1
|
Zhang Y, Jia R, Zhao Y, Su N, Fan G, Yuan C, Zhao C, Hu X. Associations of Ruminal Microbiota with Susceptibility to subacute Ruminal Acidosis in Dairy Goats. Microb Pathog 2025:107727. [PMID: 40414443 DOI: 10.1016/j.micpath.2025.107727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 05/10/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Long-term feeding of high-concentrate diets (HCD) to ruminants often leads to subacute ruminal acidosis (SARA). The fact that some ruminants adapt to HCD without developing SARA suggests that the ruminal microbiota communities may play a role in the susceptibility to this disorder. To address this hypothesis, 20 dairy goats were fed an HCD consisting of 30% forage and 70% concentrate for 10 weeks. The dairy goats were divided into a SARA susceptible group (SS, pH < 5.8 for more than 3 hours within 12 hours) and a SARA tolerant group (ST, pH < 5.8 for not more than 3 hours within 12 hours) according to ruminal fluid pH. At 0 and 10 weeks after feeding with HCD, blood samples were collected via the jugular vein using a vacutainer to assess the levels of white blood cells, neutrophils, and lymphocytes. Meanwhile, milk samples were collected to measure milk composition. In addition, ruminal fluid was collected via a gastric tube at 0 and 10 weeks of feeding the experimental diets via gastric tube and the ruminal microbiota of SS and ST dairy goats were analyzed. The results indicated that feeding with HCD led to greater levels of white blood cells, neutrophils, creatinine, and urea nitrogen, and lower concentrations of milk fat. Further, levels of white blood cells and neutrophils were greater in SS compared with ST goats. The 16S rRNA sequencing analysis revealed that the diversity and abundance of the ruminal bacterial community was lower in SS compared to ST goats. Furthermore, the relative abundance of norank_f_F082, norank_f_Bifidobacteriaceae, and the genus Ruminococcus was higher in the SS group. These microorganisms are important for the digestion of non-structural carbohydrates and the production of volatile fatty acids (VFA). The initial ruminal microbiota composition analysis revealed that Rikenellaceae_RC9_gut_group was greater in ST goats, both before and after feeding HCD. By promoting carbohydrate metabolism in the rumen, the data suggest that the increased abundance of norank_f_F082, Ruminococcus and UCG-004 may lead to the production of metabolites that increase susceptibility to SARA when fed HCD. Enrichment of ruminal bacteria such as Rikenellaceae_RC9_gut_group may reduce susceptibility to SARA in HCD diets. Overall, manipulation of the ruminal microbiota may be a novel approach to prevent the development of SARA in ruminants.
Collapse
Affiliation(s)
- Yue Zhang
- Key Lab of Preventive Veterinary Medicine in Jilin Province, College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, 132101, China
| | - Ruijie Jia
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Yuan Zhao
- Key Lab of Preventive Veterinary Medicine in Jilin Province, College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, 132101, China
| | - Niri Su
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Guyue Fan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Chongshan Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China.
| |
Collapse
|
2
|
Hou G, Wang J, Liu S, Gao D, Xu Y, Zhuang Y, Dong W, Yue Y, Bai J, Li S, Ma J, Li M, Wang W, Wang Y, Li S, Cao Z. Integrating Subacute Ruminal Acidosis, Lipopolysaccharide, and Trained Immunity: A Comprehensive Review. Int J Biol Sci 2025; 21:2806-2823. [PMID: 40303309 PMCID: PMC12035889 DOI: 10.7150/ijbs.104074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/11/2025] [Indexed: 05/02/2025] Open
Abstract
Subacute ruminal acidosis (SARA) has emerged as a prevalent digestive disorder that significantly affects the overall health of ruminants, with notable links to various inflammatory diseases. Throughout the progression of SARA, elevated lipopolysaccharide (LPS) levels in the rumen play a crucial role in initiating the innate immune response. In this review, we evaluate the recent insights into the pathways associated with SARA-induced inflammatory responses, with a specific focus on LPS. It is important to recognize the variation in the immune response activation potential of LPS derived from different bacterial sources. This variability aligns with the widespread detection of LPS in the rumens of ruminants with SARA. Nonetheless, trained immunity is expected to become a novel strategy for the prevention and control of SARA. This mechanism offers a rapid response to secondary stimuli, including LPS, effectively preventing inflammation. Ultimately, this review establishes a comprehensive system integrating SARA, LPS, and trained immunity. Through this integrated approach, we aim to provide innovative solutions to the challenges associated with SARA.
Collapse
Affiliation(s)
- Guobin Hou
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Duo Gao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yiming Xu
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yimin Zhuang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wenzhuo Dong
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, 830052, China
| | - Yi Yue
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Jinni Bai
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Shangru Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mengmeng Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
3
|
Zhang L, Xia Z, Fu J, Yang Y. Role of the Rumen Epithelium and Associated Changes Under High-Concentrate Diets. Int J Mol Sci 2025; 26:2573. [PMID: 40141216 PMCID: PMC11941904 DOI: 10.3390/ijms26062573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Increasing the proportion of concentrate in diets can effectively improve ruminant production, and is therefore widely used. However, high-concentrate diets (HCD) enriched with rapidly fermentable carbohydrates can accelerate the production of lactate and short-chain fatty acids (SCFAs). The accumulation of lactate and SCFAs in the rumen leads to a reduction in rumen fluid pH, potentially resulting in subacute rumen acidosis (SARA), which can decrease dry matter intake (DMI), induce local and systemic inflammation, and cause other negative impacts on the host. The substantial prevalence of SARA attributable to long-term HCD causes considerable economic losses, as it can decrease DMI by up to 20%. Understanding its mechanisms and pathogenesis is essential. The rumen epithelium (RE), which is in direct contact with rumen fluid, is an important tissue in the rumen due to its roles in absorption, transport, and barrier functions. The changes that occur in RE under HCD and the subsequent impacts of these changes are worth exploring. In the short term, HCD feeding promotes RE cell proliferation and upregulates the activity of various transporter proteins, enhancing RE absorption and metabolism. However, with prolonged feeding, these functions of RE are negatively affected, accompanied by the development of inflammation. This review elucidates the structure, the functions, and the responses of RE under HCD, providing a detailed analysis of SARA pathogenesis at the cellular and molecular levels.
Collapse
Affiliation(s)
- Ling Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.Z.); (Z.X.)
| | - Zhenhua Xia
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.Z.); (Z.X.)
| | - Jicheng Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China;
| | - You Yang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.Z.); (Z.X.)
| |
Collapse
|
4
|
Liu T, Xu J, Chen X, Ren J, He J, Wang Y, Cao Y, Guan LL, Yao J, Wu S. Ruminal-buccal microbiota transmission and their diagnostic roles in subacute rumen acidosis in dairy goats. J Anim Sci Biotechnol 2025; 16:32. [PMID: 40025538 PMCID: PMC11872310 DOI: 10.1186/s40104-025-01162-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/13/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Subacute rumen acidosis (SARA) is a common metabolic disorder in ruminants that disrupts the rumen microbiome and animal health, but diagnosis is challenging due to subtle symptoms and invasive testing requirements. This study explores the potential of the buccal (oral) microbiome as a diagnostic indicator for SARA, hypothesizing an interaction with the rumen microbiome. RESULTS The study involved 47 dairy goats, including 11 on a control diet and 36 on high-concentrate diets with increasing rumen-degradable starch. Animals were grouped based on dietary exposure and ruminal pH: Control, Low-RDS Tolerance/SARA (LRDST/LRDSS), and High-RDS Tolerance/SARA (HRDST/HRDSS). Transcriptomics of rumen epithelium showed heightened inflammatory pathway gene expression in SARA-susceptible goats compared to controls and tolerant groups. Alpha diversity of ruminal bacteria showed lower Shannon diversity in HRDSS goats compared to HRDST whereas buccal bacteria displayed significantly lower Chao1 diversity in LRDSS goats compared to HRDST. Beta diversity analyses revealed distinct patterns between SARA-affected goats and healthy controls in both ruminal and buccal microbiomes. Prevotellaceae_UCG-003 emerged as a candidate biomarker, with reduced abundance in SARA-susceptible goats in both rumen and buccal samples. Machine learning classifiers achieved high accuracy in distinguishing SARA-susceptible goats using this genus (rumen AUC = 0.807; buccal AUC = 0.779). Source tracking analysis illustrated diminished cross-population of bacteria from the buccal to rumen (2.86% to 0.25%) and vice versa (8.59% to 1.17%), signifying compromised microbial interchange in SARA-affected goats. A microbiota transplant experiment verified SARA microbiota's ability to induce pH decline, escalate inflammation-related gene expression (MAPK10, IL17B, FOSB, SPP1), disrupt microbial transfer, and reduce Prevotellaceae_UCG-003 in recipients. CONCLUSION Our findings highlight SARA's dual impact on ruminal and buccal microbiota, exacerbating epithelial inflammation gene expression. Shifts in the buccal microbiome, specifically reductions in Prevotellaceae_UCG-003, mirror ruminal changes and can be influenced by inter-compartmental bacterial transmission, thereby offering a non-invasive diagnostic approach for SARA.
