1
|
Teplitz GM, Lorenzo MS, Cruzans PR, Olea GB, Salamone DF, Bastien A, Robert C, Sirard MA, Lombardo DM. Coculture with porcine luteal cells during in vitro porcine oocyte maturation affects lipid content, cortical reaction and zona pellucida ultrastructure. Reprod Fertil Dev 2024; 36:NULL. [PMID: 38096792 DOI: 10.1071/rd23150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/28/2023] [Indexed: 01/26/2024] Open
Abstract
CONTEXT In pigs, in vitro fertilisation (IVF) is associated with high polyspermy rates, and for this reason, in vitro embryo production (IVP) is still an inefficient biotechnology. Coculture with somatic cells is an alternative to improve suboptimal in vitro maturation (IVM) conditions. AIM This study was conducted to test a coculture system of porcine luteal cells (PLC) and cumulus-oocyte complexes (COC) to improve oocyte metabolism. METHODS COC were matured in vitro with PLC. Oocyte lipid content, mitochondrial activity, zona pellucida (ZP) digestibility and pore size, cortical reaction and in vitro embryo development were assessed. KEY RESULTS Coculture reduced cytoplasmic lipid content in the oocyte cytoplasm without increasing mitochondrial activity. Although ZP digestibility and ZP pore number were not different between culture systems, ZP pores were smaller in the coculture. Coculture impacted the distribution of cortical granules as they were found immediately under the oolemma, and more of them had released their content in the ZP. Coculture with porcine luteal cells during IVM increased monospermic penetration and embryo development after IVF. CONCLUSIONS The coculture of COC with PLC affects the metabolism of the oocyte and benefits monospermic penetration and embryo development. IMPLICATIONS The coculture system with PLC could be an alternative for the conventional maturation medium in pigs.
Collapse
Affiliation(s)
- G M Teplitz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina; and Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Cátedra de Histología y Embriología, Chorroarín 280, Buenos Aires C1427CWO, Argentina
| | - M S Lorenzo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina; and Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Cátedra de Histología y Embriología, Chorroarín 280, Buenos Aires C1427CWO, Argentina
| | - P R Cruzans
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina; and Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Cátedra de Histología y Embriología, Chorroarín 280, Buenos Aires C1427CWO, Argentina
| | - G B Olea
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina; and Universidad Nacional del Nordeste, Facultad de Ciencias Veterinarias, Cátedra de Histología y Embriología, Cabral 2139, Corrientes C.P. 3400, Argentina
| | - D F Salamone
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina; and Laboratorio de Biotecnología Animal, Facultad de Agronomia, Universidad de Buenos Aires, Avenue San Martin 4453, Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| | - A Bastien
- Departement des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Inter-générationnelle (CRDSI). Pavillon Des Services, local 2732, Université Laval, Québec, QC G1V 0A6, Canada
| | - C Robert
- Departement des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Inter-générationnelle (CRDSI). Pavillon Des Services, local 2732, Université Laval, Québec, QC G1V 0A6, Canada
| | - M A Sirard
- Departement des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Inter-générationnelle (CRDSI). Pavillon Des Services, local 2732, Université Laval, Québec, QC G1V 0A6, Canada
| | - D M Lombardo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina; and Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Cátedra de Histología y Embriología, Chorroarín 280, Buenos Aires C1427CWO, Argentina
| |
Collapse
|
2
|
Ma Y, Gu M, Chen L, Shen H, Pan Y, Pang Y, Miao S, Tong R, Huang H, Zhu Y, Sun L. Recent advances in critical nodes of embryo engineering technology. Theranostics 2021; 11:7391-7424. [PMID: 34158857 PMCID: PMC8210615 DOI: 10.7150/thno.58799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
The normal development and maturation of oocytes and sperm, the formation of fertilized ova, the implantation of early embryos, and the growth and development of foetuses are the biological basis of mammalian reproduction. Therefore, research on oocytes has always occupied a very important position in the life sciences and reproductive medicine fields. Various embryo engineering technologies for oocytes, early embryo formation and subsequent developmental stages and different target sites, such as gene editing, intracytoplasmic sperm injection (ICSI), preimplantation genetic diagnosis (PGD), and somatic cell nuclear transfer (SCNT) technologies, have all been established and widely used in industrialization. However, as research continues to deepen and target species become more advanced, embryo engineering technology has also been developing in a more complex and sophisticated direction. At the same time, the success rate also shows a declining trend, resulting in an extension of the research and development cycle and rising costs. By studying the existing embryo engineering technology process, we discovered three critical nodes that have the greatest impact on the development of oocytes and early embryos, namely, oocyte micromanipulation, oocyte electrical activation/reconstructed embryo electrofusion, and the in vitro culture of early embryos. This article mainly demonstrates the efforts made by researchers in the relevant technologies of these three critical nodes from an engineering perspective, analyses the shortcomings of the current technology, and proposes a plan and prospects for the development of embryo engineering technology in the future.
