1
|
de Toledo RB, de Faria OAC, Leme LO, Magnabosco CU, Guimarães R, Eifert EDC, Dos Santos IR, Oliveira RV, Dode MAN, Malaquias JV, Pivato I, Martins CF. Effect of food supplementation on in vitro embryo production and growth performance in prepubertal Nelore heifers. Anim Biotechnol 2023; 34:5087-5096. [PMID: 37975200 DOI: 10.1080/10495398.2023.2279612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
In vitro embryos production from prepubertal heifers can help contribute to breeding programs; however, strategies are necessary to increase their embryo production. The aim of this study was to investigate the effects of two nutritional plans on oocyte recovery, embryo production and growth performance of prepubertal Nelore heifers. Thirty-four Nelore heifers with age of 6.5 months were divided into two feeding treatments (NP1 and NP2). The NP1 diets served as the control and NP2 diets were formulated to contain an average of 1.22-fold more energy than NP1. After 3 months of supplementation, the animals underwent follicular aspiration (ovum pick-up, OPU) every 21 d for 3 months and embryos were produced in vitro. Wither height, chest depth, body weight and subcutaneous fat of animals were measured. The number of retrieved and viable oocytes per OPU were 1.49-fold and 1.42-fold greater in NP2 heifers (p = 0.018 and p = 0.049, respectively) than those in NP1 heifers. Heifers administered NP2 produced 29.7% blastocysts, a percentage higher than NP1 animals that produced 24.40% embryos (p < 0.05). Consequently, females in the NP2 treatment showed improved body development. These results indicate a positive effect of a higher energy diet on assisted reproduction and body development in prepubertal heifers.
Collapse
Affiliation(s)
- Ricardo Braz de Toledo
- Brazilian Agricultural Research Corporation (Embrapa Cerrados), Planaltina, Brazil
- University of Brasília, Brasília, Brazil
| | - Otávio Augusto Costa de Faria
- University of Brasília, Brasília, Brazil
- Brazilian Agricultural Research Corporation (Embrapa Recursos Genéticos e Biotecnologia), Brasília, Brazil
| | - Ligiane Oliveira Leme
- Brazilian Agricultural Research Corporation (Embrapa Recursos Genéticos e Biotecnologia), Brasília, Brazil
| | | | - Roberto Guimarães
- Brazilian Agricultural Research Corporation (Embrapa Cerrados), Planaltina, Brazil
| | | | | | | | - Margot Alves Nunes Dode
- Brazilian Agricultural Research Corporation (Embrapa Recursos Genéticos e Biotecnologia), Brasília, Brazil
| | | | - Ivo Pivato
- University of Brasília, Brasília, Brazil
| | | |
Collapse
|
2
|
Kawamoto TS, Viana JHM, Pontelo TP, Franco MM, de Faria OAC, Fidelis AAG, Vargas LN, Figueiredo RA. Dynamics of the Reproductive Changes and Acquisition of Oocyte Competence in Nelore (Bos taurus indicus) Calves during the Early and Intermediate Prepubertal Periods. Animals (Basel) 2022; 12:ani12162137. [PMID: 36009727 PMCID: PMC9405107 DOI: 10.3390/ani12162137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to characterize the reproductive physiology, oocyte competence, and chromatin compaction in Nelore calves in the early-prepubertal period (EPP) and the intermediate-prepubertal period (IPP). Calves aged 2-5 (EPP) and 8-11 months old (IPP) were assigned to Trial 1 (morpho-physiological-endocrine evaluations, n = 8) or Trial 2 (oocyte donors, n = 8) vs. the respective control groups of cows (n = 8, each). All morphological endpoints, except the antral follicle count, increased from the EPP to the IPP. The EPP LH-FSH plasma concentrations were similar to cows, whereas LH was lower and FSH was higher in the IPP than in cows. . Cows produced more Grade I (12.9% vs. 4.1% and 1.7%) and fewer Grade III COC (30.1% vs. 44.5% and 49.0%) than the EPP and IPP calves, respectively. The IPP calves' oocyte diameter was similar to those from cows but greater than those from EPP females (124.8 ± 8.5 and 126.0 ± 7.5 μm vs. 121.3 ± 7.5 μm, respectively). The expression of the chromatin compaction-related gene HDAC3 was downregulated in calves. The proportion of the blastocyst rate to the controls was lower in EPP than in IPP calves (43.7% vs. 78.7%, respectively). Progressive oocyte competence was found during the prepubertal period, which can help to decide whether to recover oocytes from calves.