Collapse
Affiliation(s)
- Tao Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Shaanxi, 712100, China
| | - Jingyi Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Shaanxi, 712100, China
| | - Xiaodong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Shaanxi, 712100, China
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Jianrong Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Shaanxi, 712100, China
| | - Jinhui He
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Shaanxi, 712100, China
| | - Yue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Shaanxi, 712100, China
- Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Shaanxi, 712100, China
| | - Le Luo Guan
- Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 St. and 85 Ave, Edmonton, AB, T6G 2P5, Canada.
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, Shaanxi, 712100, China.
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, Shaanxi, 712100, China.
| |
Collapse
|
5
|
Cheng Z, Liu J, Yu Y, Liu W, Li X, Li F, Zang C, Yang K. Niacin alters ruminal microbial composition and metabolites in sheep fed a high-concentrate diet. Front Vet Sci 2025; 12:1510617. [PMID: 39936076 PMCID: PMC11812060 DOI: 10.3389/fvets.2025.1510617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
This study aimed to investigate the effects of niacin supplementation to a high-concentrate diet (ratio of concentrate supplement to forage = 70:30) on the growth performance, rumen fermentation, rumen microbiota, and metabolomics of sheep. Twelve sheep were randomly divided into two groups: (1) a control group (CON, n = 6) fed a basal diet and (2) a niacin group (NA, n = 6) fed a basal diet supplemented with 130 mg/day niacin for 35 days: days 1-14 were the adaptation period, days 15-35 were the experiment period. On days 15 and 35 of the experiment period, all trial sheep were weighed before the morning feed (07:30 am). Ruminal fluid samples were collected from all trial sheep on days 34 and 35. The results showed that (1) the dry matter feed intake of the NA group was higher than that of the CON group (p < 0.05). (2) The ruminal pH of the NA was significantly higher than that of the CON group at 3, 5, and 7 h after feeding (p < 0.01). The concentrations of NH3-N (p < 0.01), propionate (p < 0.01), and butyrate (p < 0.05) in the NA group were significantly higher than those in the CON group. (3) Compared to the CON group, the ruminal pyruvate content in the NA group was significantly increased at 0 h before feeding (p < 0.05), and lactic acid (p < 0.05) was significantly decreased at 1 and 3 h after feeding, lactate dehydrogenase activities was significantly decreased (p < 0.01) at 3 and 5 h after feeding. (4) The number of specific operational taxonomic units (OTUs) in the CON and NA groups were 26 and 37, respectively, for a total of 1,178 OTUs; principal coordinate analysis (R 2 = 0.172, p-value = 0.007) and non-metric multidimensional scaling (stress = 0.1646) results showed that the two groups of samples were significantly separated. (5) The species distribution bar graph shows that at the phylum level, the relative abundances of Bacteroidetes, Firmicutes, and Proteobacteria were 43.70, 36.25, and 12.77%, respectively. (6) Orthogonal projection to latent structure-discriminant analysis results showed that the two groups of samples were clearly separated in the positive and negative ionization modes, with R 2 Y and Q 2 Y values of 0.705, 0.857, 0.695, and 0.28, respectively. There were 72 metabolic pathways, mainly citric acid cycle, pyruvate metabolism, and cysteine and methionine metabolism. (7) Correlation analysis showed that a number of microorganisms (such as Succinivibrio and Prevotella) and differential metabolites (such as L-malic acid, propionic acid, succinic acid, and pyruvic acid) participated in tricarboxylic acid cycle metabolism. In summary, supplementing niacin to high-concentrate diets can significantly improve the growth performance of sheep, improve rumen fermentation and the rumen microbial community structure, and affect rumen metabolites, thus alleviating the symptoms of rumen acidosis.
Collapse
Affiliation(s)
- Zhiqiang Cheng
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
| | - Jiancheng Liu
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
| | - Yingying Yu
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
| | - Wentao Liu
- Xinjiang Ürümqi Rural Revitalization Guidance Service Center, Ürümqi, China
| | - Xiaobin Li
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
| | - Fengming Li
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
| | - Changjiang Zang
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
| | - Kailun Yang
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
| |
Collapse
|
6
|
Hou G, You J, Zhuang Y, Gao D, Xu Y, Jiang W, Li S, Zhao X, Chen T, Zhang S, Liu S, Wang W, Li S, Cao Z. Disorders of acid-base balance promote rumen lipopolysaccharide biosynthesis in dairy cows by modulating the microbiome. Front Microbiol 2024; 15:1492476. [PMID: 39611094 PMCID: PMC11604126 DOI: 10.3389/fmicb.2024.1492476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Introduction Disorders of acid-base balance in the rumen of dairy cows have a significant impact on their health and performance. However, the effect of transient differences in pH on susceptibility to subacute ruminal acidosis (SARA) and lipopolysaccharide (LPS) biosynthesis in dairy cows remains unclear. Methods In this study, milk, serum, and rumen fluid samples from 40 Holstein dairy cows (on d 56 postpartum) with different rumen pH (2-4 h after morning feeding) were explored to investigate the difference of susceptibility to SARA and the correlation between microbiome, LPS and inflammation. These cows were categorized into low pH (LPH, pH ≤ 6.0, n = 20) and high pH (HPH, pH ≥ 6.5, n = 20) groups. Results The results showed that LPH group increased the concentrations of total volatile fatty acids, acetate, propionate, butyrate and valerate. However, milk yield and milk compositions were unaffected. Compared to the HPH group, the LPH group increased the concentrations of serum BHBA, NEFA, LPS, HIS, IL-2, IL-6, TNF-α, and MDA, and decreased the concentrations of serum IgA, IgM, IgG, SOD, T-AOC, and mTOR. In addition, the LPH group decreased the copies of Ruminococcus flavefaciens and increased the copies of Fibrobacter succinogenes. Microbial community analysis isupplendicated a significant difference in bacterial composition between the two groups. At the phylum level, Bacteroidota and Firmicutes were enriched in the LPH and HPH groups, respectively. At the genus level, the dominant bacteria in the LPH group were Prevotella. Additionally, the LPH group increased the proportions of Gram-negative phenotypes, potentially pathogenic phenotypes and LPS biosynthesis. The close correlation between two key enzymes for LPS synthesis LpxL and LpxM with rumen pH, inflammatory markers, and microorganisms indicates that low pH may increase the risk of inflammation by facilitating the lysis of Gram-negative bacteria and the release of penta-acylated LPS. Penta-acylated and hexa-acylated LPS may be mainly derived from Prevotella and Succinivibrionaceae_UCG-001, respectively. Discussion Overall, these results support the notion that transient low pH could reflect the risk of cows suffering from SARA and associated inflammation and is strongly associated with penta-acylated LPS. Our findings provide new insights into ruminant health improvement and disease prevention strategies.