Collapse
Affiliation(s)
- Youwen Ma
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Mingwei Gu
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Liguo Chen
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Hao Shen
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Yifan Pan
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Yan Pang
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Sheng Miao
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Ruiqing Tong
- Cardiology, Dushuhu Public Hospital Affiliated to Soochow University, Suzhou 215000, China
| | - Haibo Huang
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
| | - Yichen Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou 215123, China
| | - Lining Sun
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China
- State Key Laboratory of Robotics & Systems, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
3
|
Teplitz GM, Shi M, Sirard MA, Lombardo DM. Coculture of porcine luteal cells during in vitro porcine oocyte maturation affects blastocyst gene expression and developmental potential. Theriogenology 2021; 166:124-134. [PMID: 33735666 DOI: 10.1016/j.theriogenology.2021.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/26/2021] [Accepted: 02/22/2021] [Indexed: 12/22/2022]
Abstract
Oocyte maturation in culture is still the weakest part of in vitro fertilization (IVF) and coculture with somatic cells may be an alternative to improve suboptimal culture conditions, especially in the pig in which maturation takes more than 44 h. In the present study, we investigated the effect of a coculture system of porcine luteal cells (PLC) during in vitro maturation (IVM) on embryo development and gene expression. Cumulus-oocyte complexes were matured in vitro in TCM-199 with human menopausal gonadotrophin (control) and in coculture with PLC. IVF was performed with frozen-thawed boar semen in Tris-buffered medium. Presumptive zygotes were cultured in PZM for 7 days. The coculture with PLC significantly increased blastocysts rates. Gene expression changes were measured with a porcine embryo-specific microarray and confirmed by RT-qPCR. The global transcription pattern of embryos developing after PLC coculture exhibited overall downregulation of gene expression. Following global gene expression pattern analysis, genes associated with lipid metabolism, mitochondrial function, endoplasmic reticulum stress, and apoptosis were found downregulated, and genes associated with cell cycle and proliferation were found upregulated in the PLC coculture. Canonical pathway analysis by Ingenuity Pathway revealed that differential expression transcripts were associated with the sirtuin signaling pathway, oxidative phosphorylation pathway, cytokines and ephrin receptor signaling. To conclude, the coculture system of PLC during IVM has a lasting effect on the embryo until the blastocyst stage, modifying gene expression, with a positive effect on embryo development. Our model could be an alternative to replace the conventional maturation medium with gonadotrophins with higher rates of embryo development, a key issue in porcine in vitro embryo production.