Collapse
Affiliation(s)
- Taynan Stonoga Kawamoto
- Department of Veterinary, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil
| | | | | | - Maurício Machaim Franco
- Animal Reproduction Laboratory, Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil
| | | | | | - Luna Nascimento Vargas
- Department of Biology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil
| | - Ricardo Alamino Figueiredo
- Animal Reproduction Laboratory, Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil
- Correspondence: ; Tel.: +55-61-3448-4961
| |
Collapse
|
3
|
Rutigliano HM, Thomas AJ, Umbaugh JJ, Wilhelm A, Sessions BR, Kaundal R, Duhan N, Hicks BA, Schlafer DH, White KL, Davies CJ. Increased expression of pro-inflammatory cytokines at the fetal-maternal interface in bovine pregnancies produced by cloning. Am J Reprod Immunol 2022; 87:e13520. [PMID: 34974639 PMCID: PMC9285385 DOI: 10.1111/aji.13520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/10/2021] [Accepted: 12/29/2021] [Indexed: 11/26/2022] Open
Abstract
PROBLEM A significant rate of spontaneous abortion is observed in cattle pregnancies produced by somatic cell nuclear transfer (SCNT). Major histocompatibility complex class I (MHC-I) proteins are abnormally expressed on the surface of trophoblast cells from SCNT conceptuses. METHOD OF STUDY MHC-I homozygous compatible (n = 9), homozygous incompatible (n = 8), and heterozygous incompatible (n = 5) pregnancies were established by SCNT. Eight control pregnancies were established by artificial insemination. Uterine and trophoblast samples were collected on day 35 ±1 of pregnancy, the expression of immune-related genes was examined by qPCR, and the expression of trophoblast microRNAs was assessed by sequencing. RESULTS Compared to the control group, trophoblast from MHC-I heterozygous incompatible pregnancies expressed increased levels of CD28, CTLA4, CXCL8, IFNG, IL1A, IL2, IL10, IL12B, TBX21, and TNF, while GNLY expression was downregulated. The MHC-I homozygous incompatible treatment group expressed increased levels of IFNG, IL1A, and IL2 while the MHC-I homozygous compatible group did not differentially express any genes compared to the control group. In the endometrium, relative to the control group, MHC-I heterozygous incompatible pregnancies expressed increased levels of CD28, CTLA4, CXCL8, IFNG, IL10, IL12B, and TNF, while GATA3 expression was downregulated. The MHC-I homozygous incompatible group expressed decreased amounts of CSF2 transcripts compared with the control group but did not have abnormal expression of any other immune-related genes. MHC-I incompatible pregnancies had 40 deregulated miRNAs compared to control pregnancies and 62 deregulated microRNAs compared to MHC-I compatible pregnancies. CONCLUSIONS MHC-I compatibility between the dam and fetus prevented an exacerbated maternal immune response from being mounted against fetal antigens.
Collapse
Affiliation(s)
- Heloisa M Rutigliano
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA.,School of Veterinary Medicine, Utah State University, Logan, Utah, USA.,Center for Integrated BioSystems, Utah State University, Logan, Utah, USA
| | - Aaron J Thomas
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA.,Center for Integrated BioSystems, Utah State University, Logan, Utah, USA
| | - Janae J Umbaugh
- School of Veterinary Medicine, Utah State University, Logan, Utah, USA
| | - Amanda Wilhelm
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA.,Center for Integrated BioSystems, Utah State University, Logan, Utah, USA
| | - Benjamin R Sessions
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA.,Center for Integrated BioSystems, Utah State University, Logan, Utah, USA
| | - Rakesh Kaundal
- Center for Integrated BioSystems, Utah State University, Logan, Utah, USA.,Department of Plants, Soils and Climate, Utah State University, Logan, Utah, USA
| | - Naveen Duhan
- Center for Integrated BioSystems, Utah State University, Logan, Utah, USA.,Department of Plants, Soils and Climate, Utah State University, Logan, Utah, USA
| | - Brady A Hicks
- J.R. Simplot Company Cattle Reproduction Facility, Boise, Idaho, USA
| | - Donald H Schlafer
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Kenneth L White