Collapse
Affiliation(s)
- Guobin Hou
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingtao You
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yimin Zhuang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Duo Gao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiming Xu
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wen Jiang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Sumin Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xinjie Zhao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Siyuan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Zhuang Y, Liu S, Gao D, Xu Y, Jiang W, Hou G, Li S, Zhao X, Chen T, Li S, Zhang S, Huang Y, Wang J, Xiao J, Li M, Wang W, Li S, Cao Z. Maternal gastrointestinal microbiome shapes gut microbial function and resistome of newborns in a cow-to-calf model. MICROBIOME 2024; 12:216. [PMID: 39438998 PMCID: PMC11495063 DOI: 10.1186/s40168-024-01943-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND The maternal gut microbiome is the direct and important source of early colonization and development of the neonatal gut microbiome. However, differences in unique and shared features between mothers with different physiological phenotypes and their newborns still lack exhaustive investigation. Here, using a cow-to-calf model, a comprehensive investigation was conducted to elucidate the pattern and characterization of microbial transfer from the maternal source to the offspring. RESULTS The microbiota in the rumen and feces of dairy cows were divided into two clusters via enterotype analysis. The cows from the enterotype distinguished by Prevotella in the rumen had better production performance, whereas no difference was observed in the cows classified by feces enterotype. Furthermore, through a pairwise combination of fecal and ruminal enterotypes, we screened a group of dairy cows with excellent phenotypes. The gastrointestinal microbiomes of cows with different phenotypes and their offspring differed significantly. The rumen was a more important microbial source for meconium than feces. Transmission of beneficial bacteria from mother to offspring was observed. Additionally, the meconium inherits advantageous metabolic functions of the rumen. The resistome features of the rumen, feces, and meconium were consistent, and resistome abundance from cows to calves showed an expanding trend. The interaction between antibiotic-resistance genes and mobile genetic elements from the rumen to meconium was the most remarkable. The diversity of core metabolites from cows to calves was stable and not affected by differences in phenotypes. However, the abundance of specific metabolites varied greatly. CONCLUSIONS Our study demonstrates the microbial taxa, metabolic function, and resistome characteristics of maternal and neonatal microbiomes, and reveals the potential vertical transmission of the microbiome from a cow-to-calf model. These findings provide new insights into the transgenerational transmission pattern of the microbiome. Video Abstract.
Collapse
Affiliation(s)
- Yimin Zhuang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Duo Gao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yiming Xu
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- College of Animal Science, Xinjiang Uygur Autonomous Region 830052, Xinjiang Agricultural University, Urumqi, China
| | - Wen Jiang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- College of Animal Science, Xinjiang Uygur Autonomous Region 830052, Xinjiang Agricultural University, Urumqi, China
| | - Guobin Hou
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Sumin Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xinjie Zhao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shangru Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Siyuan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- College of Animal Science, Xinjiang Uygur Autonomous Region 830052, Xinjiang Agricultural University, Urumqi, China
| | - Yanting Huang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengmeng Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Vieira LV, Savela MFB, Rahal NM, Barbosa AA, Saraiva DR, Del Pino FAB, Rabassa VR, Komninou ER, Brauner CC, Langwinski D, Souza A, Corrêa MN. An assessment on the effects of buffers on the productive, behavioral and metabolic parameters of Holstein dairy cows. Trop Anim Health Prod 2024; 56:255. [PMID: 39240410 DOI: 10.1007/s11250-024-04094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/18/2024] [Indexed: 09/07/2024]
Abstract
This study aimed to evaluate the impact of supplementing sodium bicarbonate or a commercial blend of buffering agents (BBA) comprising calcareous calcitic, magnesium oxide, calcareous algae, and sodium bicarbonate on the productive, behavioral and metabolic parameters of Holstein cows fed starchy diets. Over a 60-day trial period, thirty-six multiparous cows with an average milk yield of 38.84 ± 9.24 kg/day and 63.74 ± 18.63 days in milk (DIM), were randomly divided into two groups. The control group (n = 18) received a supplementation of 1.1% dry matter (DM) of sodium bicarbonate (Raudi®, Totalmix, Brazil), while the BBA group (n = 18) was administered with 0.5% DM of a blend of buffering agents (Equalizer®, Nutron/Cargill, Brazil). The mean values of ruminal pH (control 6.80 ± 0.06 and BBA 6.77 ± 0.06; P > 0.05) and volatile fatty acid (VFA) production (control: acetate 62.63 ± 1.29%, propionate 22.99 ± 1.07%, butyrate 14.30 ± 0.52%; BBA: acetate 63.07 ± 1.32%, propionate 23.47 ± 1.10%, butyrate 13.70 ± 0.57%), were similar (P > 0,05) between the two groups. The value of faecal pH was higher (P < 0.05) in the BBA group (6.25 ± 0.02) than the control group (6.12 ± 0.02). Animals treated with BBA exhibited lower (P < 0,05) dry matter intake (DMI) (24.75 ± 0.64 kg/day), higher feed efficiency (FE) (1.64 ± 0.03), and reduced feeding frequency (52.89 ± 3.73 n°/day) than the control group (DMI, 26.75 ± 0.62 kg/day; FE, 1.50 ± 0.03; feeding frequency, 66.07 ± 3.64 n°/day). Milk production remained similar across both groups (control, 39.11 ± 0.92 kg/day and BBA, 39.87 ± 0.92 kg/day; P > 0.05). Notably, the control group displayed a higher (P < 0,05) concentration of milk protein (1.21 ± 0.05 kg/day) than the BBA (1.18 ± 0.05 kg/day) group. The study concluded that both treatments effectively buffered the rumen and mitigated the risk of ruminal acidosis. Moreover, the higher faecal pH in the BBA-treated group suggests potential intestinal action attributable to the synergistic effects of diverse additives with buffering properties. Despite a reduced DMI, BBA-treated animals exhibited improved FE.
Collapse
Affiliation(s)
- Laura Valadão Vieira
- Center for Research, Teaching and Extension in Animal Science (NUPEEC), Federal University of Pelotas (UFPEL), Pelotas, Rio Grande do Sul, Brazil.
| | - Magna Fabrícia Brasil Savela
- Center for Research, Teaching and Extension in Animal Science (NUPEEC), Federal University of Pelotas (UFPEL), Pelotas, Rio Grande do Sul, Brazil
| | - Natália Machado Rahal
- Center for Research, Teaching and Extension in Animal Science (NUPEEC), Federal University of Pelotas (UFPEL), Pelotas, Rio Grande do Sul, Brazil
| | - Antônio Amaral Barbosa
- Center for Research, Teaching and Extension in Animal Science (NUPEEC), Federal University of Pelotas (UFPEL), Pelotas, Rio Grande do Sul, Brazil
| | - Diego Rodrigues Saraiva
- Center for Research, Teaching and Extension in Animal Science (NUPEEC), Federal University of Pelotas (UFPEL), Pelotas, Rio Grande do Sul, Brazil
| | - Francisco Augusto Burkert Del Pino
- Center for Research, Teaching and Extension in Animal Science (NUPEEC), Federal University of Pelotas (UFPEL), Pelotas, Rio Grande do Sul, Brazil
| | - Viviane Rohrig Rabassa
- Center for Research, Teaching and Extension in Animal Science (NUPEEC), Federal University of Pelotas (UFPEL), Pelotas, Rio Grande do Sul, Brazil
| | - Eliza Rossi Komninou
- Center for Research, Teaching and Extension in Animal Science (NUPEEC), Federal University of Pelotas (UFPEL), Pelotas, Rio Grande do Sul, Brazil
| | - Cássio Cassal Brauner
- Center for Research, Teaching and Extension in Animal Science (NUPEEC), Federal University of Pelotas (UFPEL), Pelotas, Rio Grande do Sul, Brazil
| | - Diego Langwinski
- Center for Research, Teaching and Extension in Animal Science (NUPEEC), Federal University of Pelotas (UFPEL), Pelotas, Rio Grande do Sul, Brazil
| | - Alexandre Souza
- Center for Research, Teaching and Extension in Animal Science (NUPEEC), Federal University of Pelotas (UFPEL), Pelotas, Rio Grande do Sul, Brazil
| | - Marcio Nunes Corrêa
- Center for Research, Teaching and Extension in Animal Science (NUPEEC), Federal University of Pelotas (UFPEL), Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
Guo J, Zhang Z, Guan LL, Yoon I, Plaizier JC, Khafipour E. Postbiotics from Saccharomyces cerevisiae fermentation stabilize microbiota in rumen liquid digesta during grain-based subacute ruminal acidosis (SARA) in lactating dairy cows. J Anim Sci Biotechnol 2024; 15:101. [PMID: 39085941 PMCID: PMC11293205 DOI: 10.1186/s40104-024-01056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/28/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Subacute ruminal acidosis (SARA) is a common metabolic disorder of high yielding dairy cows, and it is associated with dysbiosis of the rumen and gut microbiome and host inflammation. This study evaluated the impact of two postbiotics from Saccharomyces cerevisiae fermentation products (SCFP) on rumen liquid associated microbiota of lactating dairy cows subjected to repeated grain-based SARA challenges. A total of 32 rumen cannulated cows were randomly assigned to 4 treatments from 4 weeks before until 12 weeks after parturition. Treatment groups included a Control diet or diets supplemented with postbiotics (SCFPa, 14 g/d Original XPC; SCFPb-1X, 19 g/d NutriTek; SCFPb-2X, 38 g/d NutriTek, Diamond V, Cedar Rapids, IA, USA). Grain-based SARA challenges were conducted during week 5 (SARA1) and week 8 (SARA2) after parturition by replacing 20% DM of the base total mixed ration (TMR) with pellets containing 50% ground barley and 50% ground wheat. Total DNA from rumen liquid samples was subjected to V3-V4 16S rRNA gene amplicon sequencing. Characteristics of rumen microbiota were compared among treatments and SARA stages. RESULTS Both SARA challenges reduced the diversity and richness of rumen liquid microbiota, altered the overall composition (β-diversity), and its predicted functionality including carbohydrates and amino acids metabolic pathways. The SARA challenges also reduced the number of significant associations among different taxa, number of hub taxa and their composition in the microbial co-occurrence networks. Supplementation with SCFP postbiotics, in particular SCFPb-2X, enhanced the robustness of the rumen microbiota. The SCFP supplemented cows had less fluctuation in relative abundances of community members when exposed to SARA challenges. The SCFP supplementation promoted the populations of lactate utilizing and fibrolytic bacteria, including members of Ruminococcaceae and Lachnospiraceae, and also increased the numbers of hub taxa during non-SARA and SARA stages. Supplementation with SCFPb-2X prevented the fluctuations in the abundances of hub taxa that were positively correlated with the acetate concentration, and α- and β-diversity metrics in rumen liquid digesta. CONCLUSIONS Induction of SARA challenges reduced microbiota richness and diversity and caused fluctuations in major bacterial phyla in rumen liquid microbiota in lactating dairy cows. Supplementation of SCFP postbiotics could attenuate adverse effects of SARA on rumen liquid microbiota.
