1
|
Suriyapha C, Pongsub S, Sommai S, Phupaboon S, Dagaew G, Muslykhah U, Matra M, Chanthakhoun V, Haitook T, Wanapat M. In vitro fermentation characteristics, microbial changes and gas production of microencapsulated phytonutrient pellets at varying dietary crude protein levels. Sci Rep 2025; 15:11214. [PMID: 40175499 PMCID: PMC11965323 DOI: 10.1038/s41598-025-95748-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/24/2025] [Indexed: 04/04/2025] Open
Abstract
The objective of this study was to investigate the influence of crude protein (CP) levels combined with the supplementation of a microencapsulated phytonutrients pellet made from a mixture of lemongrass and dragon fruit peel (MiEn-LEDRAGON) on gas production, degradability, fermentation characteristics, and microbial diversity using the in vitro gas technique. A 4 × 2 factorial arrangement in a completely randomized design (CRD) was used in this study, with four levels of CP in the concentrate diet (10, 12, 14, and 16% dry matter; DM) combined with two levels of MiEn-LEDRAGON supplementation (0 and 3% in the total DM substrate). The results of this study demonstrated that there were no interaction effects between CP levels and MiEn-LEDRAGON supplementation on gas production, degradability, fermentation characteristics, end-product formation, or microbial dynamics (p > 0.05). Additionally, increasing CP levels in the concentrate diet had no effect on cumulative gas production, gas kinetics, in vitro degradability, volatile fatty acids (VFA), or methane (CH4) production (p > 0.05), but it did enhance in vitro pH and ammonia-nitrogen (NH3-N), as well as increase the number of Fibrobacter succinogenes at 24 h (h) of incubation time (p < 0.05). Meanwhile, the study revealed higher cumulative gas production, degradability, NH3-N, pH values, total VFA at 24 h of incubation, proportions of propionate (C3) at 12 and 24 h of incubation, and butyrate (C4) at 12 h of incubation, as well as increased numbers of F. succinogenes, Butyrivibrio fibrisolvens, and Butyrivibrio proteoclasticus at 12 h of incubation when supplemented with 3% MiEn-LEDRAGON in the total DM substrate (p < 0.05). It also decreased the proportion of acetate (C2), CH4 production, and the populations of methanogens (Methanobacteriales) and Ruminococcus species (Ruminococcus albus and Ruminococcus flavefaciens) (p < 0.05). In summary, this study found that increasing CP levels in the concentrate diet did not negatively affect gas production, fermentation characteristics, end-product formation, or microbial dynamics. Moreover, MiEn-LEDRAGON supplementation could serve as an effective rumen-enhancing feed additive rich in phytonutrients for ruminants while also mitigating ruminal CH4 production.
Collapse
Affiliation(s)
- Chaichana Suriyapha
- Department of Animal Science, Faculty of Agriculture, Tropical Feed Resources Research and Development Center (TROFREC), Khon Kaen University, Khon Kaen, Thailand
| | - Sunisa Pongsub
- Department of Animal Science, Faculty of Agriculture, Tropical Feed Resources Research and Development Center (TROFREC), Khon Kaen University, Khon Kaen, Thailand
| | - Sukruthai Sommai
- Department of Animal Science, Faculty of Agriculture, Tropical Feed Resources Research and Development Center (TROFREC), Khon Kaen University, Khon Kaen, Thailand
| | - Srisan Phupaboon
- Department of Animal Science, Faculty of Agriculture, Tropical Feed Resources Research and Development Center (TROFREC), Khon Kaen University, Khon Kaen, Thailand
| | - Gamonmas Dagaew
- Department of Animal Science, Faculty of Agriculture, Tropical Feed Resources Research and Development Center (TROFREC), Khon Kaen University, Khon Kaen, Thailand
| | - Uswatun Muslykhah
- Department of Animal Science, Faculty of Agriculture, Tropical Feed Resources Research and Development Center (TROFREC), Khon Kaen University, Khon Kaen, Thailand
| | - Maharach Matra
- Division of Animal Science, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham, Thailand
| | - Vongpasith Chanthakhoun
- Department of Animal Science, Faculty of Agriculture and Forest Resource, Souphanouvong University, Luang Prabang, Lao PDR
| | - Theerachai Haitook
- Department of Animal Science, Faculty of Agriculture, Tropical Feed Resources Research and Development Center (TROFREC), Khon Kaen University, Khon Kaen, Thailand.