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA.,School of Veterinary Medicine, Utah State University, Logan, Utah, USA.,Center for Integrated BioSystems, Utah State University, Logan, Utah, USA
| | - Christopher J Davies
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA.,School of Veterinary Medicine, Utah State University, Logan, Utah, USA.,Center for Integrated BioSystems, Utah State University, Logan, Utah, USA
| |
Collapse
|
4
|
Cuthbert JM, Russell SJ, Polejaeva IA, Meng Q, White KL, Benninghoff AD. Dynamics of small non-coding RNAs in bovine scNT embryos through the maternal-to-embryonic transition. Biol Reprod 2021; 105:918-933. [PMID: 34086842 DOI: 10.1093/biolre/ioab107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
The efficiency of somatic cell nuclear transfer (scNT) for production of viable offspring is relatively low as compared to in vitro fertilization (IVF), presumably due to deficiencies in epigenetic reprogramming of the donor cell genome. Such defects may also involve the population of small non-coding RNAs (sncRNAs), which are important during early embryonic development. The objective of this study was to examine dynamic changes in relative abundance of sncRNAs during the maternal-to embryonic transition (MET) in bovine embryos produced by scNT as compared to IVF by using RNA sequencing. When comparing populations of miRNA in scNT versus IVF embryos, only miR-2340, miR-345, and miR34a were differentially expressed in morulae, though many more miRNAs were differentially expressed when comparing across developmental stages. Also of interest, distinct populations of piwi-interacting like RNAs (pilRNAs) were identified in bovine embryos prior to and during embryonic genome activation (EGA) as compared bovine embryos post EGA and differentiated cells. Overall, sncRNA sequencing analysis of preimplantation embryos revealed largely similar profiles of sncRNAs for IVF and scNT embryos at the 2-cell, 8-cell, morula and blastocyst stages of development. However, these sncRNA profiles, including miRNA, piRNA and tRNA fragments, were notably distinct prior to and after completion of the MET.
Collapse
Affiliation(s)
- Jocelyn M Cuthbert
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Stewart J Russell
- CReATe Fertility Centre, 790 Bay St. #1100, Toronto, M5G 1N8, Canada
| | - Irina A Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Qinggang Meng
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Kenneth L White
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| |
Collapse
|
5
|
Shi B, Thomas AJ, Benninghoff AD, Sessions BR, Meng Q, Parasar P, Rutigliano HM, White KL, Davies CJ. Genetic and epigenetic regulation of major histocompatibility complex class I gene expression in bovine trophoblast cells. Am J Reprod Immunol 2017; 79. [PMID: 29131441 PMCID: PMC5728445 DOI: 10.1111/aji.12779] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/10/2017] [Indexed: 11/28/2022] Open
Abstract
Problem The regulatory mechanisms governing differential expression of classical major histocompatibility complex (MHC) class I (MHC‐Ia) and non‐classical MHC class I (MHC‐Ib) genes are poorly understood. Method of study Quantitative reverse transcription‐ polymerase chain reaction (PCR) was used to compare the abundance of MHC‐I transcripts and related transcription factors in peripheral blood mononuclear cells (PBMC) and placental trophoblast cells (PTC). Methylation of MHC‐I CpG islands was detected by bisulfite treatment and next‐generation sequencing. Demethylation of PBMC and PTC with 5′‐aza‐deoxycytidine was used to assess the role of methylation in gene regulation. Results MHC‐I expression was higher in PBMC than PTC and was correlated with expression of IRF1, class II MHC transactivator (CIITA), and STAT1. The MHC‐Ia genes and BoLA‐NC1 were devoid of CpG methylation in PBMC and PTC. In contrast, CpG sites in the gene body of BoLA‐NC2, ‐NC3, and ‐NC4 were highly methylated in PBMC but largely unmethylated in normal PTC and moderately methylated in somatic cell nuclear transfer PTC. In PBMC, demethylation resulted in upregulation of MHC‐Ib by 2.8‐ to 6‐fold, whereas MHC‐Ia transcripts were elevated less than 2‐fold. Conclusion DNA methylation regulates bovine MHC‐Ib expression and is likely responsible for the different relative levels of MHC‐Ib to MHC‐Ia transcripts in PBMC and PTC.