Collapse
Affiliation(s)
- Junfei Guo
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Zhengxiao Zhang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Present Address: College of Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Le Luo Guan
- Department of Agriculture, Food and Nutrition Department, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Ilkyu Yoon
- Diamond V, Cedar Rapids, IA, 52404, United States
| | - Jan C Plaizier
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Ehsan Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
- Present Address: Cargill Animal Nutrition, 15407 McGinty Road West, Wayzata, MN, 55391, USA.
| |
Collapse
|
10
|
Ran T, Xu Z, Yang W, Liu D, Wu D. Partially substituting alfalfa hay with hemp forage in the diet of goats improved feed efficiency, ruminal fermentation pattern and microbial profiles. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:49-60. [PMID: 38558755 PMCID: PMC10980998 DOI: 10.1016/j.aninu.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 04/04/2024]
Abstract
The use of hemp as a forage source in livestock diets has been less studied because bioactive residues in animal tissues may pose a risk to consumers. This study investigated the effects of partial substitution of alfalfa hay (AH) with hemp forage (HF) in growing goat diets on growth performance, carcass traits, ruminal fermentation characteristics, rumen microbial communities, blood biochemistry, and antioxidant indices. Forty Xiangdong black goats with body weight (BW) 7.82 ± 0.57 kg (mean ± SD) were grouped by BW and randomly assigned into one of the four treatment diets (n = 10/treatment) in a completely randomized design. The goats were fed ad libitum total mixed rations containing 60% forage and 40% concentrate (DM basis). The diets included control (CON; 60% AH and 40% concentrate), 55% AH and 5% HF (HF5), 50% AH and 10% HF (HF10), and 40% AH and 20% HF (HF20). Increasing the substitution of HF for AH linearly decreased (P < 0.01) DM intake and improved feed conversion efficiency. However, final BW, average daily gain, carcass traits, meat quality, and most blood biochemistry indices did not differ among treatments. The ruminal NH3-N concentration and blood urine nitrogen linearly increased (P < 0.01) with increasing substitution rate of HF, whereas the total volatile fatty acids concentration quadratically changed (P < 0.01). Substitution of AH with HF had no effect on the diversity and richness of ruminal microbes, though it linearly decreased (P = 0.040) Prevotella_1 and linearly increased (P = 0.017) Rikenellaceae_RC9_gut_group. The cannabinoids and/or their metabolites were detected in both ruminal filtrates (8) and plasma (4), however, no detectable cannabinoid-related residues were observed in meat. These results indicate that the HF could be used to partially substitute AH in goat diets, whereas the effects vary between substitution rates of HF for AH. Although no cannabinoid-related residues were detected in meat, the presence of cannabinoids residues in blood warrants further study of HF feeding to confirm the cannabinoids residues are not present in the animal products.
Collapse
Affiliation(s)
- Tao Ran
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, Gansu, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou, 730020, Gansu, China
| | - Zhipeng Xu
- Changshu Center for Animal Disease Prevention and Control, Changshu, 215500, Jiangsu, China
| | - Wenzhu Yang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| | - Dalin Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Duanqin Wu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| |
Collapse
|
11
|
Ma N, Guo J, Li Z, Xu L, Zhang K, Xu T, Chang G, Loor JJ, Shen X. Disturbances of Ruminal Microbiota and Liver Inflammation, Mediated by LPS and Histamine, in Dairy Cows Fed a High-Concentrate Diet. Animals (Basel) 2024; 14:1495. [PMID: 38791713 PMCID: PMC11117260 DOI: 10.3390/ani14101495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The ecosystem of ruminal microbiota profoundly affects the health and milk production of dairy cows. High-concentrate diets are widely used in dairy farms and evoke a series of metabolic disorders. Several studies have reported the effects of high-concentrate diets on the ruminal microbiome, while the effect of changes in ruminal microbial flora, induced by high-concentrate diet feeding, on the liver of dairy cows has not been studied before. In this study, 12 mid-lactating Holstein Friesian cows (weight of 455 ± 28 kg; parities of 2.5 ± 0.5; starting milk yield of 31.59 ± 3.2 kg/d; DMI of 21.7 ± 1.1 kg/d; and a DIM at the start of the experiment of 135 ± 28 d) were fitted with ruminal fistulas, as well as with portal and hepatic vein catheters. All cows were randomly divided into 2 groups; then, they fed with low-concentrate diets (LC, concentrate: forage = 40:60) and high-concentrate diets (HC, concentrate: forage = 60:40) for 18 weeks. The forage sources were corn silage and alfalfa hay. After the cows of two groups were euthanized over two consecutive days, ruminal microbiota; the concentration of LPS in the rumen content; cecum content; the levels of blood and histamine in rumen fluid, blood, and the liver; the histopathological status of the rumen and cecum; and the inflammatory response of the liver were assessed in dairy cows under conditions of subacute ruminal acidosis (SARA). These conditions were caused by high-concentrate diet feeding. All data were analyzed using the independent t-test in SPSS. The results showed that high-concentrate diet feeding increased the concentration of LPS and histamine in the rumen and plasma of veins (p < 0.05). The abundance of Bacteroidetes at the phylum level, and of both Bacteroidetes and Saccharibacteria at the genus level, was decreased, while the abundance of Firmicutes at the phylum level and Oscillibacter at the genus level was increased by high-concentrate diet feeding. The decreased pH values of ruminal contents (LC = 6.02, HC = 5.90, p < 0.05) and the increased level of LPS in the rumen (LC = 4.921 × 105, HC = 7.855 × 105 EU/mL, p < 0.05) and cecum (LC = 11.960 × 105, HC = 13.115 × 105 EU/mL, p < 0.01) induced the histopathological destruction of the rumen and cecum, combined with the increased mRNA expression of IL-1β (p < 0.05). The histamine receptor H1R and the NF-κB signaling pathway were activated in the liver samples taken from the HC group. In conclusion, the elevated concentrations of LPS and histamine in the gut may be related to changes in the ruminal microbiota. LPS and histamine induced the inflammatory response in the ruminal epithelium, cecum epithelium, and liver. However, the cause-effect mechanism needs to be proved in future research. Our study offers a novel therapeutic strategy by manipulating ruminal microbiota and metabolism to decrease LPS and histamine release and to improve the health of dairy cows.