Collapse
Affiliation(s)
- G M Teplitz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425TQB, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Cátedra de Histología y Embriología, Chorroarín 280 C1427CWO, Buenos Aires, Argentina
| | - M Shi
- Departement des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Inter-générationnelle (CRDSI), Université Laval, Quebec, Canada. Pavillon Des Services, Local 2732, Université Laval, Quebec G1V 0A6, Canada
| | - M A Sirard
- Departement des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Inter-générationnelle (CRDSI), Université Laval, Quebec, Canada. Pavillon Des Services, Local 2732, Université Laval, Quebec G1V 0A6, Canada
| | - D M Lombardo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425TQB, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Cátedra de Histología y Embriología, Chorroarín 280 C1427CWO, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Teplitz GM, Lorenzo MS, Maruri A, Cruzans PR, Carou MC, Lombardo DM. Coculture of porcine cumulus–oocyte complexes with porcine luteal cells during IVM: effect on oocyte maturation and embryo development. Reprod Fertil Dev 2020; 32:1250-1259. [DOI: 10.1071/rd20117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/12/2020] [Indexed: 11/23/2022] Open
Abstract
Coculture with somatic cells is an alternative to improve suboptimal invitro culture conditions. In pigs, IVF is related to poor male pronuclear formation and high rates of polyspermy. The aim of this study was to assess the effect of a coculture system with porcine luteal cells (PLCs) on the IVM of porcine cumulus–oocyte complexes (COCs). Abattoir-derived ovaries were used to obtain PLCs and COCs. COCs were matured invitro in TCM-199 with or without the addition of human menopausal gonadotrophin (hMG; C+hMG and C-hMG respectively), in coculture with PLCs from passage 1 (PLC-1) and in PLC-1 conditioned medium (CM). In the coculture system, nuclear maturation rates were significantly higher than in the C-hMG and CM groups, but similar to rates in the C+hMG group. In cumulus cells, PLC-1 coculture decreased viability, early apoptosis and necrosis, and increased late apoptosis compared with C+hMG. PLC-1 coculture also decreased reactive oxygen species levels in cumulus cells. After IVF, monospermic penetration and IVF efficiency increased in the PLC-1 group compared with the C+hMG group. After invitro culture, higher blastocysts rates were observed in the PLC-1 group. This is the first report of a coculture system of COCs with PLCs. Our model could be an alternative for the conventional maturation medium plus gonadotrophins because of its lower rates of polyspermic penetration and higher blastocysts rates, key issues in porcine invitro embryo production.
Collapse
|
5
|
Chen X, Zhu Z, Yu F, Huang J, Jia R, Pan J. Effect of shRNA-mediated Xist knockdown on the quality of porcine parthenogenetic embryos. Dev Dyn 2018; 248:140-148. [PMID: 30055068 DOI: 10.1002/dvdy.24660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 06/27/2018] [Accepted: 07/13/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Parthenogenetically activated oocytes exhibit poor embryo development and lower total numbers of cells per blastocyst accompanied by abnormally increased expression of Xist, a long noncoding RNA that plays an important role in triggering X chromosome inactivation during embryogenesis. RESULTS To investigate whether knockdown of Xist influences parthenogenetic development in pigs. We developed an anti-Xist short hairpin RNA (shRNA) vector, which can significantly inhibit Xist expression for at least seven days when injected at 12-13 hr after parthenogenetic activation. Embryonic cleavage, blastocyst formation, and total blastocyst cell numbers were compared during the blastocyst stage, as well as the expression of an X-linked gene and three pluripotent transcription factors. Knockdown of Xist significantly increases the total blastocyst cell number, but does not influence the rate of embryo cleavage and blastocyst formation. The expressions of Sox2, Nanog, and Oct4 were also significantly improved in the injected embryos compared with the control at the blastocyst stage, but the Foxp3 expression level was not increased significantly. CONCLUSIONS The present study provides valuable information for understanding the role of Xist in parthenogenesis and presents a new approach for improving the quality of porcine parthenogenetic embryos. Developmental Dynamics 248:140-148, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, P.R. China
| | - Zhiwei Zhu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, P.R. China
| | - Fuxian Yu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, P.R. China
| | - Jing Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, P.R. China
| | - Ruoxin Jia
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, P.R. China
| | - Jianzhi Pan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
6
|
Yoon JD, Jeon Y, Cai L, Hwang SU, Kim E, Lee E, Kim D, Hyun SH. Effects of coculture with cumulus-derived somatic cells on in vitro maturation of porcine oocytes. Theriogenology 2015; 83:294-305. [DOI: 10.1016/j.theriogenology.2014.09.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 09/15/2014] [Accepted: 09/20/2014] [Indexed: 11/24/2022]
|
7
|
Effect of Co-Culture with Various Somatic Cells during In Vitro Maturation of Immature Oocytes. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2014. [DOI: 10.12750/jet.2014.29.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
8
|
Abstract
The effects of cytoplasmic volumes on development and developmental kinetics of in vitro produced porcine embryos were investigated. During hand-made cloning (HMC), selected cytoplasts were separated into two groups according to their size in relation to the initial oocyte: ~75% or ~50%. Following two fusion steps and activation (day 0), reconstructed embryos were cultured in vitro for 6 days. Cleavage rates on day 2 as well as blastocyst rates and cell numbers on day 6 were recorded. Results showed that embryo development was no different for ~50% versus ~75% cytoplasm at first fusion. This result was used in the following experiments, where the effect of varying cytoplasm volume in second fusion to obtain a final cytoplasm volume of ~75% to ~200% was tested. The results showed that the lowest quality was obtained when the final cytoplasm volume was ~75% and the highest quality at ~200% of the original oocyte. Similar results were observed in parthenogenetic (PA) embryos activated with different cytoplasmic volumes. A common pattern for the developmental kinetics of HMC and PA embryos was observed: the smaller group tended to have a longer time for the first two cell cycles, but subsequently a shorter time to form morula and blastocyst. In conclusion, the developmental kinetics of in vitro produced embryos was affected by the cytoplasm volume of the initial oocyte, and this further accounted for the developmental ability of the reconstructed embryos.