Collapse
Affiliation(s)
- Bi Shi
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Aaron J Thomas
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,School of Veterinary Medicine, Utah State University, Logan, UT, USA
| | - Benjamin R Sessions
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Qinggang Meng
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Parveen Parasar
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Heloisa M Rutigliano
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,School of Veterinary Medicine, Utah State University, Logan, UT, USA
| | - Kenneth L White
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,Center for Integrated BioSystems, Utah State University, Logan, UT, USA.,School of Veterinary Medicine, Utah State University, Logan, UT, USA
| | - Christopher J Davies
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,Center for Integrated BioSystems, Utah State University, Logan, UT, USA.,School of Veterinary Medicine, Utah State University, Logan, UT, USA
| |
Collapse
|
6
|
Rutigliano HM, Thomas AJ, Wilhelm A, Sessions BR, Hicks BA, Schlafer DH, White KL, Davies CJ. Trophoblast Major Histocompatibility Complex Class I Expression Is Associated with Immune-Mediated Rejection of Bovine Fetuses Produced by Cloning. Biol Reprod 2016; 95:39. [PMID: 27385783 PMCID: PMC5029473 DOI: 10.1095/biolreprod.115.136523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/08/2016] [Indexed: 12/17/2022] Open
Abstract
Trophoblast cells from bovine somatic cell nuclear transfer (SCNT) conceptuses express major histocompatibility complex class I (MHC-I) proteins early in gestation, and this may be one cause of the significant first-trimester embryonic mortality observed in these pregnancies. MHC-I homozygous-compatible (n = 9), homozygous-incompatible (n = 8), and heterozygous-incompatible (n = 5) SCNT pregnancies were established. The control group consisted of eight pregnancies produced by artificial insemination. Uterine and placental samples were collected on Day 35 ± 1 of pregnancy, and expression of MHC-I, leukocyte markers, and cytokines were examined by immunohistochemistry. Trophoblast cells from all SCNT pregnancies expressed MHC-I, while trophoblast cells from age-matched control pregnancies were negative for MHC-I expression. Expression of MHC-I antigens by trophoblast cells from SCNT pregnancies was associated with lymphocytic infiltration in the endometrium. Furthermore, MHC-I-incompatible conceptuses, particularly the heterozygous-incompatible ones, induced a more pronounced lymphocytic infiltration than MHC-I-compatible conceptuses. Cells expressing cluster of differentiation (CD) 3, gamma/deltaTCR, and MHC-II were increased in the endometrium of SCNT pregnancies compared to the control group. CD4+ lymphocytes were increased in MHC-I-incompatible pregnancies compared to MHC-I-compatible and control pregnancies. CD8+, FOXP3+, and natural killer cells were increased in MHC-I heterozygous-incompatible SCNT pregnancies compared to homozygous SCNT and control pregnancies.
Collapse
Affiliation(s)
- Heloisa M Rutigliano
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah School of Veterinary Medicine, Utah State University, Logan, Utah Center for Integrated BioSystems, Utah State University, Logan, Utah
| | - Aaron J Thomas
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah Center for Integrated BioSystems, Utah State University, Logan, Utah
| | - Amanda Wilhelm
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah Center for Integrated BioSystems, Utah State University, Logan, Utah
| | - Benjamin R Sessions
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah Center for Integrated BioSystems, Utah State University, Logan, Utah
| | - Brady A Hicks
- J.R. Simplot Company Cattle Reproduction Facility, Emmett, Idaho
| | - Donald H Schlafer
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Kenneth L White
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah School of Veterinary Medicine, Utah State University, Logan, Utah Center for Integrated BioSystems, Utah State University, Logan, Utah
| | - Christopher J Davies
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah School of Veterinary Medicine, Utah State University, Logan, Utah Center for Integrated BioSystems, Utah State University, Logan, Utah
| |
Collapse
|
7
|
Moussa M, Shu J, Zhang X, Zeng F. Maternal control of oocyte quality in cattle “a review”. Anim Reprod Sci 2015; 155:11-27. [DOI: 10.1016/j.anireprosci.2015.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 11/20/2014] [Accepted: 01/15/2015] [Indexed: 02/09/2023]
|
8
|
Choi YH, Ritthaler J, Hinrichs K. Production of a mitochondrial-DNA identical cloned foal using oocytes recovered from immature follicles of selected mares. Theriogenology 2014; 82:411-7. [PMID: 24888683 DOI: 10.1016/j.theriogenology.2014.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 04/20/2014] [Accepted: 04/26/2014] [Indexed: 11/16/2022]
Abstract
Cloned animals possess mitochondria derived from the host ooplast, which typically differ genetically from those of the donor. This is of special concern to horse breeders, as maternal lines are prized and athletic performance is a key factor in genetic value. To evaluate the feasibility of producing mitochondrial-identical cloned foals, we collected oocytes from immature follicles of two mares, BL and SM, maternally related to the donor stallion. In vitro matured, enucleated oocytes were treated with roscovitine-synchronized donor cells and blastocysts were transferred transcervically to recipient mares. In Mare BL, 10 aspiration sessions yielded 45 oocytes, of which 12 matured and seven were successfully recombined. One blastocyst was produced, which did not yield a pregnancy. In Mare SM, three aspiration sessions yielded 53 oocytes, of which 27 successfully recombined. These were assigned to either Scriptaid or Scriptaid plus Vitamin C treatments for the first 12 to 16 hours of embryo culture. Two blastocysts were produced from each treatment. One pregnancy was established after transfer from the Scriptaid treatment. This resulted in a viable foal whose genomic DNA and mitochondrial DNA matched to those of the donor animal. These results indicate that production of mitochondrial-identical cloned foals can be achieved using oocyte recovery from a very small number of selected mares. Despite mitochondrial homogeneity, the results varied with mare; Mare BL yielded both significantly fewer oocytes per aspiration session (P < 0.001) and significantly fewer reconstructed oocytes per oocyte recovered ( P < 0.001) than did Mare SM.