Collapse
Affiliation(s)
- Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Junfei Guo
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Zhenfu Li
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Lei Xu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Kai Zhang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Tianle Xu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Juan J. Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| |
Collapse
|
12
|
Law SR, Mathes F, Paten AM, Alexandre PA, Regmi R, Reid C, Safarchi A, Shaktivesh S, Wang Y, Wilson A, Rice SA, Gupta VVSR. Life at the borderlands: microbiomes of interfaces critical to One Health. FEMS Microbiol Rev 2024; 48:fuae008. [PMID: 38425054 PMCID: PMC10977922 DOI: 10.1093/femsre/fuae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
Microbiomes are foundational components of the environment that provide essential services relating to food security, carbon sequestration, human health, and the overall well-being of ecosystems. Microbiota exert their effects primarily through complex interactions at interfaces with their plant, animal, and human hosts, as well as within the soil environment. This review aims to explore the ecological, evolutionary, and molecular processes governing the establishment and function of microbiome-host relationships, specifically at interfaces critical to One Health-a transdisciplinary framework that recognizes that the health outcomes of people, animals, plants, and the environment are tightly interconnected. Within the context of One Health, the core principles underpinning microbiome assembly will be discussed in detail, including biofilm formation, microbial recruitment strategies, mechanisms of microbial attachment, community succession, and the effect these processes have on host function and health. Finally, this review will catalogue recent advances in microbiology and microbial ecology methods that can be used to profile microbial interfaces, with particular attention to multi-omic, advanced imaging, and modelling approaches. These technologies are essential for delineating the general and specific principles governing microbiome assembly and functions, mapping microbial interconnectivity across varying spatial and temporal scales, and for the establishment of predictive frameworks that will guide the development of targeted microbiome-interventions to deliver One Health outcomes.
Collapse
Affiliation(s)
- Simon R Law
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Falko Mathes
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Floreat, WA 6014, Australia
| | - Amy M Paten
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Canberra, ACT 2601, Australia
| | - Pamela A Alexandre
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, St Lucia, Qld 4072, Australia
| | - Roshan Regmi
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Urrbrae, SA 5064, Australia
| | - Cameron Reid
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Urrbrae, SA 5064, Australia
| | - Azadeh Safarchi
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Westmead, NSW 2145, Australia
| | - Shaktivesh Shaktivesh
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Data 61, Clayton, Vic 3168, Australia
| | - Yanan Wang
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Adelaide SA 5000, Australia
| | - Annaleise Wilson
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Geelong, Vic 3220, Australia
| | - Scott A Rice
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture, and Food, Westmead, NSW 2145, Australia
| | - Vadakattu V S R Gupta
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Urrbrae, SA 5064, Australia
| |
Collapse
|
13
|
Zhang Z, Wang L, Li Q, Li F, Ma Z, Li F, Wang Z, Chen L, Yang X, Wang X, Yang G. Effects of dietary forage neutral detergent fiber and rumen degradable starch ratios on chewing activity, ruminal fermentation, ruminal microbes and nutrient digestibility of Hu sheep fed a pelleted total mixed ration. J Anim Sci 2024; 102:skae100. [PMID: 38581217 PMCID: PMC11017508 DOI: 10.1093/jas/skae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/05/2024] [Indexed: 04/08/2024] Open
Abstract
Pelleted total mixed ration (P-TMR) feeding, which has become a common practice in providing nutrition for fattening sheep, requires careful consideration of the balance between forage neutral detergent fiber (FNDF) and rumen degradable starch (RDS) to maintain proper rumen functions. The present study aimed to investigate the effects of the dietary FNDF/RDS ratio (FRR) on chewing activity, ruminal fermentation, ruminal microbes, and nutrient digestibility in Hu sheep fed a P-TMR diet. This study utilized eight ruminally cannulated male Hu sheep, following a 4 × 4 Latin square design with 31 d each period. Diets consisted of four FRR levels: 1.0 (high FNDF/RDS ratio, HFRR), 0.8 (middle high FNDF/RDS ratio, MHFRR), 0.6 (middle low FNDF/RDS ratio, MLFRR), and 0.4 (low FNDF/RDS ratio, LFRR). Reducing the dietary FRR levels resulted in a linear decrease in ruminal minimum pH and mean pH, while linearly increasing the duration and area of pH below 5.8 and 5.6, as well as the acidosis index. Sheep in the HFRR and MHFRR groups did not experience subacute ruminal acidosis (SARA), whereas sheep in another two groups did. The concentration of total volatile fatty acid and the molar ratios of propionate and valerate, as well as the concentrate of lactate in the rumen linearly increased with reducing dietary FRR, while the molar ratio of acetate and acetate to propionate ratio linearly decreased. The degradability of NDF and ADF for alfalfa hay has a quadratic response with reducing the dietary FRR. The apparent digestibility of dry matter, organic matter, neutral detergent fiber, and acid detergent fiber linearly decreased when the dietary FRR was reduced. In addition, reducing the dietary FRR caused a linear decrease in OTUs, Chao1, and Ace index of ruminal microflora. Reducing FRR in the diet increased the percentage of reads assigned as Firmicutes, but it decreased the percentage of reads assigned as Bacteroidetes in the rumen. At genus level, the percentage of reads assigned as Prevotella, Ruminococcus, Succinivibrio, and Butyrivibrio linearly decreased when the dietary FRR was reduced. The results of this study demonstrate that the dietary FRR of 0.8 is crucial in preventing the onset of SARA and promotes an enhanced richness of ruminal microbes and also improves fiber digestibility, which is a recommended dietary FRR reference when formulating P-TMR diets for sheep.
Collapse
Affiliation(s)
- Zhian Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Li Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Qinwu Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Fei Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhiyuan Ma
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zongli Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Liang Chen
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xu Yang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xinji Wang
- Animal Husbandry and Veterinary Station, Minqin 733399, China
| | - Guo Yang
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
14
|
Yi S, Wu H, Liu Y, Dai D, Meng Q, Chai S, Liu S, Zhou Z. Concentrate supplementation improves cold-season environmental fitness of grazing yaks: responsive changes in the rumen microbiota and metabolome. Front Microbiol 2023; 14:1247251. [PMID: 37700865 PMCID: PMC10494446 DOI: 10.3389/fmicb.2023.1247251] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
Yak (Bos grunniens) is an important economic animal species on the Qinghai-Tibet Plateau. Yaks grazed in the cold season often suffer from nutritional stress, resulting in low production performance. This situation can be improved by properly feeding the grazing yaks in the cold season; however, there is still little information about the effect of different feeding levels on the intestinal microflora and metabolites of yaks. Therefore, this study aimed to explore the effect of feeding different doses of concentrate supplements on rumen bacterial communities and metabolites in grazing yaks during the cold season. Feed concentrate supplementation significantly improved the production performance and rumen fermentation status of grazing yaks during the cold season, and switched the type of ruminal fermentation from acetic acid fermentation to propionic acid fermentation. Ruminal fermentation parameters and ruminal bacterial abundance correlated strongly. At the phylum level, the abundance of Firmicutes increased with increasing concentrate supplementation, while the opposite was true for Bacteroidota. At the genus level, the abundance of Christensenellaceae_R-7_group, NK4A214_group, Ruminococcus, norank_f__Eubacterium_coprostanoligenes_group, norank_f__norank_o__ Clostridia_UCG-014, Lachnospiraceae_NK3A20_group, Acetitomaculum, and Family_XIII_AD3011_group increased with increasing concentrate supplementation, while the abundance of Rikenellaceae_RC9_gut_ group decreased. Dietary concentrate supplementation altered the concentration and metabolic mode of metabolites in the rumen, significantly affecting the concentration of metabolites involved in amino acid and derivative metabolism (e.g., L-aspartic acid, L-glutamate, and L-histidine), purine metabolism (e.g., guanine, guanosine, and hypoxanthine), and glycerophospholipid metabolism (e.g., phosphatidate, phosphatidylcholine, and phosphocholine), and other metabolic pathways. The strong correlation between yak rumen microorganisms and metabolites provided a more comprehensive understanding of microbial community composition and function. This study showed significant changes in the composition and abundance of bacteria and metabolites in the rumen of cool season grazing yaks fed with concentrate supplements. Changes in ruminal fermentation parameters and metabolite concentration also showed a strong correlation with ruminal bacterial communities. These findings will be helpful to formulate supplementary feeding strategies for grazing yaks in the cold season from the perspective of intestinal microorganisms.