| | - Metha Wanapat
- Department of Animal Science, Faculty of Agriculture, Tropical Feed Resources Research and Development Center (TROFREC), Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
2
|
Mao K, Lu G, Zang Y, Qiu Q, Zhao X, Ouyang K, Qu M, Li Y. Hydrogen-rich water 400ppb as a potential strategy for improving ruminant nutrition and mitigating methane emissions. BMC Microbiol 2024; 24:469. [PMID: 39528942 PMCID: PMC11555914 DOI: 10.1186/s12866-024-03638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
The objective of this study was to evaluate the effects of different concentrations of hydrogen-rich water (HRW) on in vitro rumen fermentation characteristics and the dynamics of bacterial communities. The experiment included four treatment groups: a control (CON) and hydrogen-rich water (HRW) at 200, 400, and 800 ppb. Each group was analyzed at 12-hour (h) and 48-hour (h) time points with five replicates, totaling 40 samples. The experimental results highlighted the HRW800ppb group as the top production in terms of gas production and CH4 content. In contrast, the HRW200ppb group exhibited significantly lower methane levels at both 12 h and 48 h (P < 0.05). Regarding rumen fermentation, the HRW400ppb group significantly increased the levels of ammonia nitrogen (NH3-N) and microbial crude protein (MCP) at 12 h fermentation, but reduced the dry matter degradation rate (P < 0.05). After 48 h, the HRW400ppb group had highest MCP content (P < 0.05), but no significant differences in NH3-N and dry matter degradation rate compared with the CON group (P > 0.05). Although HRW did not significantly benefit the synthesis of total volatile fatty acids (TVFA) and individual VFA, the HRW800ppb group significantly increased the ratio of acetate to propionate (P < 0.05). Based on CH4 emissions and MCP synthesis, we selected the HRW400ppb group for subsequent bacterial community analysis. Bacterial community analysis showed that at 12 h, compared with the CON group, the Bacterial community analysis revealed that the HRW400ppb group had significant increases in the Simpson index, Firmicutes, Streptococcus, Schwartzia, Prevotellaceae_YAB2003_group, and Oribacterium, and decreases in Prevotella, Ruminobacter, Succinivibrio, unclassified_Succinivibrionaceae, and Prevotellaceae_UCG-003 (P < 0.05). At 48 h, the Prevotellaceae_YAB2003_group and Oribacterium abundances continued to rise significantly, while Rikenellaceae_RC9_gut_group and Succiniclasticum abundances fell in the HRW400ppb group (P < 0.05). Correlation analysis indicated a negative link between CH4 and Streptococcus, and a positive correlation between the abundance of Rikenellaceae_RC9_gut_group and CH4. Collectively, these results indicate that HRW can modulate rumen fermentation and microbial community structure to reduce methane emissions without significantly affecting VFA synthesis, highlighting its potential as drinking water for enhancing ruminant nutrition and mitigating the environmental impact of livestock farming.
Collapse
Affiliation(s)
- Kang Mao
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guwei Lu
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yitian Zang
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qinghua Qiu
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xianghui Zhao
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Kehui Ouyang
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yanjiao Li
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
3
|
Du C, Zhu La ALT, Gao S, Gao W, Ma L, Bu D, Zhang W. Hepatic Transcriptome Reveals Potential Key Genes Contributing to Differential Milk Production. Genes (Basel) 2024; 15:1229. [PMID: 39336820 PMCID: PMC11431119 DOI: 10.3390/genes15091229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Despite the widespread adoption of TMR or PMR and the formulas designed to sufficiently cover the cows' requirements, individual dairy cows' milk production varies significantly. The liver is one of the most important organs in cow lactation metabolism and plays an essential role in the initiation of lactation. OBJECTIVES This study aimed to investigate the potential key genes in the liver contributing to the different milk production. METHODS We enrolled 64 cows and assigned them to high or low milk yield (MY) groups according to their first 3 weeks of milk production. We performed RNAseq for 35 liver samples with 18 from prepartum and 17 from postpartum cows. RESULTS The continuous milk yield observation showed a persistently higher milk yield in high MY cows than low MY cows in the first 3 weeks. High MY cows showed better feed conversion efficiency. We identified 795 differentially expressed genes (DGEs) in the liver of high MY cows compared with low MY cows, with up-regulated genes linked to morphogenesis and development pathways. Weighted gene co-expression network analysis (WGCNA) revealed four gene modules positively correlating with milk yield, and protein and lactose yield (p < 0.05). Using the intersected genes between the four gene modules and DEGs, we constructed the linear mixed-effects models and identified six hub genes positively associated and two hub genes negatively associated with milk yield (Coefficients > 0.25, p < 0.05). Random forest machine learning model training based on these eight hub genes could efficiently predict the milk yield (p < 0.001, R2 = 0.946). Interestingly, the expression patterns of these eight hub genes remained remarkably similar before and after parturition. CONCLUSIONS The present study indicated the critical role of liver in milk production. Activated processes involved in morphogenesis and development in liver may contribute to the higher milk production. Eight hub genes identified in this study may provide genetic research materials for dairy cow breeding.