Collapse
Affiliation(s)
- Young-Ho Choi
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | | | - Katrin Hinrichs
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
9
|
Stevens JR, Bell JL, Aston KI, White KL. A comparison of probe-level and probeset models for small-sample gene expression data. BMC Bioinformatics 2010; 11:281. [PMID: 20504334 PMCID: PMC2901368 DOI: 10.1186/1471-2105-11-281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 05/26/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Statistical methods to tentatively identify differentially expressed genes in microarray studies typically assume larger sample sizes than are practical or even possible in some settings. RESULTS The performance of several probe-level and probeset models was assessed graphically and numerically using three spike-in datasets. Based on the Affymetrix GeneChip, a novel nested factorial model was developed and found to perform competitively on small-sample spike-in experiments. CONCLUSIONS Statistical methods with test statistics related to the estimated log fold change tend to be more consistent in their performance on small-sample gene expression data. For such small-sample experiments, the nested factorial model can be a useful statistical tool. This method is implemented in freely-available R code (affyNFM), available with a tutorial document at http://www.stat.usu.edu/~jrstevens.
Collapse
Affiliation(s)
- John R Stevens
- Department of Mathematics and Statistics, Utah State University, Logan, UT 84322, USA.
| | | | | | | |
Collapse
|
10
|
Aston KI, Li GP, Hicks BA, Sessions BR, Davis AP, Rickords LF, Stevens JR, White KL. Abnormal levels of transcript abundance of developmentally important genes in various stages of preimplantation bovine somatic cell nuclear transfer embryos. Cell Reprogram 2010; 12:23-32. [PMID: 20132010 DOI: 10.1089/cell.2009.0042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Based on microarray data comparing gene expression of fibroblast donor cells and bovine somatic cell nuclear transfer (SCNT) and in vivo produced (AI) blastocysts, a group of genes including several transcription factors was selected for evaluation of transcript abundance. Using SYBR green-based real-time polymerase chain reaction (Q-PCR) the levels of POU domain class 5 transcription factor (Oct4), snail homolog 2 (Snai2), annexin A1 (Anxa1), thrombospondin (Thbs), tumor-associated calcium signal transducer 1 (Tacstd1), and transcription factor AP2 gamma (Tfap2c) were evaluated in bovine fibroblasts, oocytes, embryos 30 min postfusion (SCNT), 12 h postfertilization/activation, as well as two-cell, four-cell, eight-cell, morula, and blastocyst-stage in vitro fertilized (IVF) and SCNT embryos. For every gene except Oct4, levels of transcript were indistinguishable between IVF and SCNT embryos at the blastocyst stage; however, in many cases levels of these genes during stages prior to blastocyst differed significantly. Altered levels of gene transcripts early in development likely have developmental consequences downstream. These results indicate that experiments evaluating gene expression differences between control and SCNT blastocysts may underestimate the degree of difference between clones and controls, and further offer insights into the dynamics of transcript regulation following SCNT.