Collapse
Affiliation(s)
- Simeng Yi
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Wu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yue Liu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongwen Dai
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Qingxiang Meng
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shatuo Chai
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Shujie Liu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Zhenming Zhou
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
High-Grain Diet Feeding Altered Blood Metabolites, Rumen Microbiome, and Metabolomics of Yaks. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Currently, information available on the comprehensive changes in the rumen bacteria and metabolites of yaks fed high-grain diets is limited. This study aimed to investigate the effects of high-grain diet feeding on the blood metabolites, rumen microbiome, and metabolomics of yaks by using 16S rDNA gene sequencing and liquid chromatography–mass spectrometry (LC/MS). Here, fourteen healthy male yaks (body weight, 249.61 ± 8.13 kg) were randomly assigned to two different diets: a hay diet (0% grain, CON, n = 7), or a high-grain diet (70% grain, HG, n = 7). At the 74th day of treatment, blood and ruminal fluid samples were collected for the blood metabolites, rumen microbiome, and metabolomics analyses. The HG diet increased lipopolysaccharides (LPS), aspartate aminotransferase (AST), gamma-glutamyltransferase (GGT), haptoglobin (HPT), serum amyloid-A (SAA), interleukin-1β (IL1-β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) serum concentrations (p < 0.05). Compared with the CON diet, the HG diet decreased rumen pH (p < 0.05), and increased total volatile fatty acids concentration, and proportion of butyrate (p < 0.05). The relative abundance of Firmicutes and Saccharibacteria were higher (p < 0.05), while Bacteroidetes was lower (p < 0.05) in the HG group than those in the CON group. At the genus level, the relative abundance of Christensenelaceae_R-7_group, Ruminococcaceae_NK4A214_group, Lachnospiraceae_NK3A20_group, and Acetitomaculum were higher than in those in the HG diet (p < 0.05). Compared with the CON group, the HG diet increased the concentrations of biogenic amines (histamine, tyramine, and putrescine), common amino acids (phenylalanine, threonine, serine, etc.), and arachidonic acid (prostaglandin H2, prostaglandin E2, 12(S)-HPETE, etc.). Collectively, these findings demonstrate that the HG diet altered the microbiota and metabolites, as well as potentially damaged their rumen health and induced inflammation in yaks.
Collapse
|
16
|
Gut microbiota-mediated secondary bile acid alleviates Staphylococcus aureus-induced mastitis through the TGR5-cAMP-PKA-NF-κB/NLRP3 pathways in mice. NPJ Biofilms Microbiomes 2023; 9:8. [PMID: 36755021 PMCID: PMC9908919 DOI: 10.1038/s41522-023-00374-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Although emerging evidence shows that gut microbiota-mediated metabolic changes regulate intestinal pathogen invasions, little is known about whether and how gut microbiota-mediated metabolites affect pathogen infection in the distal organs. In this study, untargeted metabolomics was performed to identify the metabolic changes in a subacute ruminal acidosis (SARA)-associated mastitis model, a mastitis model with increased susceptibility to Staphylococcus aureus (S. aureus). The results showed that cows with SARA had reduced cholic acid (CA) and deoxycholic acid (DCA) levels compared to healthy cows. Treatment of mice with DCA, but not CA, alleviated S. aureus-induced mastitis by improving inflammation and the blood-milk barrier integrity in mice. DCA inhibited the activation of NF-κB and NLRP3 signatures caused by S. aureus in the mouse mammary epithelial cells, which was involved in the activation of TGR5. DCA-mediated TGR5 activation inhibited the NF-κB and NLRP3 pathways and mastitis caused by S. aureus via activating cAMP and PKA. Moreover, gut-dysbiotic mice had impaired TGR5 activation and aggravated S. aureus-induced mastitis, while restoring TGR5 activation by spore-forming bacteria reversed these changes. Furthermore, supplementation of mice with secondary bile acids producer Clostridium scindens also activated TGR5 and alleviated S. aureus-induced mastitis in mice. These results suggest that impaired secondary bile acid production by gut dysbiosis facilitates the development of S. aureus-induced mastitis and highlight a potential strategy for the intervention of distal infection by regulating gut microbial metabolism.
Collapse
|
17
|
Zhang J, Yang Y, Lei X, Wang Y, Li Y, Li Z, Yao J. Active dry yeast supplementation benefits ruminal fermentation, bacterial community, blood immunoglobulins, and growth performance in young dairy goats, but not for intermittent supplementation. ANIMAL NUTRITION 2023; 13:289-301. [PMID: 37168451 PMCID: PMC10165222 DOI: 10.1016/j.aninu.2023.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 01/10/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023]
Abstract
This study evaluated the effects of active dry yeast (ADY) supplementation and supplementation strategies on ruminal fermentation, bacterial community, blood metabolites, and growth performance in young dairy goats. Sixty young female Guanzhong dairy goats of similar age (4.00 ± 0.50 months) and BW (19.65 ± 0.41 kg) were randomly divided into 3 groups (n = 20): (1) basal diet group (CON); (2) basal diet continuously supplemented with 3.0 g/goat per day commercial ADY (a proprietary strain of Saccharomyces cerevisiae with 5.0 × 109 cfu/g) group (CSY); (3) basal diet with intermittently supplemented ADY group (ISY; 5 d supplementation with ADY at 4.5 g/goat per day following 5 d of no supplementation). The experiment lasted 67 d with the first 7 d as an adaptive period. Rumen fluid and blood samples were collected bi-weekly. Data were analyzed using the MIXED procedure combined with the SLICE option in SAS. Specific orthogonal contrasts of ADY vs. CON and CSY vs. ISY were also analyzed. During the experimental period, ADY supplementation resulted in greater DMI (P = 0.03), ruminal acetate proportion (P < 0.01) and acetylesterase activity (P = 0.01), and blood contents of glucose (P = 0.01) and IgM (P = 0.02) and tended to have greater ADG (P = 0.05) and paunch girth (P = 0.06) than the CON, despite the propionate proportion (P = 0.03) and contents of total protein (P = 0.04) and IgA (P = 0.03) being lower. The lower ruminal NH3-N (P < 0.01) and blood urea nitrogen (P = 0.07) contents indicated greater nitrogen utilization with ADY supplementation. ADY supplementation showed persistent effects after it was stopped because the BW at 12 months of age (P = 0.03) and birth weight of lambs (P = 0.02) were greater than the CON. However, the ISY did not show those benefits and had significantly lower relative abundances of fiber-degrading related bacteria than the CSY. In conclusion, ADY supplementation, especially continuously supplemented, may enhance ADG and ADG:DMI ratio by improving DMI, ruminal cellulolytic bacteria abundance and enzyme activity, nitrogen utilization, and immune status. These findings provide a theoretical basis for the rational application of ADY and have important practical implications for the design of nutritional strategies in growing dairy goats.