Collapse
Affiliation(s)
- Chao Du
- College of Animal Science and Technology, Shihezi University, Shihezi 271018, China;
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - A La Teng Zhu La
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | - Shengtao Gao
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010018, China; (S.G.); (W.G.)
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - Wenshuo Gao
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010018, China; (S.G.); (W.G.)
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - Lu Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 271018, China;
| |
Collapse
|
4
|
Suriyapha C, Phupaboon S, Dagaew G, Sommai S, Matra M, Prachumchai R, Haitook T, Wanapat M. In vitro fermentation end-products and rumen microbiome as influenced by microencapsulated phytonutrient pellets (LEDRAGON) supplementation. Sci Rep 2024; 14:14425. [PMID: 38910145 PMCID: PMC11194279 DOI: 10.1038/s41598-024-59697-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/15/2024] [Indexed: 06/25/2024] Open
Abstract
The objective of this study was to investigate the effect of microencapsulated bioactive compounds from lemongrass mixed dragon fruit peel pellet (MiEn-LEDRAGON) supplementation on fermentation characteristics, nutrient degradability, methane production, and the microbial diversity using in vitro gas production technique. The study was carried out using a completely randomized design (CRD) with five levels of MiEn-LEDRAGON supplementation at 0, 1, 2, 3, and 4% of the total dry matter (DM) substrate. Supplementation of MiEn-LEDRAGON in the diet at levels of 3 or 4% DM resulted in increased (p < 0.05) cumulative gas production at 96 hours (h) of incubation time, reaching up to 84.842 ml/ 0.5 g DM. Furthermore, supplementation with 3% MiEn-LEDRAGON resulted in higher in vitro nutrient degradability and ammonia-nitrogen concentration at 24 h of the incubation time when compared to the control group (without supplementation) by 5.401% and 11.268%, respectively (p < 0.05). Additionally, supplementation with MiEn-LEDRAGON in the diet led to an increase in the population of Fibrobacter succinogenes at 24 h and Butyrivibrio fibrisolvens at 12 h, while decreasing the population of Ruminococcus albus, Ruminococcus flavefaciens, and Methanobacteriales (p < 0.05). Moreover, supplementation of MiEn-LEDRAGON in the diet at levels of 2 to 4% DM resulted in a higher total volatile fatty acids (VFA) at 24 h, reaching up to 73.021 mmol/L (p < 0.05). Additionally, there was an increased proportion of propionic acid (C3) and butyric acid (C4) at 12 h (p < 0.05). Simultaneously, there was a decrease in the proportion of acetic acid (C2) and the ratio of acetic acid to propionic acid (C2:C3), along with a reduction of methane (CH4) production by 11.694% when comparing to the 0% and 3% MiEn-LEDRAGON supplementation (p < 0.05). In conclusion, this study suggests that supplementing MiEn-LEDRAGON at 3% of total DM substrate could be used as a feed additive rich in phytonutrients for ruminants.