Collapse
Affiliation(s)
- Kenneth I Aston
- Department of Animal, Dairy, and Veterinary Sciences and Center for Integrated Biosystems, Utah State University, Logan, Utah 84322-4815, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Kim MJ, Oh HJ, Park JE, Hong SG, Kang JT, Koo OJ, Kang SK, Jang G, Lee BC. Influence of oocyte donor and embryo recipient conditions on cloning efficiency in dogs. Theriogenology 2010; 74:473-8. [PMID: 20452009 DOI: 10.1016/j.theriogenology.2010.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 01/26/2010] [Accepted: 03/07/2010] [Indexed: 11/16/2022]
Abstract
To determine factors that affect the efficiency of dog cloning by somatic cell nuclear transfer, the present study was performed to investigate 1) the effects of surgical history (non-operated/operated) and parity (nullipara/multipara) on the recovery of in vivo canine oocytes; 2) the effects of surgical history and parity of recipients on the pregnancy and delivery; and 3) the effects of synchronization state (AA, advanced asynchrony; SY, synchrony; RA, retarded asynchrony) between oocytes donor and recipient on the pregnancy and delivery. Oocyte recovery rate was significantly higher in non-operated dogs compared to operated dogs (93.8 vs. 89.6%, P < 0.05) and not different between nulliparous dogs and multiparous dogs. Delivery rate was also significantly higher in non-operated dogs compared to operated dogs (2.8 vs. 1.0%, P < 0.05) and in nulliparous dogs than multiparous dogs (3.0 vs. 1.7%, P < 0.05). Even though SY showed increased pregnancy and delivery rate (20.0% and 3.0%) compared to AA (15.0% and 2.0%) and RA (0.0% and 0.0%), there was no significant difference. In conclusion, we recommend non-operated dogs as experimental dogs and nulliparous dogs as recipient dogs to increase delivery rate after transfer of somatic cell nuclear transferred embryos, but further study is needed to find out appropriate synchrony status at the transfer.
Collapse
Affiliation(s)
- M J Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Li GP, White KL, Aston KI, Bunch TD, Hicks B, Liu Y, Sessions BR. Colcemid-treatment of heifer oocytes enhances nuclear transfer embryonic development, establishment of pregnancy and development to term. Mol Reprod Dev 2009; 76:620-8. [PMID: 19170231 DOI: 10.1002/mrd.21004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Four experiments were designed to examine the effects of colcemid, a microtubule assembly inhibitor, on the development of bovine nuclear transfer (NT) embryos in vitro and in vivo. Recipient oocytes matured at different times were exposed to colcemid. Approximately 80-93% of the exposed oocytes, with or without the first polar body (PB1), developed obvious membrane projections. In Experiment 1, oocytes matured for either 14-15 or 16-17 hr, treated with colcemid and used as recipient cytoplasm for NT resulted in over 40% blastocyst development. In Experiment 2, oocytes matured for 16-17 hr were treated with either 0.2 or 0.4 microg/ml colcemid for 2-3 or 5-6 hr, respectively. The percentages of blastocyst development (39-42%) were not statistically different among the different colcemid treatment groups, but were both higher (P < 0.05) than the control group (30%). Colcemid concentrations and length of colcemid treatment of oocytes did not affect their ability to support NT embryo development to the blastocyst and hatched blastocyst stages. Results from Experiment 3 indicate that semi-defined medium increases morula and blastocyst development of NT embryos derived from colcemid-treated oocytes under 5% CO2 in air atmosphere. In addition, cell numbers of blastocysts in colcemid-treated groups were numerically higher than the control groups. After embryo transfer, higher (P < 0.05) pregnant rates were obtained from the colcemid-treated group than the nontreated group. Five of 40 recipients (12.5%) which received embryos from colcemid-treated oocytes delivered healthy calves, significantly higher than those recipients (3.3%) that received embryos derived from nontreated oocytes.