Collapse
|
18
|
Wu Q, Chen H, Zhang F, Wang W, Xiong F, Liu Y, Lv L, Li W, Bo Y, Yang H. Cysteamine Supplementation In Vitro Remarkably Promoted Rumen Fermentation Efficiency towards Propionate Production via Prevotella Enrichment and Enhancing Antioxidant Capacity. Antioxidants (Basel) 2022; 11:antiox11112233. [PMID: 36421419 PMCID: PMC9686782 DOI: 10.3390/antiox11112233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Cysteamine (CS) is a vital antioxidant product and nutritional regulator that improves the productive performance of animals. A 2 × 4 factorial in vitro experiment was performed to determine the effect of the CS supplementation levels of 0, 20, 40, and 60 mg/g, based on substrate weight, on the ruminal fermentation, antioxidant capacity, and microorganisms of a high-forage substrate (HF, forage:corn meal = 7:3) in the Statistical Analysis System Institute. After 48 h of incubation, the in vitro dry matter disappearance and gas production in the LF group were higher when compared with a low-forage substrate (LF, forge hay:corn meal = 3:7), which was analyzed via the use of the MIXED procedure of the HF group, and these increased linearly with the increasing CS supplementation (p < 0.01). With regard to rumen fermentation, the pH and acetate were lower in the LF group compared to the HF group (p < 0.01). However, the ammonia N, microbial crude protein, total volatile fatty acids (VFA), and propionate in the LF group were greater than those in the HF group (p < 0.05). With the CS supplementation increasing, the pH, ammonia N, acetate, and A:P decreased linearly, while the microbial crude protein, total VFA, and propionate increased linearly (p < 0.01). Greater antioxidant capacity was observed in the LF group, and the increasing CS supplementation linearly increased the superoxide dismutase, catalase, glutathione peroxidase, total antioxidant capacity, glutathione, and glutathione reductase, while it decreased the malondialdehyde (p < 0.05). No difference occurred in the ruminal bacteria alpha diversity with the increasing CS supplementation, but it was higher in the LF group than in the HF group (p < 0.01). Based on the rumen bacterial community, a higher proportion of Bacteroidota, instead of Firmicutes, was in the LF group than in the HF group. Furthermore, increasing the CS supplementation linearly increased the relative abundance of Prevotella, norank_f_F082, and Prevotellaceae_UCG-001 under the two substrates (p < 0.05). Prevotella, norank_f_F082, and Prevotellaceae_UCG-001 were positively correlated with gas production, rumen fermentation, and antioxidant capacity in a Spearman correlation analysis (r > 0.31, p < 0.05). Overall, a CS supplementation of not less than 20 mg/g based on substrate weight enhanced the rumen fermentation and rumen antioxidant capacity of the fermentation system, and it guided the rumen fermentation towards glucogenic propionate by enriching the Prevotella in Bacteroidetes.
Collapse
Affiliation(s)
- Qichao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
| | - Hewei Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
| | - Fan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
| | - Weikang Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
| | - Fengliang Xiong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
| | - Yingyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
| | - Liangkang Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
| | - Wenjuan Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
| | - Yukun Bo
- Animal Husbandry Technology Promotion Institution of Zhangjiakou, Zhangjiakou 075000, China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
- Correspondence:
| |
Collapse
|
19
|
Effects of Solid-State Fermentation Pretreatment with Single or Dual Culture White Rot Fungi on White Tea Residue Nutrients and In Vitro Rumen Fermentation Parameters. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fermentation of agricultural by-products by white rot fungi is a research hotspot in the development of ruminant feed resources. The aim of this study was to investigate the potential of the nutritional value and rumen fermentation properties of white tea residue fermented at different times, using single and dual culture white rot fungal species. Phanerochaete chrysosporium, Pleurotus ostreatus, and Phanerochaete chrysosporium + Pleurotus ostreatus (dual culture) solid-state fermented white tea residue was used for 4 weeks, respectively. The crude protein content increased significantly in all treatment groups after 4 weeks. Total extractable tannin content was significantly decreased in all treatment groups (p < 0.01). P. chrysosporium and dual culture significantly reduced lignin content at 1 week. The content of NH3-N increased in each treatment group (p < 0.05). P. chrysosporium treatment can reduce the ratio of acetic to propionic and improve digestibility. Solid state fermentation of white tea residue for 1 week using P. chrysosporium was the most desirable.
Collapse
|
20
|
Mao YH, Xu Y, Song F, Wang ZM, Li YH, Zhao M, He F, Tian Z, Yang Y. Protective effects of konjac glucomannan on gut microbiome with antibiotic perturbation in mice. Carbohydr Polym 2022; 290:119476. [DOI: 10.1016/j.carbpol.2022.119476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/03/2022] [Accepted: 04/07/2022] [Indexed: 01/12/2023]
|
21
|
Pech-Cervantes AA, Ferrarretto LF, Ogunade IM. Meta-analysis of the effects of the dietary application of exogenous alpha-amylase preparations on performance, nutrient digestibility, and rumen fermentation of lactating dairy cows. J Anim Sci 2022; 100:skac189. [PMID: 35589551 PMCID: PMC9387633 DOI: 10.1093/jas/skac189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/17/2022] [Indexed: 11/14/2022] Open
Abstract
Several studies have evaluated the effects of the dietary application of exogenous alpha-amylase preparations (AMA) as a strategy to increase total tract starch digestibility (TTSD) and milk yield (MY) in dairy cows, but the results have been inconsistent. Thus, the objective of this study was to evaluate the effects of the dietary application of AMA on the performance, digestibility, and rumen fermentation of lactating dairy cows using a meta-analytic method. A total of 18 peer-reviewed manuscripts (N = 32 treatment comparisons) from 2003 to 2019 were systematically identified following the PRISMA method. The weighted raw mean differences between dietary AMA and control treatments were compared with a robust variance estimation. Likewise, diet characteristics like crude protein (CP) content, NDF content, starch content, days in milk (DIM), experimental design (Latin square and continuous), and AMA dose (0 to 732 Kilo Novo units [KNU]/kg TMR) were used as covariates in a meta-regression, subgrouping, and dose-response analysis. Compared to the control, dietary AMA increased (P < 0.05) DM digestibility (69.32% vs. 68.30%), TTSD (94.62% vs. 94.10%), milk protein concentration and yield (3.11% vs. 3.08%; 1.14 vs. 1.10 kg/d) and tended to increase (P = 0.09) fat-corrected milk (35.96 vs. 35.10 kg/d), but no effects were observed on DM intake (22.99 vs. 22.90 kg/d) and feed efficiency (1.50 vs. 1.48). Dietary AMA tended (P = 0.10) to reduce rumen pH (6.27 vs. 6.30). Both the enzyme dose and DIM strongly influenced (P < 0.05) the effects of AMA on digestibility and performance. The dose-response analysis revealed that feeding 600 KNU/kg to high-producing early lactation (< 70 DIM) dairy cows increased FCM and milk protein. Accounting for the type of experimental design was associated with a lower between-studies-variance among comparisons. Overall, this meta-analysis supports the hypothesis that dietary AMA supplementation is associated with a better lactational performance in dairy cows. However, these effects are only suitable for high-producing early lactation dairy cows.
Collapse
Affiliation(s)
| | - Luiz F Ferrarretto
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Ibukun M Ogunade
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
22
|
Fu Y, He Y, Xiang K, Zhao C, He Z, Qiu M, Hu X, Zhang N. The Role of Rumen Microbiota and Its Metabolites in Subacute Ruminal Acidosis (SARA)-Induced Inflammatory Diseases of Ruminants. Microorganisms 2022; 10:1495. [PMID: 35893553 PMCID: PMC9332062 DOI: 10.3390/microorganisms10081495] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022] Open
Abstract
Subacute ruminal acidosis (SARA) is a common metabolic disease in ruminants. In the early stage of SARA, ruminants do not exhibit obvious clinical symptoms. However, SARA often leads to local inflammatory diseases such as laminitis, mastitis, endometritis and hepatitis. The mechanism by which SARA leads to inflammatory diseases is largely unknown. The gut microbiota is the totality of bacteria, viruses and fungi inhabiting the gastrointestinal tract. Studies have found that the gut microbiota is not only crucial to gastrointestinal health but also involved in a variety of disease processes, including metabolic diseases, autoimmune diseases, tumors and inflammatory diseases. Studies have shown that intestinal bacteria and their metabolites can migrate to extraintestinal distal organs, such as the lung, liver and brain, through endogenous pathways, leading to related diseases. Combined with the literature, we believe that the dysbiosis of the rumen microbiota, the destruction of the rumen barrier and the dysbiosis of liver function in the pathogenesis of SARA lead to the entry of rumen bacteria and/or metabolites into the body through blood or lymphatic circulation and place the body in the "chronic low-grade" inflammatory state. Meanwhile, rumen bacteria and/or their metabolites can also migrate to the mammary gland, uterus and other organs, leading to the occurrence of related inflammatory diseases. The aim of this review is to describe the mechanism by which SARA causes inflammatory diseases to obtain a more comprehensive and profound understanding of SARA and its related inflammatory diseases. Meanwhile, it is also of great significance for the joint prevention and control of diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.F.); (Y.H.); (K.X.); (C.Z.); (Z.H.); (M.Q.)
