make polyphenols perfect hydrogen atoms and electron donors to neutralize free radicals and other reactive oxygen species. In the past decade, increasing attention has been paid to polyphenols as functional feed additives for sows. Polyphenols have been found to alleviate inflammation and oxidative stress in sows, boost their reproductivity, and promote offspring growth and development. In this review, we provided a systematical summary of the latest research advances in plant-derived polyphenols in sow nutrition, and mainly focused on the effects of polyphenols on the (1) antioxidant and immune functions of sows, (2) placental functions and the growth and development of fetal piglets, (3) mammary gland functions and the growth and development of suckling piglets, and (4) the long-term growth and development of progeny pigs. The output of this review provides an important foundation, from more than 8,000 identified plant phenols, to screen potential polyphenols (or polyphenol-enriched plants) as functional feed additives suitable for gestating and lactating sows.
Collapse
|
13
|
miR-373-3p Regulates the Proliferative and Migratory Properties of Human HTR8 Cells via SLC38A1 Modulation. DISEASE MARKERS 2022; 2022:6582357. [PMID: 35837487 PMCID: PMC9274228 DOI: 10.1155/2022/6582357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022]
Abstract
The genetic pathogenesis of selective intrauterine growth restriction (sIUGR) remains elusive, with evidence suggesting an important role of epigenetic factors such as microRNAs. In this study, we explored the relevance of miR-373-3p to the occurrence of sIUGR. Hypoxia enhanced the levels of miR-373-3p and hypoxia-inducible factor (HIF)-1α, while HIF-1α knockdown not only boosted the migration and proliferation of HTR8 cells but also suppressed the hypoxia-induced upregulation of miR-373-3p and SLC38A1. By contrast, HIF-1α overexpression induced miR-373-3p downregulation and SLC38A1 upregulation, reducing cell growth and migration, which could be reversed by a miR-373-3p inhibitor. Importantly, the miR-373-3p inhibitor and mimic reproduced phenomena similar to those induced by HIF-1α downregulation and overexpression, respectively (including altered SLC38A1 expression, mTOR activation, cell growth, and migration). Mechanistically, the miRNA regulated cell behaviors and related mTOR signaling by targeting SLC38A1 expression through an interaction with the 3′-untranslated region of SLC38A1. The placental tissues of smaller sIUGR fetuses exhibited miR-373-3p and HIF-1α upregulation, SLC38A1 downregulation, and activated mTOR. Overall, miR-373-3p appears to restrict the growth and migration of HTR8 trophoblast cells by targeting SLC38A1, as observed in the placental tissues associated with smaller sIUGR fetuses, and it could have utility in the diagnosis and treatment of this disorder.
Collapse
|