Collapse
Affiliation(s)
- Chaichana Suriyapha
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Srisan Phupaboon
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Gamonmas Dagaew
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sukruthai Sommai
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Maharach Matra
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Rittikeard Prachumchai
- Division of Animal Science, Faculty of Agricultural Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, 12130, Pathum Thani, Thailand
| | - Theerachai Haitook
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
5
|
Wanapat M, Dagaew G, Sommai S, Matra M, Suriyapha C, Prachumchai R, Muslykhah U, Phupaboon S. The application of omics technologies for understanding tropical plants-based bioactive compounds in ruminants: a review. J Anim Sci Biotechnol 2024; 15:58. [PMID: 38689368 PMCID: PMC11062008 DOI: 10.1186/s40104-024-01017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/29/2024] [Indexed: 05/02/2024] Open
Abstract
Finding out how diet impacts health and metabolism while concentrating on the functional qualities and bioactive components of food is the crucial scientific objective of nutritional research. The complex relationship between metabolism and nutrition could be investigated with cutting-edge "omics" and bioinformatics techniques. This review paper provides an overview of the use of omics technologies in nutritional research, with a particular emphasis on the new applications of transcriptomics, proteomics, metabolomics, and genomes in functional and biological activity research on ruminant livestock and products in the tropical regions. A wealth of knowledge has been uncovered regarding the regulation and use of numerous physiological and pathological processes by gene, mRNA, protein, and metabolite expressions under various physiological situations and guidelines. In particular, the components of meat and milk were assessed using omics research utilizing the various methods of transcriptomics, proteomics, metabolomics, and genomes. The goal of this review is to use omics technologies-which have been steadily gaining popularity as technological tools-to develop new nutritional, genetic, and leadership strategies to improve animal products and their quality control. We also present an overview of the new applications of omics technologies in cattle production and employ nutriomics and foodomics technologies to investigate the microbes in the rumen ecology. Thus, the application of state-of-the-art omics technology may aid in our understanding of how species and/or breeds adapt, and the sustainability of tropical animal production, in the long run, is becoming increasingly important as a means of mitigating the consequences of climate change.
Collapse
Affiliation(s)
- Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Gamonmas Dagaew
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sukruthai Sommai
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Maharach Matra
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chaichana Suriyapha
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Rittikeard Prachumchai
- Department of Animal Science, Faculty of Agricultural Technology, University of Technology Thanyaburi, Rajamangala Pathum Thani, 12130, Thailand
| | - Uswatun Muslykhah
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Srisan Phupaboon
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
6
|
Matra M, Phupaboon S, Totakul P, Prommachart R, Shah AA, Shah AM, Wanapat M. Microencapsulation of Mitragyna leaf extracts to be used as a bioactive compound source to enhance in vitro fermentation characteristics and microbial dynamics. Anim Biosci 2024; 37:74-83. [PMID: 37946435 PMCID: PMC10766463 DOI: 10.5713/ab.23.0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE Mitragyna speciosa Korth is traditionally used in Thailand. They have a high level of antioxidant capacities and bioactive compounds, the potential to modulate rumen fermentation and decrease methane production. The aim of the study was to investigate the different levels of microencapsulated-Mitragyna leaves extracts (MMLE) supplementation on nutrient degradability, rumen ecology, microbial dynamics, and methane production in an in vitro study. METHODS A completely randomized design was used to assign the experimental treatments, MMLE was supplemented at 0%, 4%, 6%, and 8% of the total dry matter (DM) substrate. RESULTS The addition of MMLE significantly increased in vitro dry matter degradability both at 12, 24, and 48 h, while ammonia-nitrogen (NH3-N) concentration was improved with MMLE supplementation. The MMLE had the greatest propionate and total volatile fatty acid production when added with 6% of total DM substrate, while decreased the methane production (12, 24, and 48 h). Furthermore, the microbial population of cellulolytic bacteria and Butyrivibrio fibrisolvens were increased, whilst Methanobacteriales was decreased with MMLE feeding. CONCLUSION The results indicated that MMLE could be a potential alternative plant-based bioactive compound supplement to be used as ruminant feed additives.