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.F.); (Y.H.); (K.X.); (C.Z.); (Z.H.); (M.Q.)
| |
Collapse
|
23
|
Yi S, Dai D, Wu H, Chai S, Liu S, Meng Q, Zhou Z. Dietary Concentrate-to-Forage Ratio Affects Rumen Bacterial Community Composition and Metabolome of Yaks. Front Nutr 2022; 9:927206. [PMID: 35911107 PMCID: PMC9329686 DOI: 10.3389/fnut.2022.927206] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/13/2022] [Indexed: 01/02/2023] Open
Abstract
Changes in dietary composition affect the rumen microbiota in ruminants. However, information on the effects of dietary concentrate-to-forage ratio changes on yak rumen bacteria and metabolites is limited. This study characterized the effect of three different dietary concentrate-to-forage ratios (50:50, C50 group; 65:35, C65 group; 80:20, C80 group) on yak rumen fluid microbiota and metabolites using 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS) analyses. Rumen fermentation parameters and the abundance of rumen bacteria were affected by changes in the dietary concentrate-to-forage ratio, and there was a strong correlation between them. At the genus level, higher relative abundances of norank_f__F082, NK4A214_group, Lachnospiraceae_NK3A20_group, Acetitomaculum, and norank_f__norank_o__Clostridia_UCG-014 were observed with a high dietary concentrate-to-forage ratio (P < 0.05). Combined metabolomic and enrichment analyses showed that changes in the dietary concentrate-to-forage ratio significantly affected rumen metabolites related to amino acid metabolism, protein digestion and absorption, carbohydrate metabolism, lipid metabolism, and purine metabolism. Compared with the C50 group, 3-methylindole, pantothenic acid, D-pantothenic acid, and 20-hydroxy-leukotriene E4 were downregulated in the C65 group, while spermine and ribose 1-phosphate were upregulated. Compared to the C50 group, Xanthurenic acid, tyramine, ascorbic acid, D-glucuronic acid, 6-keto-prostaglandin F1a, lipoxin B4, and deoxyadenosine monophosphate were upregulated in the C80 group, while 3-methylindole and 20-hydroxy-leukotriene E4 were downregulated. All metabolites (Xanthurenic acid, L-Valine, N-Acetyl-L-glutamate 5-semialdehyde, N-Acetyl-L-glutamic acid, Tyramine, 6-Keto-prostaglandin F1a, Lipoxin B4, Xanthosine, Thymine, Deoxyinosine, and Uric acid) were upregulated in the C80 group compared with the C65 group. Correlation analysis of microorganisms and metabolites provided new insights into the function of rumen bacteria, as well as a theoretical basis for formulating more scientifically appropriate feeding strategies for yak.
Collapse
Affiliation(s)
- Simeng Yi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongwen Dai
- Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Hao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shatuo Chai
- Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Shujie Liu
- Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Qingxiang Meng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenming Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zhenming Zhou,
| |
Collapse
|
24
|
Nowak B, Moniuszko-Szajwaj B, Skorupka M, Puchalska J, Kozłowska M, Bocianowski J, Kołodziejski PA, Szumacher-Strabel M, Patra AK, Stochmal A, Cieslak A. Effect of Paulownia Leaves Extract Levels on In Vitro Ruminal Fermentation, Microbial Population, Methane Production, and Fatty Acid Biohydrogenation. Molecules 2022; 27:4288. [PMID: 35807533 PMCID: PMC9268131 DOI: 10.3390/molecules27134288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Paulownia is a fast-growing tree that produces a huge mass of leaves as waste that can be used as a feed source for ruminants. The previous study showed that phenolic compounds were the most active biological substances in Paulownia leaves, which affected the ruminal parameters and methane concentration. However, there are no scientific reports on the Paulownia leaves extract (PLE) containing phenolic compounds for their mode of action in the rumen. Phenolics constituted the main group of bioactive compounds in PLE (84.4 mg/g dry matter). PLE lowered the concentration of ammonia, modulated the VFA profile in the ruminal fluid, and decreased methane production. The PLE caused a significant reduction of in vitro dry matter degradability, reduced the number of methanogens and protozoa, and affected selected bacteria populations. PLE had a promising effect on the fatty acid profile in the ruminal fluid. Paulownia as a new dietary component or its extract as a feed additive may be used to mitigate ruminal methanogenesis, resulting in environmental protection and reducing ruminal biohydrogenation, improving milk and meat quality.
Collapse
Affiliation(s)
- Bogumiła Nowak
- Department of Animal Nutrition, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland; (B.N.); (M.S.); (J.P.); (M.K.); (M.S.-S.)
| | - Barbara Moniuszko-Szajwaj
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland; (B.M.-S.); (A.S.)
| | - Maria Skorupka
- Department of Animal Nutrition, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland; (B.N.); (M.S.); (J.P.); (M.K.); (M.S.-S.)
| | - Julia Puchalska
- Department of Animal Nutrition, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland; (B.N.); (M.S.); (J.P.); (M.K.); (M.S.-S.)
| | - Martyna Kozłowska
- Department of Animal Nutrition, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland; (B.N.); (M.S.); (J.P.); (M.K.); (M.S.-S.)
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland;
| | - Paweł Antoni Kołodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland;
| | - Małgorzata Szumacher-Strabel
- Department of Animal Nutrition, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland; (B.N.); (M.S.); (J.P.); (M.K.); (M.S.-S.)
| | - Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, 37 K. B. Sarani, Kolkata 700037, India;
| | - Anna Stochmal
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland; (B.M.-S.); (A.S.)
| | - Adam Cieslak
- Department of Animal Nutrition, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland; (B.N.); (M.S.); (J.P.); (M.K.); (M.S.-S.)
| |
Collapse
|
25
|
Dietary Cysteamine Supplementation Remarkably Increased Feed Efficiency and Shifted Rumen Fermentation toward Glucogenic Propionate Production via Enrichment of Prevotella in Feedlot Lambs. Microorganisms 2022; 10:microorganisms10061105. [PMID: 35744623 PMCID: PMC9227252 DOI: 10.3390/microorganisms10061105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/23/2022] Open
Abstract
Cysteamine (CS) is an essential nutritional regulator that improves the productive performance of animals by regulating somatotropic hormone secretion. To investigate the fattening potential and effects of CS on rumen microbial fermentation, 48 feedlot lambs were randomly assigned to four groups and fed diets supplemented with different CS concentrations (0, 20, 40, and 60 mg/kg BW). An increase in dietary CS concentrations linearly increased the average daily gain (ADG) and dry matter intake (p < 0.05) but decreased the feed-to-gain ratio (p < 0.01). For the serum hormone, increasing the dietary CS concentration linearly decreased somatostatin and leptin concentration (p < 0.01) but linearly increased the concentration of growth hormone and insulin-like growth factor 1 (p < 0.01). Regarding rumen fermentation, ruminal pH, ammonia-N, and butyrate content did not differ among the four treatments, although dietary CS supplementation linearly increased microbial protein and propionate and decreased the amount of acetate (p < 0.05). Furthermore, an increase in dietary CS concentrations quadratically decreased the estimated methane production and methane production per kg ADG (p < 0.05). High-throughput sequencing revealed that increased dietary CS concentrations quadratically increased Prevotella (p < 0.05), and Prevotella and norank_f__norank_o__Clostridia_UCG-014 were positively correlated with growth performance and rumen fermentation in a Spearman correlation analysis (r > 0.55, p < 0.05). Overall, a CS concentration higher than 20 mg/kg BW produced growth-promoting effects by inhibiting somatostatin concentrations and shifting the rumen toward glucogenic propionate fermentation by enriching Prevotella. In addition, Prevotella and norank_f__norank_o__Clostridia_UCG-014 were positively correlated with growth performance in lambs.
Collapse
|