Collapse
|
9
|
Kyasari O, Valojerdi M, Farrokhi A, Ebrahimi B. Expression of maturation genes and their receptors during in vitro maturation of sheep COCs in the presence and absence of somatic cells of cumulus origin. Theriogenology 2012; 77:12-20. [DOI: 10.1016/j.theriogenology.2011.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 06/21/2011] [Accepted: 07/05/2011] [Indexed: 12/13/2022]
|
10
|
Areekijseree M, Chuen-Im T. Effects of porcine follicle stimulating hormone, luteinizing hormone and estradiol supplementation in culture medium on ultrastructures of porcine cumulus oocyte complexes (pCOCs). Micron 2011; 43:251-7. [PMID: 21917469 DOI: 10.1016/j.micron.2011.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 08/16/2011] [Accepted: 08/16/2011] [Indexed: 11/30/2022]
Abstract
Inhibition of primary oocyte developing to secondary oocyte results from oocyte maturation inhibitor (OMI) which is secreted from oocyte-surrounding cumulus cells (CCs) during forming complexes with an oocyte. Development of primary oocyte occurs when the CCs are dissociated from the oocyte. This research studied the effects of pFSH, LH, and estradiol supplementation in culture medium on ultrastructures of porcine cumulus oocyte complexes (pCOCs) using transmission electron microcopy (TEM) and inverted microscopy. A total of 880 oocytes were isolated from 110 ovaries: an average of 8 oocytes per ovary. The oocytes were round in shape and surrounded by zona pellucida with layers of cumulus cells (CCs), at a diameter ranging between 90 and 150 μm and more than 400 μm. Based on the CCs surrounding an oocyte, pCOCs were classified into 5 types, which were intact-, multi-, partial cumulus cell layers, completely denuded oocyte, and expanded cumulus cell layer, which were found at the percentage of 53.86%, 14.32%, 4.32%, 19.20%, and 8.30%, respectively. The Types I and II pCOCs (intact- and multi-CCs layers) were further cultured at 37°C with 5% CO(2), 95% air atmosphere, and high humidity for 24-48 h to investigate their morphological changes after hormonal induction. For the pCOCs cultured without hormonal induction, the CCs were still round in shape and remained in contact with an oocyte via a process of granular end point sticking into the zona pellucida. In contrast, for the hormone supplemented groups, morphological alteration of pCOCs were seen after culture of 24-48 h. The CCs shape was changed from round into elongated or columnar in an opposite direction from an oocyte as well as no communication between microvilli of CCs observed. This led into ceasing of OMI secretion. Therefore, changes of CCs morphology were a sign of the beginning of oocyte maturation. Further study is to characterize the granular substance at the end point of CCs that stick into the zona pellucida.
Collapse
Affiliation(s)
- Mayuva Areekijseree
- Department of Biology, Faculty of Science, Silpakorn University, Sanamchandra Palace Campus, Muang, Nakorn Pathom 73000, Thailand.
| | | |
Collapse
|
11
|
Shi L, Yue W, Zhang J, Lv L, Ren Y, Yan P. Effect of ovarian cortex cells on nuclear maturation of sheep oocytes during in vitro maturation. Anim Reprod Sci 2009; 113:299-304. [DOI: 10.1016/j.anireprosci.2008.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 06/25/2008] [Accepted: 08/01/2008] [Indexed: 11/26/2022]
|