Collapse
Affiliation(s)
- Guang-Peng Li
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah 84321, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Cloned kids derived from caprine mammary gland epithelial cells. Theriogenology 2009; 72:500-5. [DOI: 10.1016/j.theriogenology.2009.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 04/10/2009] [Accepted: 04/14/2009] [Indexed: 10/20/2022]
|
14
|
Malenko GP, Stepanov OI, Komissarov AV, Antipova TA, Pinyugina MV, Prokofiev MI. Efficiency of AsynchronouslyIn Vitro-Matured Oocytes as Recipients for Nuclear Transfer and of Blind Enucleation in Zona-Free Bovine Cloning. CLONING AND STEM CELLS 2009; 11:287-92. [DOI: 10.1089/clo.2007.0090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Galina P. Malenko
- Biotechcenter, Afanasyev Research Institute for Breeding of Fur-Bearing Animals and Rabbits, Russian Academy of Agricultural Sciences, Gorki Leninskie, Moscow Region, Russia
| | - Oleg I. Stepanov
- Biotechcenter, Afanasyev Research Institute for Breeding of Fur-Bearing Animals and Rabbits, Russian Academy of Agricultural Sciences, Gorki Leninskie, Moscow Region, Russia
| | - Andrey V. Komissarov
- Biotechcenter, Afanasyev Research Institute for Breeding of Fur-Bearing Animals and Rabbits, Russian Academy of Agricultural Sciences, Gorki Leninskie, Moscow Region, Russia
| | - Tatyana A. Antipova
- Biotechcenter, Afanasyev Research Institute for Breeding of Fur-Bearing Animals and Rabbits, Russian Academy of Agricultural Sciences, Gorki Leninskie, Moscow Region, Russia
| | - Marina V. Pinyugina
- Biotechcenter, Afanasyev Research Institute for Breeding of Fur-Bearing Animals and Rabbits, Russian Academy of Agricultural Sciences, Gorki Leninskie, Moscow Region, Russia
| | - Michael I. Prokofiev
- Biotechcenter, Afanasyev Research Institute for Breeding of Fur-Bearing Animals and Rabbits, Russian Academy of Agricultural Sciences, Gorki Leninskie, Moscow Region, Russia
| |
Collapse
|
15
|
Aston KI, Li GP, Hicks BA, Winger QA, White KL. Genetic reprogramming of transcription factor ap-2gamma in bovine somatic cell nuclear transfer preimplantation embryos and placentomes. CLONING AND STEM CELLS 2009; 11:177-86. [PMID: 19226219 DOI: 10.1089/clo.2008.0055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bovine somatic cell nuclear transfer (SCNT) efficiency remains very low despite a tremendous amount of research devoted to its improvement over the past decade. Frequent early and mid-gestational losses are commonly accompanied by placental abnormalities. A transcription factor, activating protein AP-2gamma, has been shown to be necessary for proper placental development in the mouse. We first evaluated the expression of the gene coding for AP-2gamma (Tfap2c) in several bovine fibroblast donor cell lines and found it was not expressed. Subsequently we determined the expression profile of Tfap2c in oocytes and various stages of preimplantation in vitro fertilized (IVF) embryos. Tfap2c was undetectable in oocytes and early embryos, and was detectable at relatively high levels in morula and blastocyst IVF embryos. The lack of expression in oocytes and donor cells means Tfap2c must be induced in the zygote at the morula stage in properly reprogrammed embryos. SCNT embryos expressed Tfap2c at the eight-cell stage, 2 days earlier than control embryos. Control embryos first expressed Tfap2c at the morula stage, and at this stage Tfap2c was significantly lower in the SCNT embryos. No differences in expression were detected at the blastocyst stage. To determine whether Tfap2c was properly reprogrammed in the placenta of SCNT pregnancies, we evaluated its expression in cotyledons and caruncles of SCNT and control pregnancies between days 55 and 90 gestation. Expression of Tfap2c in caruncles significantly increased between days 55 and 90, while expression in cotyledons was relatively consistent over that same period. Expression levels in SCNT tissues were not different from controls. This data indicates Tfap2c expression is altered in early preimplantation SCNT embryos, which may have developmental consequences resulting from genes influenced by Tfap2c, but expression was not different at the blastocyst stage and in placentomes.