Collapse
Affiliation(s)
- Maharach Matra
- Tropical Feed Resources Research and Development Center, Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002,
Thailand
| | - Srisan Phupaboon
- Tropical Feed Resources Research and Development Center, Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002,
Thailand
| | - Pajaree Totakul
- Division of Animal Science, Faculty of Agricultural Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathum Thani 12130,
Thailand
| | - Ronnachai Prommachart
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Rajamangala University of Technology, Tawan-Ok 20110,
Thailand
| | - Assar Ali Shah
- Tropical Feed Resources Research and Development Center, Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002,
Thailand
| | - Ali Mujtaba Shah
- Department of Livestock Production, Shaheed Benazir Bhutto University of Veterinary and Animal Science, Sakrand 67210, Sindh,
Pakistan
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center, Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002,
Thailand
| |
Collapse
|
7
|
Kanakai N, Wongtangtintharn S, Suntara C, Cherdthong A. Feeding Pellets Containing Agro-Industrial Waste Enhances Feed Utilization and Rumen Functions in Thai Beef Cattle. Animals (Basel) 2023; 13:3861. [PMID: 38136898 PMCID: PMC10740786 DOI: 10.3390/ani13243861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
The objective of this research was to investigate the effects of citric waste fermented with yeast waste pellet (CWYWP) supplementation on feed intake, rumen characteristics, and blood metabolites in native Thai beef cattle that are fed a rice-straw-based diet. Four native male Thai beef cattle (1.0-1.5 years old) with an initial body weight (BW) of 116 ± 16 kg were held in a 4 × 4 Latin square design within 21-day periods. The animals were assigned to receive CWYWP supplementation at 0%, 2%, 4%, and 6% of the total dry matter (DM) intake per day. The results indicate that feeding beef cattle with CWYWP leads to a linear increase in the total intake as well was the intake of crude protein (CP) and the digestibility of CP, with the maximum levels observed at 6% CWYWP supplementation (p < 0.05). Rumen characteristics, including pH, blood urea-nitrogen concentration, and protozoal population, showed no significant alterations in response to the varying CWYWP dosages (p > 0.05). In addition, the CWYWP supplementation resulted in no significant changes in the concentration of ammonia-nitrogen, remaining within an average normal range of 10.19-10.38 mg/dL (p > 0.05). The inclusion of 6% CWYWP resulted in the highest population of ruminal bacteria (p < 0.05). Additionally, the CWYWP supplementation led to a statistically significant increase in the mean propionic acid concentration as compared to the group that did not receive the CWYWP supplementation (p < 0.05). In conclusion, this experiment demonstrates that supplementing Thai native beef cattle with CWYWP at either 4% or 6% DM per day can enhance their total CP intake as well as the CP digestibility and rumen bacterial population, and can increase propionate concentration.
Collapse
Affiliation(s)
| | | | | | - Anusorn Cherdthong
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (N.K.); (S.W.); (C.S.)
| |
Collapse
|
8
|
Mhlongo LC, Kenyon P, Nsahlai IV. Effect of dietary inclusions of different types of Acacia mearnsii on milk performance and nutrient intake of dairy cows. Vet Anim Sci 2023; 21:100299. [PMID: 37333507 PMCID: PMC10276135 DOI: 10.1016/j.vas.2023.100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
This study investigated the effects of including different types of Acacia mearnsii (tannin extract and forage) on nutrient intake and milk performance in dairy cattle. Holstein-Friesian x Jersey dairy cows (n per Experiment = 24) that had 200 days in milk were selected for this study in a completely randomized study design. This study was conducted under on-farm conditions at Springfontein dairy farm, a farm that lacked a functional bodyweight scale to measure the cow bodyweight and a computer system to register cow parity. Cows were assigned Acacia mearnsii tannin extract (ATE) pellets which were added with 0 (0ATE), 0.75 (0.75ATE), 1.5 (1.5ATE) or 3 (3ATE) % ATE in pellets while 0ATE was a commercial protein concentrate (Experiment 1). Cows were assigned Acacia mearnsii forage (AMF) at a rate of 0 (0AMF), 5 (5AMF), 15 (15AMF) or 25 (25AMF) % AMF inclusion in corn silage-based diet (Experiment 2). For both Experiments, treatments had six cows each, in which they were adapted (14 d) to diets before data collection (21 d). All AMF inclusions decreased (P<0.0001) dry matter intake (DMI), crude protein intake (CPI), neutral detergent fibre intake (NDFI), acid detergent fibre intake (ADFI) and organic matter intake (OMI) at 25AMF. Linear (P<0.0001) and quadratic (P<0.001) effects were observed on DMI, CPI, NDFI, ADFI and OMI. Inclusions of AMF in corn silage diets affected milk yield, protein yield, lactose yield and milk protein percentage (P<0.001). Linear effect was present in milk yield per DMI (P<0.0001). In conclusion, the dairy cow diet supplemented with ATE pellets did not have a beneficial effect on the nutrient intakes and milk yield. However, the AMF supplemented in corn silage of the dairy cow diet, increased milk production due to positive effects on nutrient intake, which was favourably influenced from a nutritional point of view.
Collapse
Affiliation(s)
- Lindokuhle C. Mhlongo
- Animal and Poultry Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg 3209, South Africa
| | - Piers Kenyon
- Ntlangwini Makhoba Farming (PTY) LTD, Makhoba Land, Swartberg, KwaZulu-Natal, 4170, South Africa
| | - Ignatius V. Nsahlai
- Animal and Poultry Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg 3209, South Africa
| |
Collapse
|