Collapse
Affiliation(s)
- Kenneth I Aston
- Department of Animal, Dairy, and Veterinary Sciences and Center for Integrated Biosystems, Utah State University, Logan, 84322-4815, USA
| | | | | | | | | |
Collapse
|
16
|
Aston K, Li G, Hicks B, Sessions B, Davis A, Winger Q, Rickords L, Stevens J, White K. Global gene expression analysis of bovine somatic cell nuclear transfer blastocysts and cotyledons. Mol Reprod Dev 2009; 76:471-82. [DOI: 10.1002/mrd.20962] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Yang XY, Ji MK, Liu X, Huang YF, Zhang G, Xu RQ, Yao JF, Lin JY, Zheng M. Somatic cell nuclear transfer with recipient oocytes derived from ovum pick up. Livest Sci 2009. [DOI: 10.1016/j.livsci.2008.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Yang X, Chen P, Huang Y, Liu X, Zheng M, Zhang G, Xu R. The timing of first cleavage of different cloned and IVF embryos with oocytes recovered by ovum pickup. J Zool (1987) 2008. [DOI: 10.1111/j.1469-7998.2008.00490.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- X.‐Y. Yang
- College of Preclinical Medicine, Fujian Medical University, Fuzhou, China
- Fujian Reproductive Medicine Center, Fujian Medical University, Fuzhou, China
| | - P. Chen
- The Affiliated First Hospital, Fujian Medical University, Fuzhou, China
| | - Y.‐F. Huang
- The Affiliated First Hospital, Fujian Medical University, Fuzhou, China
| | - X. Liu
- Fujian Reproductive Medicine Center, Fujian Medical University, Fuzhou, China
| | - M. Zheng
- College of Preclinical Medicine, Fujian Medical University, Fuzhou, China
| | - G. Zhang
- College of Preclinical Medicine, Fujian Medical University, Fuzhou, China
| | - R.‐Q. Xu
- College of Preclinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
19
|
Yang XY, Zhao JG, Li H, Liu HF, Huang Y, Huang SZ, Zeng F, Zeng YT. Effect of individual heifer oocyte donors on cloned embryo development in vitro. Anim Reprod Sci 2008; 104:28-37. [PMID: 17350188 DOI: 10.1016/j.anireprosci.2007.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 01/12/2007] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
The aim of this study was to determine the effect of individual oocyte donors on cloned embryo development in vitro. Five Holstein heifers of varied genetic origins were subject to ovum pick up (OPU) once weekly. In total, 913 oocytes were recovered from 1304 follicles. A mean of 7.7+/-0.4 oocytes was recovered per session per animal. Individual mean oocyte production varied significantly in quantity but not in quality (morphological categories) among heifers. Oocytes from individual heifers were used as recipient cytoplasm for somatic cell nuclear transfer (SCNT). Cumulus cells, collected from a single Holstein cow genetically unrelated to the oocyte donor, were used as donor cells. Although the percentage of reconstructed embryos that started to cleave was nearly constant, the percentage of cleaved embryos that developed into blastocysts showed clear individual heifer variation (61%, 51%, 31%, 28% and 24%, respectively), with a mean of 38% showing blastocyst formation. In vitro fertilization (IVF) was also conducted with oocyte from the same heifers used in SCNT. A variation of blastocyst production among individual heifers was also shown in the IVF experiment, but the rank of oocyte donor based on the blastocyst rate was changed. In conclusion, individual oocyte donor may have an effect on cloned embryo development in vitro, which differed from the effect on IVF embryos.
Collapse
Affiliation(s)
- Xiao-Yu Yang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 20040, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Pfeffer PL, Sisco B, Donnison M, Somers J, Smith C. Isolation of genes associated with developmental competency of bovine oocytes. Theriogenology 2007; 68 Suppl 1:S84-90. [PMID: 17467046 DOI: 10.1016/j.theriogenology.2007.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eggs differ widely in their ability to develop into an embryo. To address this characteristic, the concept of developmental competency has been coined, defined as the ability or potential of an oocyte to undergo maturation, fertilization and development to blastocyst stages or live offspring. Developmental competency is acquired progressively during folliculogenesis and is linked to follicular size. In an effort to understand the molecular changes underlying differences in competency we compared oocytes derived from large follicles (>or=5mm) to those from small follicles (<or=2mm). We used an approach combining suppressive subtraction hybridization with a linear amplification step to identify genes upregulated in the more competent oocytes. Real-time RT-PCR quantification indicated highly significant upregulation for 10 genes. However, the observed changes did not exceed three-fold suggesting that the molecular causes for poor developmental capacity may be reliant on many small changes. In monovulatory species oocyte developmental competency is further modulated in a process termed follicular dominancy, whereby only one of a cohort of developing ovarian follicles continues to grow. In our second approach, we aimed to identify genes that may be involved in the choice of one follicle as becoming dominant and thus restricting the developmental competency to a single oocyte. This approach, focusing on granulosa cells, yielded a small set of five genes that could be verified to be reliable markers for dominant follicles. We have further analyzed one of these involving the activin/inhibin pathway. Lastly, in a third approach we are investigating the feasibility of using nuclear transfer (NT) to interrogate oocyte developmental competency.
Collapse
Affiliation(s)
- P L Pfeffer
- AgResearch, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand.
| | | | | | | | | |
Collapse
|